首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While bilateral trait asymmetry is widely recognized to estimate developmental instability, much controversy exists over which types of asymmetry (fluctuating, directional, and/or antisymmetry) to use. Recently it has been hypothesized that the three types are strongly interrelated, and that increased developmental instability may be reflected in a transition from fluctuating to directional asymmetry and/or antisymmetry. Alternatively, habitat disturbance might change the genetic expression of directional asymmetry. We present herein the first empirical evidence for stress-mediated shifts in types of asymmetry in natural populations, by using mixture analysis to model tarsus asymmetry in bird populations exposed to different levels of habitat disturbance. Observed asymmetry patterns almost exclusively consisted of true fluctuating asymmetry in the least disturbed populations, but became progressively mixed with directional asymmetry under increasing disturbance. Failing to unravel these mixtures of different forms of asymmetry may have critical implications for the analysis and interpretation of asymmetry data.  相似文献   

2.
Abstract Three major types of bilateral asymmetry (fluctuating asymmetry, directional asymmetry, and antisymmetry) have long been recognized in the literature. Little, however, is known about transitions between asymmetry types, especially in natural populations. It is often assumed that directional asymmetry and antisymmetry have a larger genetic basis than fluctuating asymmetry. This leads many scientists to exclude traits or populations showing either directional asymmetry or antisymmetry from developmental instability studies, focusing attention on fluctuating asymmetry alone. This procedure may bias the findings and thus our understanding of patterns of bilateral asymmetry and the factors influencing it. To examine changes in bilateral asymmetry across the distribution range of a species, I studied the length of the third toe in 11 chukar partridge (Alectoris chukar) populations across a steep environmental gradient of 320 km within the species' range in Israel. This trait was selected due to its adaptive value in the chukar, a species that spends much of its activity walking, and due to its high measurement repeatability. Moving from the core toward the very extreme periphery of the range, the following four trends are detected: (1) the expression of the directional asymmetry component significantly increases; (2) the frequency of symmetrical individuals in the population significantly decreases, with a sharp decline at the steepest part of the climatic and environmental gradient studied, within the Mediterranean‐desert ecotone; (3) mean asymmetry levels, as estimated using the unsigned difference between the right and left toe, significantly increases; and (4) the range of asymmetry increases such that the most asymmetrical individuals originate from the very edge of the range. These findings provide primary evidence that substantial shifts in asymmetry may occur across short geographical distances within a species' distribution range. They show a continuum between asymmetry types and support the notion that all three types of asymmetry can reflect developmental instability. Further studies of developmental instability should be designed so that they enable detection of transitions between asymmetry types across natural populations. Such a procedure may partly resolve some of the contradictions seen in the literature regarding the relationship between bilateral asymmetry and environmental stress.  相似文献   

3.

Background  

The accuracy by which phenotype can be reproduced by genotype potentially is important in determining the stability, environmental sensitivity, and evolvability of morphology and other phenotypic traits. Because two sides of an individual represent independent development of the phenotype under identical genetic and environmental conditions, average body asymmetry (or "fluctuating asymmetry") can estimate the developmental instability of the population. The component of developmental instability not explained by intrapopulational differences in gene or environment (or their interaction) can be further defined as internal developmental noise. Surprisingly, developmental noise remains largely unexplored despite its potential influence on our interpretations of developmental stability, canalization, and evolvability. Proponents of fluctuating asymmetry as a bioindicator of environmental or genetic stress, often make the assumption that developmental noise is minimal and, therefore, that phenotype can respond sensitively to the environment. However, biologists still have not measured whether developmental noise actually comprises a significant fraction of the overall environmental response of fluctuating asymmetry observed within a population.  相似文献   

4.
Though right-handedness is a prominant characteristic within all human societies, a substantial and stable proportion of individuals are left-handed. Any comprehensive approach to the origin of variation in handedness must account for substantial evidence that left-handedness is associated with reduced fitness, neurodevelopmental disorders, and reduced neuroanatomical asymmetry. In this paper we investigate the hypothesis that developmental instability in early fetal development underlies variation in handedness. In two studies we note an increased incidence of minor physical anomalies (MPAs) and fluctuating asymmetries in both left-handers and extreme right-handers. Moreover, extreme right-handers were more apt to have left-handed parents than moderate right-handers. These data suggest that deviation from moderate right-handedness reflect imprecise expression of a near-universal design due to developmental instability. Preliminary attempts to elucidate the mechanisms underlying developmental instability suggest that both polygenic homozygosity and particular HLA alleles may be important factors. These observations are discussed with respect to current genetic theories of handedness and human evolution.  相似文献   

5.
Asymmetry patterns across the distribution range: does the species matter?   总被引:1,自引:0,他引:1  
An important question in evolutionary ecology is whether different populations across a species range, from core to periphery, experience different levels of stress. The estimation of developmental instability has been proposed as a useful tool for quantifying the degree of environmental and genetic stress that individuals experience during their development. Fluctuating asymmetry, the unsigned difference between the two sides of a bilaterally symmetrical trait, has been suggested to reflect the levels of developmental instability in a population. As such, it has been proposed as a useful tool for estimating changes in developmental instability and in stress response in populations across a range of environmental conditions. Recent studies focusing mostly on birds have detected increasing fluctuating asymmetry from core to periphery across the distribution range, suggesting that peripheral populations may experience higher levels of environmental and/or genetic stress. Most of these comparisons were done for single taxa across a single gradient. However, different species are predicted to respond differently to environmental shifts across the range. We compared asymmetry patterns in wing morphology in populations of two Euchloe butterfly species across their opposing ranges in Israel. Contrary to the patterns observed in birds across the same gradient, bilateral asymmetry did not increase or shift towards the periphery in either of the butterfly species. If fluctuating asymmetry in these traits reflects levels of stress, these results may partly reflect the fact that the range of these two butterfly species is limited by the distribution of their host plant, rather than by abiotic environmental variables. In addition, developing pierids can diapause during harsh seasons and can persist in resource‐rich patches, thus minimizing the environmental stress perceived by developing individuals. We conclude that accounting for differences in species’ life histories and range‐limiting factors is necessary in order to better predict patterns of developmental instability across spatial and environmental gradients. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 81 , 313–324.  相似文献   

6.
Antisymmetry,directional asymmetry,and dynamic morphogenesis   总被引:3,自引:1,他引:2  
Fluctuating asymmetry is the most commonly used measure of developmental instability. Some authors have claimed that antisymmetry and directional asymmetry may have a significant genetic basis, thereby rendering these forms of asymmetry useless for studies of developmental instability. Using a modified Rashevsky-Turing reaction-diffusion model of morphogenesis, we show that both antisymmetry and directional asymmetry can arise from symmetry-breaking phase transitions. Concentrations of morphogen on right and left sides can be induced to undergo transitions from phase-locked periodicity, to phase-lagged periodicity, to chaos, by simply changing the levels of feedback and inhibition in the model. The chaotic attractor has two basins of attraction-right sidedominance and left side dominance. With minor disturbance, a developmental trajectory settles into one basin or the other. With increasing disturbance, the trajectory can jump from basin to basin. The changes that lead to phase transitions and chaos are those expected to occur with either genetic change or stress. If we assume that the morphogen influences the behavior of cell populations, then a transition from phase-locked periodicity to chaos in the morphogen produces a corresponding transition from fluctuating asymmetry to antisymmetry in both morphogen concentrations and cell populations. Directional asymmetry is easily modeled by introducing a bias in the conditions of the simulation. We discuss the implications of this model for researchers using fluctuating asymmetry as an indicator of stress.  相似文献   

7.
It has been suggested that minor, fluctuating differences in size of bilateral traits could validly indicate individual differences in developmental stability. One plausible reason for instability to occur could be lowered population size, which has been suggested to increase fluctuating asymmetry due to inbreeding, for example. We measured seven wing asymmetries of three Coenonympha butterfly species in central Sweden. One species is abundant (nobreak C. pamphilus), one rather common (C. arcania), and one rare (C. hero). We expected that if fluctuating asymmetry is a reliable indicator of population quality and thus a useful tool for conservation purposes, the most abundant species should show lowest asymmetry and the most endangered, the highest. Contrary to our expectations, the highest wing asymmetry was found in the relatively common species C. arcania and the most abundant and rare species did not show significant differences in levels of wing asymmetry. Our results obtained from three Coenonympha species hence suggest that the use of fluctuating asymmetry as an indicator of population conservation status may be misleading. Possible increase in asymmetry of small and/or isolated populations of butterflies may be masked by local differences in environmental conditions that could have high impact on bilateral development as well.  相似文献   

8.
The existence of additive genetic variance in developmental stability has important implications for our understanding of morphological variation. The heritability of individual fluctuating asymmetry and other measures of developmental stability have frequently been estimated from parent-offspring regressions, sib analyses, or from selection experiments. Here we review by meta-analysis published estimates of the heritability of developmental stability, mainly the degree of individual fluctuating asymmetry in morphological characters. The overall mean effect size of heritabilities of individual fluctuating asymmetry was 0.19 from 34 studies of 17 species differing highly significantly from zero (P < 0.0001). The mean heritability for 14 species was 0.27. This indicates that there is a significant additive genetic component to developmental stability. Effect size was larger for selection experiments than for studies based on parent-offspring regression or sib analyses, implying that genetic estimates were unbiased by maternal or common environment effects. Additive genetic coefficients of variation for individual fluctuating asymmetry were considerably higher than those for character size per se. Developmental stability may be significantly heritable either because of strong directional selection, or fluctuating selection regimes which prevent populations from achieving a high degree of developmental stability to current environmental and genetic conditions.  相似文献   

9.
To examine the effects of hybridization and environmental stress on developmental instability, we examined fluctuating asymmetry (FA), the variance in random deviations from perfect symmetry in bilaterally symmetrical traits, for leaf symmetry in a Salix hybrid system. An abiotic environmental stress (water stress), an interspecific biotic stress (pathogen attack), and an intraspecific biotic stress (competition) were examined to determine which factors increase developmental instability. None of these three environmental stressors significantly increased FA. However, genetic stress through hybridization was detected; hybrid plants showed significantly higher levels of FA than parental species. In contrast to hybridization providing greater developmental stability through heterozygosity, these results suggest that complex, nonadditive interactions provided developmental stability and that developmental instability increased when coadapted gene complexes were disrupted through hybridization. In addition, plant biomass was significantly, negatively correlated with FA, suggesting that those individuals that were more able to buffer themselves against the disruptive effects of environmental stress may have a selective advantage over those that are less able to buffer themselves against these disruptive effects.  相似文献   

10.
Random deviations from perfect bilateral symmetry, fluctuating asymmetry, arise from developmental instability. I tested experimentally whether parasitism in female Drosophila nigrospiracula increases fluctuating asymmetry in male offspring. I also developed a novel measure for estimating developmental instability in a meristic trait called positional fluctuating asymmetry, which is based on the difference in the position of thoracic bristles between the right and left sternopleuron. I expected this measure to be a more sensitive indicator of developmental instability than the traditional numerical fluctuating asymmetry, because the latter is based on the difference in the actual presence or absence of bristles. Female flies burdened with hematophagous mites, Macrocheles subbadius (Macrochelidae), produced sons with significantly higher positional fluctuating asymmetry than did females carrying no mites. This effect, which may have resulted from impaired provisioning of oocytes by infested females, was dose dependent and magnified in the progeny of younger (18-20 d) versus older (30-32 d) females. This apparent magnification resulted from a slight but not significant increase in asymmetry of offspring of the older and unparasitized females. In contrast, the same mite loads had no effect on offspring numerical fluctuating asymmetry. If low-positional fluctuating asymmetry males enjoy a mating advantage, then with appropriate genetic variability, sexual selection could drive the evolution of host resistance in host populations. However, variability in neither kind of asymmetry influenced male mating success in nature. Thus, although male positional fluctuating asymmetry is causally associated with parasitism via maternal effects, asymmetry-based sexual selection is unlikely to influence the evolution of mite resistance in D. nigrospiracula. The value of the sensitivity afforded by positional fluctuating asymmetry is discussed in the context of sexual selection and conservation biology.  相似文献   

11.
We investigated fluctuating asymmetry in 13 traits of the skulls and jaws of historical and contemporary populations of Scandinavian gray wolves (Canis lupus). We hypothesized that there is a higher level of fluctuating asymmetry in the inbred contemporary population than in the historical population. Our analyses did not detect any difference in the level of fluctuating asymmetry as predicted. We propose different explanation for this lack of change in fluctuating asymmetry. It is assumed that a large number of studies have failed to find a positive correlation between the level of genetic stress and developmental instability and have therefore never been published, which hampers a good understanding of fluctuating asymmetry as an indicator of developmental instability. The current study is thus important in this context. The gray wolf population in Scandinavia is characterized by an extreme bottleneck followed by two and a half decades of strong inbreeding, but no associated change in fluctuating asymmetry is detected.  相似文献   

12.
Wu J  Zhang B  Cui Y  Zhao W  Xu L  Huang M  Zeng Y  Zhu J  Wu R 《Genetics》2007,176(2):1187-1196
Developmental instability or noise, defined as the phenotypic imprecision of an organism in the face of internal or external stochastic disturbances, has been thought to play an important role in shaping evolutionary processes and patterns. The genetic studies of developmental instability have been based on fluctuating asymmetry (FA) that measures random differences between the left and the right sides of bilateral traits. In this article, we frame an experimental design characterized by a spatial autocorrelation structure for determining the genetic control of developmental instability for those traits that cannot be bilaterally measured. This design allows the residual environmental variance of a quantitative trait to be dissolved into two components due to permanent and random environmental factors. The degree of developmental instability is quantified by the relative proportion of the random residual variance to the total residual variance. We formulate a mixture model to estimate and test the genetic effects of quantitative trait loci (QTL) on the developmental instability of the trait. The genetic parameters including the QTL position, the QTL effects, and spatial autocorrelations are estimated by implementing the EM algorithm within the mixture model framework. Simulation studies were performed to investigate the statistical behavior of the model. A live example for poplar trees was used to map the QTL that control root length growth and its developmental instability from cuttings in water culture.  相似文献   

13.
Developmental instability, as measured by fluctuating asymmetry is generally considered to increase with genetic and environmental stresses. Few studies have, however, addressed the role of asymmetry in altering organism performance. Here, we measured bite force performance in three strains of inbred and outbred mice derived from wild ancestors. We quantified size and shape directional, and fluctuating asymmetry, as well as inter-individual variation of their mandibles using geometric morphometrics. We also developed a way to estimate shape antisymmetry, to filter it out of the fluctuating asymmetry component. Contrary to our expectations, we found no significant link between bite force and asymmetry levels. Inbreeding did not produce any clear and significant increase or decrease in neither inter-individual variance, nor fluctuating asymmetry. Furthermore, fluctuating asymmetry levels were unrelated to inter-individual variance levels, although these two types of variation affected the same areas of the mandible. We did not highlight any impact of inbreeding depression on bite force. Fluctuating asymmetry was reduced in the mandible, which we argue may be linked to its functional relevance. We found some significant but very reduced antisymmetry possibly linked to lateralization. This lateralization did not relate to any bite force difference. Our results show that neither inbreeding, nor asymmetry (combining fluctuating, directional asymmetry and antisymmetry) significantly affect bite force performance in mice, and that despite affecting the same morphological regions, developmental stability and canalization are independent.  相似文献   

14.
Fish domestication is an evolutionary process arising in captivity through genetic and developmental mechanisms, producing organisms performing more poorly than wild conspecifics in the natural environment. Culture conditions could be suboptimal for fish at particular life cycle stages, presenting environmental disturbances leading to developmental instability. The limited size of captive lots, moreover, can result in the loss of genetic variation, and the resulting homozygosity (as well as hybridization and mutation) could have strong harmful effects on developmental stability. Rainbow trout are the most widely‐cultured species in Europe and North America, having been in culture for more than a century. Prolonged artificial selection for desired traits and incidental effects of domestication has led to the development of a ‘farmed type’. Fluctuating asymmetry, variations in meristic counts, and skeletal anomalies were examined in several rainbow trout captive and wild clonal lines as indicators of developmental instability. Differences in developmental stability were identified among lines and correlated with different degrees of exposure to captivity. Some relationship between meristic counts and domestication level was found in the present study, with the number of vertebrae and of dorsal pterygiophores and rays being the strongest predictors of the domestication level. However, the occurrence of skeletal anomalies and fluctuating asymmetry were apparently not related to the level of exposure to captivity. The findings of the present study will facilitate the selection of clonal lines with divergent phenotypes for subsequent quantitative trait loci analyses aimed at identifying genome regions linked with morpho‐anatomical and physiological adaptive responses to captivity. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 608–628.  相似文献   

15.
The evolution of resistance to malathion byLucilia cuprina initially results in an increase in fluctuating asymmetry. Resistant flies are at a selective disadvantage, relative to susceptibles, in the absence of the insecticide. A fitness/asymmetry modifier of diazinon-resistant phenotypes ameliorates these effects resulting in malathion-resistant phenotypes of relative fitness and asymmetry similar to susceptibles. For the nine genotypic combinations of the modifier and malathion-resistance alleles, developmental time increases linearly with increasing asymmetry. Percentage egg hatch decreases linearly with increasing asymmetry. The initially disruptive effect of the malathion-resistant allele was partially dominant, the effect of the modifier dominant. The results are discussed in terms of developmental perturbation, asymmetry estimation and relative fitness to consider whether it is adequate to use changes in fluctuating asymmetry alone as measures of developmental instability. It is suggested that in some circumstances antisymmetry may indicate developmental instability and that the diazinon/malathion-resistance systems inL. cuprina may allow the relative importance of genetical and/or environmental developmental perturbations to be ascertained.  相似文献   

16.
Developmental instability shown by increased fluctuating asymmetry can be caused by either genetic or environmental stress. Genomic coadaptation and heterozygosity are the genetic factors that are commonly assumed to increase the level of developmental stability. Therefore, in hybrid populations the level of fluctuating asymmetry (FA) can be lower due to higher heterozygosity or higher due to disruption of coadapted gene complexes, depending on the degree of divergence between hybridizing taxa. Here I present data on FA in petals from hybrids between Lychnis viscaria (Caryophyllaceae) and Lychnis alpina and from parental species grown in a common garden environment. Petal asymmetry of hybrids was clearly higher than that of either parental species grown in common environment. Between the two parental species petal asymmetry did not differ. The mean size of the petals in hybrids was about the same as in L. viscaria, thus indicating no heterotic effect. Therefore, it seems that hybrids between L. viscaria and L. alpina do suffer from the disruption of coadapted gene complexes as indicated by higher developmental instability.  相似文献   

17.
The appearance of non-metric skeletal characters in vertebrates results mainly from basic genetic control, as proved and documented for house mice and humans. Although the heritability of non-metric traits, mainly the presence of foramina and similar structures for blood vessels and nerves or dental occlusal variants, have been evaluated as rather low, the simultaneous consideration of several traits allows estimation of epigenetic variation in time and space as a result of genetic relationship. Thus, the main use of non-metric characters has been aimed at assessing epigenetic variability and divergence among populations. Applications extend from the problem of genetic isolation of populations, the lack of reproductive contact, detection of genetic drift, systematic studies to clarify species taxonomy, to phylogenetic interpretation.

Additionally, non-directional deviations from bilateral symmetry in non-metric characters, e.g. fluctuating asymmetry, could be caused by current environmental conditions in general. Fluctuating asymmetry is regarded as a measure of developmental instability to indicate the presence of genomic changes or the influence of contamination and/or habitat deterioration, and is also used as a further population parameter with integrated information. However, standpoints on the use of fluctuating asymmetry are quite inconsistent, fluctuating themselves between considering it a powerful biomonitoring tool to being merely a curious scientific toy.  相似文献   


18.
Developmental stability and fitness: a review   总被引:15,自引:0,他引:15  
Developmental stability reflects the ability of individuals to undergo stable development of their phenotype under a range of environmental conditions. Developmental instability is measured in terms of fluctuating asymmetry or phenodeviance. A negative relationship between developmental instability and fitness has figured as a prominent untested assumption in the literature. A review of available information from the literature on the relationship between developmental instability and various fitness components such as growth, fecundity, and longevity suggests that there indeed is a general negative relationship. Symmetrical individuals do generally have faster growth, higher fecundity, and better survival than do more asymmetrical individuals. These differences appear partially to arise from lower competitive ability and higher risks of predation and parasitism of asymmetrical individuals compared with more symmetrical conspecifics. The relationship between developmental stability and fitness may be either direct or indirect.  相似文献   

19.
Developmental instability in the form of increased fluctuating asymmetry can be caused by either genetic or environmental stress. Because extinctions can be attributed broadly to these factors, fluctuating asymmetry may provide a sensitive tool for detecting such stresses. We studied the level of fluctuating asymmetry of flowers of a perennial outcrossing plant species, Lychnis viscaria, both in natural and common-garden populations. The degree of flower asymmetry was higher in small, isolated, and marginal populations of the species range. These marginal populations also were the most homozygous. In the core area of the species' range, flowers were more symmetrical The level of asymmetry was correlated with both population size and heterozygosity. However, a partial correlation analysis revealed that when the impact of population size was controlled for, there was a negative relationship between fluctuating asymmetry and heterozygosity, whereas when controlling for heterozygosity, no relationship between population size and fluctuating asymmetry was found. This indicates that genetic consequences of small population size probably underlie the relationship between the level of asymmetry and population size. Results from a transplantation experiment showed that individuals subjected to a higher environmental stress had an increased level of asymmetry compared to control plants. In the common-garden conditions the level of fluctuating asymmetry did not differ between the central and marginal populations. This suggests that presumably both genetic and environmental factors affected to the higher level of asymmetry among marginal populations compared to central ones. In all we conclude that even though fluctuating asymmetry seems to be a sensitive tool for detecting stresses, results from studies focusing on only one factor should be interpreted with caution.  相似文献   

20.
The degree of fluctuating asymmetry of bilateral traits provides a measure of developmental instability, which can be influenced by genetic as well as environmental stress. We studied genetic variation between and within two populations of the mustard Brassica campestris for asymmetry of foliar (cotyledon width) and floral (petal length and width) traits as well as for phenological (germination and flowering) and performance (biomass and flowering) traits. The two populations differed in mean expression of most traits, including asymmetry. However, within-population estimates of genetic variability tended to be lower for asymmetry than other traits. Asymmetry was greater in the population that had lower biomass accumulation and flower production, which supports the idea that population-level asymmetry may be indicative of population-level performance. However, within each population, evidence that performance was negatively correlated with asymmetry was equivocal. Within populations there was little or no concordance among estimates of asymmetry based on different structures, i.e., plants that had highly asymmetrical cotyledons did not tend to have highly asymmetrical petals. The lack of a general buffering capacity at the individual level may be explained by developmental processes (e.g., action of different genes or morphogens) as well as evolutionary processes (e.g., selection on asymmetry of different traits).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号