首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The local cerebral glucose utilization (LCGU) was measured in 63 different cortical areas and nuclei of the telencephalon, diencephalon and rhombencephalon of young adult (3 to 4-month-old) rats and of 27-month-old Wistar rats, in which learning impairments had been proven by a water maze test. The LCGU was determined by [14C]2-deoxyglucose autoradiography. In the old rats the mean LCGU of all brain regions was significantly reduced by about 10% compared with the young control group; the mean LCGU was 74.2 mumol glucose/(100 g x min) in the young and 66.7 in the old rats. Different degrees of LCGU decrease were found in the different regions. Most of the brain regions with significantly reduced LCGU values in the aged, learning impaired rats were associated with auditory and visual functions, the dopaminergic system, and structures known to be involved in learning and memory processes. Therefore, the regional pattern of LCGU reduction found in the aged, learning impaired rats did not resemble any known pattern found after lesions of a single transmitter system or systemic administration of transmitter agonists or antagonists.  相似文献   

2.
Summary The local cerebral glucose utilization (LCGU) was measured in the different areas and layers of the Ammon's horn and dentate gyrus of young adult (3 to 4-month-old) rats, and of 27-month-old rats with proven cognitive deficits. The LCGU was determined by quantitative [14C]2-deoxyglucose autoradiography. Compared to young animals, in the old rats the LCGU was significantly reduced by 12% to 15% in the oriens layers of CA1 and CA2, the pyramidal layers of the CA sectors 1–3, the radiatum and lacunosum-molecular layers of CA2 and CA3 and in the lucidum layer of CA3. The LCGU values of all the other layers of the Ammon's horn and the dentate gyrus did not differ significantly between young and old rats. The pattern of the LCGU reduction found in the old rats roughly resembles changes found after fimbra-fornix lesions or systemic administration of scopolamine, suggesting a functionally important deficit in the cholinergic innervation of the old rats' hippocampi.  相似文献   

3.
The local cerebral glucose utilization (LCGU) was measured in the different areas and layers of the Ammon's horn and dentate gyrus of young adult (3 to 4-month-old) rats, and of 27-month-old rats with proven cognitive deficits. The LCGU was determined by quantitative [14C]2-deoxyglucose autoradiography. Compared to young animals, in the old rats the LCGU was significantly reduced by 12% to 15% in the oriens layers of CA1 and CA2, the pyramidal layers of the CA sectors 1-3, the radiatum and lacunosum-molecular layers of CA2 and CA3 and in the lucidum layer of CA3. The LCGU values of all the other layers of the Ammon's horn and the dentate gyrus did not differ significantly between young and old rats. The pattern of the LCGU reduction found in the old rats roughly resembles changes found after fimbra-fornix lesions or systemic administration of scopolamine, suggesting a functionally important deficit in the cholinergic innervation of the old rats' hippocampi.  相似文献   

4.
Local cerebral glucose utilization (LCGU) was measured, using the quantitative autoradiographic [14C]2-deoxy-D-glucose method, in 56 brain regions of 3-month-old, awake Fischer-344 rats, after intraperitoneal administration of sulpiride (SULP) 100 mg/kg. SULP, an "atypical" neuroleptic, is a selective antagonist of D2 dopamine receptors. LCGU was reduced in a few nondopaminergic regions at 1 h after drug administration. Thereafter, SULP progressively elevated LCGU in many other regions. At 3 h, LCGU was elevated in 23% of the regions examined, most of which are related to the CNS dopaminergic system (caudate-putamen, nucleus accumbens, olfactory tubercle, lateral habenula, median eminence, paraventricular hypothalamic nucleus). Increases of LCGU were observed also in the suprachiasmatic nucleus, lateral geniculate, and inferior olive. These effects of SULP on LCGU differ from the effects of the "typical" neuroleptic haloperidol, which produces widespread decreases in LCGU in the rat brain. Selective actions on different subpopulations of dopamine receptors may explain the different effects of the two neuroleptics on brain metabolism, which correspond to their different clinical and behavioral actions.  相似文献   

5.
Decreases in plasma IGF-I levels that occur with age have been hypothesized to contribute to the genesis of brain aging. However, support for this hypothesis would be strengthened by evidence that growth hormone (GH)/IGF-I deficiency in young animals produces a phenotype similar to that found in aged animals. As a result, we developed a unique model of adult-onset GH/IGF-I deficiency by using dwarf rats specifically deficient in GH and IGF-I. The deficiency in plasma IGF-I is similar to that observed with age (e.g., 50% decrease), and replacement of GH restores levels of IGF-I to that found in young animals with normal GH levels. The present study employs this model to investigate the effects of circulating GH and IGF-I on local cerebral glucose utilization (LCGU). Analysis of LCGU indicated that GH/IGF-I-deficient animals exhibit a 29% decrease in glucose metabolism in many brain regions, especially those involved in hippocampally dependent processes of learning and memory. Similarly, a high correlation between plasma IGF-I levels and glucose metabolism was found in these areas. The deficiency in LCGU was not associated with alterations in GLUT1, GLUT3, or hexokinase activity. A 15% decrease in ATP levels was also found in hippocampus of GH-deficient animals, providing compelling data that circulating GH and IGF-I have significant effects on the regulation of glucose utilization and energy metabolism in the brain. Furthermore, our results provide important data to support the conclusion that deficiencies in circulating GH/IGF-I contribute to the genesis of brain aging.  相似文献   

6.
Summary By means of the [14C]-2-deoxyglucose method the local cerebral glucose utilization (LCGU) was measured in 41 brain regions in autoimmune New Zealand Black (NZB) mice and in Carworth Farm Winkelmann (CFW) mice, which served as the control strain. At the age of 6 months, the mean LCGU of all measured areas and brain stem nuclei was 67.7 mol glucose/(100 g x min) in the nonautoimmune CFW mice. These LCGU values are within the limits published by other observers. In contrast, in the aged-matched NZB mice the glucose use was markedly reduced, the mean LCGU of all measured areas being 37.7 mol glucose/(100 g x min). These findings suggest that the immunological, morphological and behavioural abnormalities in the aged NZB mouse correlate with a reduced functional activity of the central nervous system, measured as reduced cerebral glucose utilization.  相似文献   

7.
The brain-derived peptidergic drug Cerebrolysin has been found to support the survival of neurons in vitro and in vivo. In the present study, we investigated the effects of Cerebrolysin and its peptide preparation E021 on spatial learning and memory, as well as on the abundance of the blood–brain barrier GLUT1 glucose transporter (GLUT1) in 2-month-old and 24-month-old rats. Young rats were treated with the drugs or saline (2.5ml/kg/day) daily on postnatal days 1–7, and old rats for 19 consecutive days. For behavioural testing the Morris water maze was used. The abundance of GLUT1 was determined in brain slices by immunocytochemistry. Quantification of the density of the GLUT1 immunostaining was performed using light microscopy and a computerised image analysing system. All drug-treated rats, young and old, exhibit shorter escape latencies in the water maze, on all testing days (p>0.01), indicating improved cognitive performance. Immunohistochemical data show an age-related decrease of the density of GLUT1 (p>0.05). In young animals, the administration of the drugs led to an increase of the abundance of GLUT1 in all experimental groups (p>0.01). In old rats, the treatment with Cerebrolysin, but not with E021, resulted in an increase in the immunoreactive GLUT1 (p>0.01).The elevated abundance of GLUT1 after the administration of both peptidergic substances might be supportive for the cognitive effects of this drug, by causing an improved nutritional supply of glucose to the neurons.  相似文献   

8.
The studies reviewed here represent a continuing search for mechanisms which play a role in neurological disturbances resulting from brain injury. Focal cortical freezing lesions in rats were shown to cause a widespread decrease in local cerebral glucose utilization (LCGU) in cortical areas of the lesioned hemisphere and this was interpreted as reflecting a depression of cortical activity. Such an interpretation was supported by the finding that in lesioned brain reduction of cerebral metabolism by pentobarbital and isoflurane was limited by the metabolic depression that has already occurred as a result of injury and by the demonstration that the energy status and substrate (glucose) supply in the cortical areas in the injured brain have not been compromised at the time when LCGU was decreased. Both the serotonergic and the noradrenergic neurotransmitter systems were implicated in functional alterations associated with injury. Cortical serotonin (5-HT) metabolism was increased throughout the lesioned hemisphere and complete inhibition of 5-HT synthesis withp-chlorophenylalanine ameliorated the decrease in cortical LCGU, interpreted as reflecting cortical functional depression. Cortical norepinephrine metabolism was bilaterally increased in focally injured brain, while prazosin, a selective 1-noradrenergic receptor blocker, normalized cortical LCGU in the lesioned hemisphere. Low-affinity in vivo binding of [125I]HEAT, another selective 1-receptor ligand, was specifically increased in cortical areas of the lesioned hemisphere at the time of the greatest depression in LCGU, suggesting that 1-adrenoreceptors may be of functional importance in injured brain. The general conclusion from this series of studies on mechanisms underlying functional disturbances in injured brain is that both the serotonergic and the noradrenergic neurotransmitter systems are involved in the widespread cortical depression which develops with time as a consequence of a focal lesion. The data are compatible with the inhibitory effects of NE and 5-HT in the cortex and with the hypothesis that these two transmitter systems affect cortical information processing.  相似文献   

9.
1. Hypothalamic insulin (HI) is well known for its role in feeding regulation. In addition, its concentration is modified in response to meals. Recent studies suggest that brain insulin participates in memory processes, possibly through stimulation by glucose.2. The present microdialysis study focused on local in vivo regulation of HI by glucose and on the effects of aging on HI, since aging is characterized by deterioration of memory, body weight regulation, and central glucose utilization. Glucose (8 mM) infused for 5 min increased extracellular HI levels rapidly, by 4.6-fold, and cerebellar insulin levels by 0.4-fold only, suggesting a specific area-dependent regulation of HI by glucose. Neither insulinemia nor glycemia were affected, suggesting a central mechanism. The same dose of glucose induced a modest (0.4-fold), delayed (45 min) increase in hypothalamic serotonin, suggesting that the effect of glucose on HI is independent of a previously defined local serotonin-induced insulin release. HI levels in old normal weight rats were half the levels of young rats. In genetically old obese (fa/fa) Zucker rats, HI concentration was 30% of that in young normal rats, suggesting a deterioration of HI availability when aging and obesity are combined.3. The above results, in line with recent considerations on a potential role of central insulin in learning and memory, suggest particular effects of HI on feeding and memory and probably on a specific memory for food.  相似文献   

10.
The brain-derived peptidergic drug Cerebrolysin has been found to support the survival of neurons in vitro and in vivo. In the present study, we investigated the effects of Cerebrolysin and its peptide preparation E021 on spatial learning and memory, as well as on the abundance of the blood–brain barrier GLUT1 glucose transporter (GLUT1) in 2-month-old and 24-month-old rats. Young rats were treated with the drugs or saline (2.5?ml/kg/day) daily on postnatal days 1–7, and old rats for 19 consecutive days. For behavioural testing the Morris water maze was used. The abundance of GLUT1 was determined in brain slices by immunocytochemistry. Quantification of the density of the GLUT1 immunostaining was performed using light microscopy and a computerised image analysing system. All drug-treated rats, young and old, exhibit shorter escape latencies in the water maze, on all testing days (p>0.01), indicating improved cognitive performance. Immunohistochemical data show an age-related decrease of the density of GLUT1 (p>0.05). In young animals, the administration of the drugs led to an increase of the abundance of GLUT1 in all experimental groups (p>0.01). In old rats, the treatment with Cerebrolysin, but not with E021, resulted in an increase in the immunoreactive GLUT1 (p>0.01). The elevated abundance of GLUT1 after the administration of both peptidergic substances might be supportive for the cognitive effects of this drug, by causing an improved nutritional supply of glucose to the neurons.  相似文献   

11.
12.
By means of the [14C]-2-deoxyglucose method the local cerebral glucose utilization (LCGU) was measured in 41 brain regions in autoimmune New Zealand Black (NZB) mice and in Carworth Farm Winkelmann (CFW) mice, which served as the control strain. At the age of 6 months, the mean LCGU of all measured areas and brain stem nuclei was 67.7 mumol glucose/(100 g x min) in the nonautoimmune CFW mice. These LCGU values are within the limits published by other observers. In contrast, in the aged-matched NZB mice the glucose use was markedly reduced, the mean LCGU of all measured areas being 37.7 mumol glucose/(100 g x min). These findings suggest that the immunological, morphological and behavioural abnormalities in the aged NZB mouse correlate with a reduced functional activity of the central nervous system, measured as reduced cerebral glucose utilization.  相似文献   

13.
Abstract: Aldehyde dehydrogenase (ALDH) activity was measured in brains, livers, and hearts of 23–26-month-old and 3-month-old rats. A significant increase of ALDH activity was found in whole brain of old rats with both acetaldehyde (39%) and propionylaldehyde (15%) used as substrates. In different brain areas of old rats, with acetaldehyde used as substrate, a significant increase of ALDH activity was found in striatum (30–50%) and cerebral cortex (37%). However, no significant difference in ALDH activity was found in livers and hearts of young and old rats. Preliminary experiments showed a significant increase of aldehyde reductase activity (52%) with p -nitrobenzaldehyde used as substrate in whole brain of old rats compared with young rats. The present work indicates that an increase of ALDH activity in brain of old rats may be an adaptive phenomenon.  相似文献   

14.
In previous studies, we found a significantly higher (100% or more) content of cathepsin D in the aging brain. In the present study, we determined activity of Ca2+-activated neutral protease requiring millimolar Ca2+ (calpain II, CANP II) and amount of its endogenous inhibitor, calpastatin, in extracts of various brain regions of 3-month-old and 24-month-old male Fischer-344 rats. Calpain II was separated from calpastatin in a single step (chromatography) and its activity was tested using as substrates [methyl-14C]-casein, the cytoskeletal proteins desmin and actin, and a mixture of neurofilament triplet proteins and glial fibrillary acidic proteins (GFAP). We found no changes in calpain II activity in pons-medulla and spinal cord, but significant increases were detected in cortex (72%) and striatum (63%) of the 24-month-old rats using [methyl-14C]-casein as substrate. The profile of desmin and actin breakdown showed regional variations somewhat different from those of [methyl-14C]-casein. With desmin, the greatest increases with age were in the striatum (82%) and hypothalamus (46%), but there were no alterations in cortex, cerebellum, and pons-medulla. With actin, slightly enhanced activity in cortex and cerebellum was noticeable. Calpastatin content in brain regions was also increased, with the regional pattern of increase fairly similar to the pattern of enzyme activity increase. The causes and the physiological consequences of increased calpain and calpastatin content in the aged brain are being investigated. That changes with age are some-what different with the various brain protein substrates indicates that some of the properties of the enzyme also undergo alteration with age. The change does not appear to be due to a change in distribution, since most of the enzyme, unlike its inhibitor, is in the soluble form.  相似文献   

15.
16.
Effects of age and glucose levels on insulin secretion and synthesis were studied in the perfused pancreas of young (2-month-old) and older (10-month-old) female Wistar rats. Insulin secretion induced by 16.7 mM glucose showed a triphasic pattern: an early spike and fall (first phase, 0-6 min), followed by a sustained gradual increase (second phase, 7-120 min) and a gradual decreased release thereafter (third phase, 121-360 min) during the perfusion period of 360 min. First and second phase insulin secretion, but not third phase, were lower in older rats than in young rats. Insulin synthesis in old rat pancreas perfused with 16.7 nM glucose for 360 min was much greater than that of young rats. Second phase insulin secretion was restored to comparable levels by 28 mM glucose in older rats. Repeated pulses of 28 mM glucose potentiated subsequent insulin secretion in young rats, but not in older rats. These findings provide further evidence that sensitivity to glucose in pancreatic B cells is altered by aging.  相似文献   

17.
In order to clarify the mechanisms by which nicotinic acid deficiency impairs brain function, the effects of the nicotinic acid antimetabolite, 3-acetylpyridine, have been investigated on behavior, cerebral oxidative metabolism, and acetylcholine synthesis. In young rats (21–23 days old), 3-acetylpyridine caused dose- and time-related deficits in behavior, as measured by a neurological scale and by tight-rope performance, loss of body weight, and decreased survival. An intermediate dosage decreased cerebral glucose utilization in the inferior olivary nuclei, but increased it in the fastigial, interpositus, red, dentate, vestibular, posterior mamillary, and habenular nuclei. Selective alteration of metabolism was also observed in brain slices from 3-acetylpyridine-treated rats. Although forebrain slices were unaffected, in brainstem slices the synthesis of acetylcholine decreased by 34% with depolarizing (31 mM) concentrations of K+ (P<0.05). This dose of 3-acetylpyridine did not deplete the total pool of NAD in any of the 7 brain regions examined. Thus, the nicotinic acid deficiency which results from 3-acetylpyridine treatment appears to be yet another metabolic encephalopathy in which cholinergic systems are impaired.  相似文献   

18.
alpha-Fluoromethylhistidine, a histidine decarboxylase inhibitor, induced a significant depletion in the hypothalamic, midbrain, and cortical brain histamine amounts in 12- and 3-month-old rats. In all three brain regions the most evident depletion occurred 2 h after treatment. In both groups of rats midbrain histamine levels returned to control values 6 h after treatment; however, hypothalamic histamine depletion was still significant and more evident in the old than in the young animals. Cortical brain histamine also remained significantly depleted in old rats, but returned to control values in young animals 6 h after alpha-fluoromethylhistidine treatment. These results suggest that old rats show a slower rate of new histamine synthesis in the cortex and hypothalamus. Regional brain histamine depletion was associated with a very significant decrease in plasma corticosterone levels, which indicates that brain histamine-corticosterone interactions do occur.  相似文献   

19.
Nonaka N  Banks WA  Mizushima H  Shioda S  Morley JE 《Peptides》2002,23(12):2197-2202
The blood–brain barrier (BBB) controls the exchange of peptides and regulatory proteins between the central nervous system (CNS) and the blood. Transport across the BBB of such regulatory substances is altered in animal models of Alzheimer’s disease. These alterations could lead to cognitive impairments or diminish their therapeutic potential. Here, we measured the transport rate of radioactively labeled pituitary adenylate cyclase-activating polypeptide (PACAP) from blood into whole brain and into 11 brain regions in three groups of mice: young (2 months old) ICR, young (2 months old) SAMP8, and aged (12 months old) SAMP8 mice. The SAMP8 is a strain which develops impaired learning and memory with aging that correlates with an age-related increase in brain levels of amyloid β protein (AβP). PACAP is a powerful neurotrophin that may have a therapeutic role in neurodegenerative diseases. We found that I-PACAP crossed the BBB fastest at the hypothalamus and the hippocampus in all three groups. Slower transport rates into the whole brain, the olfactory bulb, the hypothalamus, and the hippocampus for aged SAMP8 mice was likely related to differences both from strain and expression of AβP with aging.  相似文献   

20.
With aging, the kidney develops a progressive deterioration of several structures and functions. Proximal tubular acidification is impaired in old rats with a decrease in the activity of brush border Na+/H+ exchange and a fall of H-ion flux measured with micropuncture experiments. In the present work we evaluate the contribution of 5-N-ethyl-n-isopropyl amiloride- (EIPA) and bafilomycin-sensitive bicarbonate flux (JHCO3-) in proximal convoluted tubules of young and aged rats. We performed micropuncture experiments inhibiting the Na+/H+ exchanger with EIPA (10(-4) M) and the V-H+ATPase with bafilomycin (10(-6) M). We used antibodies against the NHE3 isoform of the Na+/H+ exchanger and the subunit E of the V-H+ATPase for detecting by Western blot the abundance of these proteins in brush border membrane vesicles from proximal convoluted tubules of young and old rats. The abundance of NHE3 and the V-H+ATPase was similar in 18-month-old and 3-month-old rats. The bicarbonate flux in old rats was 30% lower than in young rats. EIPA reduced by 60% and bafilomycin by 30% in young rats; in contrast, EIPA reduced by approximately 40% and bafilomycin by approximately 50% in old rats. The inhibited by bafilomycin was the same in young and old rats: 0.62 nmol.cm-2.s-1 and 0.71 nmol.cm-2.s-1, respectively. However, the EIPA-sensitive fraction was larger in young than in old rats: 1.26 nmol.cm-2.s-1 vs. 0.85 nmol.cm-2.s-1, respectively. These results suggest that the component more affected in bicarbonate reabsorption of proximal convoluted tubules from aged rats is the Na+-H+ exchanger, probably a NHE isoform different from NHE3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号