首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melanin-concentrating hormone (MCH) is a cyclic orexigenic peptide expressed in the lateral hypothalamus. Recently, we demonstrated that chronic intracerebroventricular infusion of MCH induced obesity accompanied by sustained hyperphagia in mice. Here, we analyzed the mechanism of MCH-induced obesity by comparing animals fed ad libitum with pair-fed and control animals. Chronic infusion of MCH significantly increased food intake, body weight, white adipose tissue (WAT) mass, and liver mass in ad libitum-fed mice on a moderately high-fat diet. In addition, a significant increase in lipogenic activity was observed in the WAT of the ad libitum-fed group. Although body weight gain was marginal in the pair-fed group, MCH infusion clearly enhanced the lipogenic activity in liver and WAT. Plasma leptin levels were also increased in the pair-fed group. Furthermore, MCH infusion significantly reduced rectal temperatures in the pair-fed group. In support of these findings, mRNA expression of uncoupling protein-1, acyl-CoA oxidase, and carnitine palmitoyltransferase I, which are key molecules involved in thermogenesis and fatty acid oxidation, were reduced in the brown adipose tissue (BAT) of the pair-fed group, suggesting that MCH infusion might reduce BAT functions. We conclude that the activation of MCH neuronal pathways stimulated adiposity, in part resulting from increased lipogenesis in liver and WAT and reduced energy expenditure in BAT. These findings confirm that modulation of energy homeostasis by MCH may play a critical role in the development of obesity.  相似文献   

2.
Mch1r-deficient (Mch1r(-/-)) mice are hyperphagic, hyperactive, lean, and resistant to diet-induced obesity. To examine whether the MCH1R is involved in regulating activity-based energy expenditure, we investigated voluntary wheel running (WR) activity of wild-type (WT) and Mch1r(-/-) mice basally, in response to diets with different caloric density and with different feeding schedules. We also evaluated WR activity of mice with ablation of the prepro-MCH gene (Pmch(-/-) mice). Dark cycle WR activity of Mch1r(-/-) mice fed low fat (LF) chow was increased significantly relative to WT mice. Transition to moderate high-fat (MHF) diet was associated with an increase in nocturnal WR activity in both genotypes. Both Mch1r(-/-) and WT mice exhibited food anticipatory activity (FAA) before the daily scheduled feeding time, indicating that MCH1R is not required for FAA. Naloxone (3 mg/kg, i.p.) suppressed WR activity of both genotypes, suggesting opioid regulation of locomotor activity. WR increased nocturnal dynorphin mRNA levels in Mch1r(-/-) brain. Importantly, Pmch-deficient mice had significantly enhanced WR activity relative to WT controls. These results suggest that endogenous MCH plays an inhibitory role in regulating locomotor activity. In summary, we demonstrated enhanced WR activities in mice lacking either MCH or its cognate receptor.  相似文献   

3.
Previous studies in our laboratory demonstrated that rats exhibiting obesity in response to a moderately high-fat (MHF) diet developed hypertension associated with activation of the local and systemic renin-angiotensin system. In this study, we examined the effect of the angiotensin type 1 (AT(1))-receptor antagonist, losartan, on blood pressure in obesity-prone (OP) and obesity-resistant (OR) rats fed a MHF diet. Using telemetry monitoring, we characterized the evolution of blood pressure elevations during the development of obesity. Male Sprague-Dawley rats were implanted with telemetry transducers for chronic monitoring of blood pressure, and baseline measurements were obtained. Rats were then switched to the MHF diet (32% kcal as fat) and were segregated into OP and OR groups at week 5. At week 9 on the MHF diet, OP rats exhibited significantly greater 24-h mean arterial blood pressure compared with OR rats (OP: 105 +/- 4 mmHg, OR: 96 +/- 2 mmHg; P < 0.05). Elevations in blood pressure in OP rats were manifest as an increase in systolic pressure. Administration of losartan to all rats at week 9 resulted in a reduction in blood pressure; however, losartan had the greatest effect in OP rats (percent decrease in mean arterial pressure by losartan; OP: 19 +/- 4, OR: 10 +/- 2%; P < 0.05). These results demonstrate that elevations in blood pressure occur subsequent to established obesity in rats fed a high-fat diet. Moreover, these results demonstrate the ability of losartan to reverse the blood pressure increase from diet-induced obesity, supporting a primary role for the renin-angiotensin system in obesity-associated hypertension.  相似文献   

4.
The epidemic of obesity sweeping developed nations is accompanied by an increase in atherosclerotic cardiovascular diseases. Dyslipidemia, diabetes, hypertension, and obesity are risk factors for cardiovascular disease. However, delineating the mechanism of obesity‐accelerated atherosclerosis has been hampered by a paucity of animal models. Similar to humans, apolipoprotein E–deficient (apoE?/?) mice spontaneously develop atherosclerosis over their lifetime. To determine whether apoE?/? mice would develop obesity with accelerated atherosclerosis, we fed mice diets containing 10 (low fat (LF)) or 60 (high fat (HF)) kcal % from fat for 17 weeks. Mice fed the HF diet had a marked increase in body weight and atherosclerotic lesion formation compared to mice fed the LF diet. There were no significant differences between groups in serum total cholesterol, triglycerides, or leptin concentrations. Plasma concentrations of the acute‐phase reactant serum amyloid A (SAA) are elevated in both obesity and cardiovascular disease. Accordingly, plasma SAA concentrations were increased fourfold (P < 0.01) in mice fed the HF diet. SAA was associated with both pro‐ and antiatherogenic lipoproteins in mice fed the HF diet compared to those fed the LF diet, in which SAA was primarily associated with the antiatherogenic lipoprotein high‐density lipoprotein (HDL). Moreover, SAA was localized with apoB‐containing lipoproteins and biglycan in the vascular wall. Taken together, these data suggest male apoE‐deficient mice are a model of metabolic syndrome and that chronic low level inflammation associated with increased SAA concentrations may mediate atherosclerotic lesion formation.  相似文献   

5.
Resistance to high-fat diet-induced obesity (DIR) has been observed in mice fed a high-fat diet and may provide a potential approach for anti-obesity drug discovery. However, the metabolic status, gut microbiota composition, and its associations with DIR are still unclear. Here, ultraperformance liquid chromatography-tandem mass spectrometry-based urinary metabolomic and 16S rRNA gene sequencing-based fecal microbiome analyses were conducted to investigate the relationship between metabolic profile, gut microbiota composition, and body weight of C57BL/6J mice on chow or a high-fat diet for 8 weeks. PICRUSt analysis of 16S rRNA gene sequences predicted the functional metagenomes of gut bacteria. The results demonstrated that feeding a high-fat diet increased body weight and fasting blood glucose of high-fat diet-induced obesity (DIO) mice and altered the host-microbial co-metabolism and gut microbiota composition. In DIR mice, high-fat diet did not increase body weight while fasting blood glucose was increased significantly compared to chow fed mice. In DIR mice, the urinary metabolic pattern was shifted to a distinct direction compared to DIO mice, which was mainly contributed by xanthine. Moreover, high-fat diet caused gut microbiota dysbiosis in both DIO and DIR mice, but in DIR mice, the abundance of Bifidobacteriaceae, Roseburia, and Escherichia was not affected compared to mice fed a chow diet, which played an important role in the pathway coverage of FormylTHF biosynthesis I. Meanwhile, xanthine and pathway coverage of FormylTHF biosynthesis I showed significant positive correlations with mouse body weight. These findings suggest that gut microbiota-mediated xanthine metabolism correlates with resistance to high-fat DIO.  相似文献   

6.
Excess carbohydrate intake causes obesity in humans. On the other hand, acute administration of fructose, glucose or sucrose in experimental animals has been shown to increase the plasma concentration of anti-obesity hormones such as glucagon-like peptide 1 (GLP-1) and Fibroblast growth factor 21 (FGF21), which contribute to reducing body weight. However, the secretion and action of GLP-1 and FGF21 in mice chronically fed a high-sucrose diet has not been investigated. To address the role of anti-obesity hormones in response to increased sucrose intake, we analyzed mice fed a high-sucrose diet, a high-starch diet or a normal diet for 15 weeks. Mice fed a high-sucrose diet showed resistance to body weight gain, in comparison with mice fed a high-starch diet or control diet, due to increased energy expenditure. Plasma FGF21 levels were highest among the three groups in mice fed a high-sucrose diet, whereas no significant difference in GLP-1 levels was observed. Expression levels of uncoupling protein 1 (UCP-1), FGF receptor 1c (FGFR1c) and β-klotho (KLB) mRNA in brown adipose tissue were significantly increased in high sucrose-fed mice, suggesting increases in FGF21 sensitivity and energy expenditure. Expression of carbohydrate responsive element binding protein (ChREBP) mRNA in liver and brown adipose tissue was also increased in high sucrose-fed mice. These results indicate that FGF21 production in liver and brown adipose tissue is increased in high-sucrose diet and participates in resistance to weight gain.  相似文献   

7.
Genetics and environment contribute to the development of obesity, in both humans and rodents. However, the potential interaction between genes important in energy balance, strain background, and dietary environment has been only minimally explored. We investigated the effects of genetic ablation of melanin-concentrating hormone (MCH), a neuropeptide with a key role in energy balance, with chow and a high-fat diet (HFD) in two different mouse strains, one obesity-prone (C57BL/6) and the other obesity-resistant (129). Substantial differences were seen in wild-type (WT) animals of different strains. 129 animals had significantly lower levels of spontaneous locomotor activity than C57BL/6; however, 129 mice gained less weight on both chow and HFD. In both strains, deletion of MCH led to attenuated weight gain compared with WT counterparts, an effect secondary to increased energy expenditure. In both strains, feeding a HFD led to further increases in energy expenditure in both WT and MCH-KO mice; however, this increase was more pronounced in 129 mice. In addition, mice lacking MCH have a phenotype of increased locomotor activity, an effect also seen in both strains. The relative increase in activity in MCH(-/-) mice is modest in animals fed chow but increases substantially when animals are placed on HFD. These studies reinforce the important role of MCH in energy homeostasis and indicate that MCH is a plausible target for antiobesity therapy.  相似文献   

8.
Role of PYK2 in the development of obesity and insulin resistance   总被引:3,自引:0,他引:3  
Non-receptor proline-rich tyrosine kinase-2 (PYK2), which is activated by phosphorylation of one or more of its tyrosine residues, has been implicated in the regulation of GLUT4 glucose transporter translocation and glucose transport. Some data favor a positive role of PYK2 in stimulating glucose transport, whereas other studies suggest that PYK2 may participate in the induction of insulin resistance. To ascertain the importance of PYK2 in the setting of obesity and insulin resistance, we (1) evaluated the regulation of PYK2 in mice fed a high-fat diet and (2) characterized body and glucose homeostasis in wild type (WT) and PYK2(-/-) mice on different diets. We found that both PYK2 expression and phosphorylation were significantly increased in liver and adipose tissues harvested from high-fat diet fed mice. Wild type and PYK2(-/-) mice were fed a high-fat diet for 8 weeks to induce insulin resistance/obesity. Surprisingly, in response to this diet PYK2(-/-) mice gained significantly more weight than WT mice (18.7+/-1.2g vs. 9.5+/-0.6g). Fasting serum leptin and insulin and blood glucose levels were significantly increased in high-fat diet fed mice irrespective of the presence of PYK2 protein. There was a close correlation between serum leptin and body weight. Intraperitoneal glucose tolerance tests revealed that as expected, the high-fat diet resulted in increased blood glucose levels following glucose administration in wild type mice compared to those fed normal chow. An even greater increase in blood glucose levels was observed in PYK2(-/-) mice compared to wild type mice. These results demonstrate that a lack of PYK2 exacerbates weight gain and development of glucose intolerance/insulin resistance induced by a high-fat diet, suggesting that PYK2 may play a role in slowing the development of obesity, insulin resistance, and/or frank diabetes.  相似文献   

9.
Liver fatty acid (FA)-binding protein (L-Fabp), a cytoplasmic protein expressed in liver and small intestine, regulates FA trafficking in vitro and plays an important role in diet-induced obesity. We observed that L-Fabp(-/-) mice are protected against Western diet-induced obesity and hepatic steatosis. These findings are in conflict, however, with another report of exaggerated obesity and increased hepatic steatosis in female L-Fabp(-/-) mice fed a cholesterol-supplemented diet. To resolve this apparent paradox, we fed female L-Fabp(-/-) mice two different cholesterol-supplemented low-fat diets and discovered (on both diets) lower body weight in L-Fabp(-/-) mice than in congenic wild-type C57BL/6J controls and similar or reduced hepatic triglyceride content. We extended these comparisons to mice fed low-cholesterol, high-fat diets. Female L-Fabp(-/-) mice fed a high-saturated fat (SF) diet were dramatically protected against obesity and hepatic steatosis, whereas weight gain and hepatic lipid content were indistinguishable between mice fed a high-polyunsaturated FA (PUFA) diet and control mice. These findings demonstrate that L-Fabp functions as a metabolic sensor with a distinct hierarchy of FA sensitivity. We further conclude that cholesterol supplementation does not induce an obesity phenotype in L-Fabp(-/-) mice, nor does it play a significant role in the protection against Western diet-induced obesity in this background.  相似文献   

10.
本研究旨在探索白藜芦醇(RSV)对不同程度肥胖小鼠脂肪氧化应激状态和血脂的影响。高脂日粮(HFD)处理12周的昆明小鼠分为3类:肥胖抵抗(DIO-R)、中体重(Med)和肥胖(DIO),分别饲喂HFD、HFD+0.3 g/kg RSV和HFD+0.6 g/kg RSV日粮18周,并以正常日粮小鼠为对照。结果表明,0.6 g/kg RSV处理可显著降低DIO小鼠体重、腹脂率,显著提高脂肪组织抗氧化能力,改善血脂。0.3 g/kg RSV处理对DIO-R小鼠也有类似趋势,但0.6 g/kg RSV处理引起DIO-R小鼠脂肪组织抗氧化能力下降、血脂紊乱。总之,RSV在不同程度肥胖小鼠具有剂量特异性的氧化应激调控作用。  相似文献   

11.
The vgf gene regulates energy homeostasis and the VGF-derived peptide TLQP-21 centrally exerts catabolic effects in mice and hamsters. Here, we investigate the effect of chronic intracerebroventricular (icv) injection of TLQP-21 in mice fed high fat diet (HFD). Fast weight-gaining mice injected with the peptide or cerebrospinal fluid were selected for physiological, endocrine, and molecular analysis. TLQP-21 selectively inhibited the increase in body weight and epididymal white adipose tissue (eWAT) weight induced by HFD in control animals despite both groups having a similar degree of hyperphagia. TLQP-21 normalized the increase in leptin and decrease in ghrelin while increasing epinephrine and epinephrine/norepinephrine ratio when compared to values in controls. Finally, HFD-TLQP-21 mice showed a selective increase of eWAT β3-adrenergic receptor mRNA. Peroxisome-proliferator-activated-receptor-δ and hormone-sensing-lipase mRNA were also upregulated. In conclusion, chronic icv infusion of TLQP-21 prevented the early phase of diet-induced obesity despite overfeeding. These effects were paralleled by activation of catabolic pathways within the eWAT. Our results further support a role for TLQP-21 as a catabolic neuropeptide.  相似文献   

12.
UCP1 deficiency increases susceptibility to diet-induced obesity with age   总被引:1,自引:0,他引:1  
Loss of nonshivering thermogenesis in mice by inactivation of the mitochondrial uncoupling protein gene (Ucp1-/- mice) causes increased sensitivity to cold and unexpected resistance to diet-induced obesity at a young age. To clarify the role of UCP1 in body weight regulation throughout life and influence of UCP1 deficiency on longevity, we longitudinally analyzed the phenotypes of Ucp1-/- mice maintained in a room at 23 degrees C. There was no difference in body weight and lifespan between genotypes under the standard chow diet condition, whereas the mutant mice developed obesity with age under the high-fat (HF) diet condition. Compared with Ucp1+/+ mice, Ucp1-/- mice showed increased expression of genes related to thermogenesis and fatty acid metabolism, such as beta3-adrenergic receptor, in adipose tissues of the 3-month-old mutants; however, the augmented expression was reduced in Ucp1+/+ mice in 11-month-old Ucp1-/- mice fed the HF diet. Likewise, the increased levels of UCP3 and cAMP-dependent protein kinase in the brown adipose tissue of Ucp1-/- mice given the standard diet were decreased significantly in that of Ucp1-/- mice fed the HF diet, which animals showed impaired norepinephrine-induced lipolysis in their adipose tissues. These results suggest profound attenuation of beta-adrenergic responsiveness and fatty acid utilization in Ucp1-/- mice fed the HF diet, bringing them to late-onset obesity. Our findings provide evidence that UCP1 is neither essential for body weight regulation nor for longevity under conditions of standard diet and normal housing temperature, but deficiency increases susceptibility to obesity with age in combination with HF diet.  相似文献   

13.
The release of lysophosphatidic acid (LPA) by adipocytes has previously been proposed to play a role in obesity and associated pathologies such as insulin resistance and diabetes. In the present work, the sensitivity to diet-induced obesity was studied in mice lacking one of the LPA receptor subtype (LPA1R). Conversely to what was observed in wild type (WT) mice, LPA1R-KO-mice fed a high fat diet (HFD) showed no significant increase in body weight or fat mass when compared to low fat diet (LFD). In addition, in contrast to what was observed in WT mice, LPA1R-KO mice did not exhibit over-consumption of food associated with HFD. Surprisingly, when fed a LFD, LPA1R-KO mice exhibited significant higher plasma leptin concentration and higher level of adipocyte leptin mRNA than WT mice. In conclusion, LPA1R-KO mice were found to be resistant to diet-induced obesity consecutive to a resistance to fat-induced over-consumption of food that may result at least in part from alterations in leptin expression and production.  相似文献   

14.
Butyrylcholinesterase (BChE) inactivates the appetite stimulating hormone octanoyl-ghrelin. The hypothesis was tested that BChE−/− mice would have abnormally high body weight and high levels of octanoyl-ghrelin. It was found that BChE−/− mice fed a standard 5% fat diet had normal body weight. However, BChE−/− mice fed a diet containing 11% fat became obese. Their obesity was not explained by increased levels of octanoyl-ghrelin, or by increased caloric intake, or by decreased exercise. Instead, a role for BChE in fat utilization was suggested.  相似文献   

15.
Several data suggest that fermentable dietary fiber could play a role in the control of obesity and associated metabolic disorders. The aim of this study was to investigate the putative role of short chain fructo-oligosaccharide (OFS) - a non-digestible oligosaccharide - in mice fed a standard diet and in mice fed two distinct high fat diets inducing metabolic disorders associated to obesity. We confirmed, in mice, several effects previously shown in rats fed a standard diet enriched with OFS, namely an increase in total and empty caecum weight, a significant decrease in epididymal fat mass, and an increase in colonic and portal plasma glucagon-like peptide-1 (GLP-1), a phenomenon positively correlated with a higher colonic proglucagon mRNA level. Curiously, 4-week treatment with OFS added at the same dose induced different effects when added in the two different high fat diets. OFS decreased energy intake, body weight gain, glycemia, and epididymal fat mass only when added together with the high fat-carbohydrate free diet, in which OFS promoted colonic proglucagon expression and insulin secretion. Our results support an association between the increase in proglucagon expression in the proximal colon and OFS effects on glycemia, fat mass development, and/or body weight gain. In conclusion, dietary oligosaccharides would constitute an interesting class of dietary fibers promoting, in certain conditions, endogenous GLP-1 production, with beneficial physiological consequences. This remains to be proven in human studies.  相似文献   

16.
A standardized procedure was developed for conducting the mouse bioassay for detecting estrogenic activity in rodent diets. Studies were conducted with CD-1 mice to determine the appropriate weaning age and length of bioassay period. Uterine growth curves were generated from mice weaned at 15 days of age and fed a negative control diet until 28 days of age. These mice showed slow regular increases in uterine weights from 15 22 days of age followed by rapid uterine growth in some mice from 24 to 28 days of age. Estrogenic bioassays using female mice weaned at 15 days of age and fed the positive control diets containing 4 or 6 ppb diethylstilbestrol (DES) demonstrated significant (P less than 0.05) increases in uterine weight and in uterus to body weight (U:BW) ratios over those of mice fed the negative control diet without DES for 5, 7 or 9 days after weaning. In contrast, mice weaned at 17 days of age showed significant (P less than 0.05) increases in uterine weight and in U:BW ratios only at 5 days after weaning. Six ppb DES was required in the positive control diet to produce a 1.5 fold increase in the U:BW ratio over those of mice fed the negative control diet. It was concluded that mice should be weaned at 15 days of age and that the bioassay period should be terminated at 7 days, when the mice are 22 days old, for best reproducible results. The criteria for a valid bioassay should include the demonstration of a significant statistical increase in the U:BW ratios of mice fed the DES positive diet over those of mice fed the negative control diet.  相似文献   

17.
间歇性低氧对肥胖小鼠瘦素及其受体表达的影响   总被引:3,自引:0,他引:3  
Qin L  Song Z  Wen SL  Jing R  Li C  Xiang Y  Qin XQ 《生理学报》2007,59(3):351-356
为探讨适度低氧环境对体重的影响及其作用机制,明确瘦素在其中的作用,用高脂饮食建立小鼠肥胖模型并观察间歇性低氧的干预效果。健康昆明小鼠随机分为4组(每组20只),正常对照组:喂正常食物,不进行间歇性低氧训练;低氧组:喂正常食物,并进行间歇性低氧训练;肥胖组:喂高脂、高糖食物,但不进行间歇性低氧训练;低氧+肥胖组,喂高脂、高糖食物,并进行间歇性低氧训练。40d后,测量小鼠体重,用酶联免疫吸附法测定血清瘦素水平,免疫组织化学检测肝脏瘦素受体表达,苏丹Ⅲ染色检测肝脏脂肪细胞分布和密度。结果显示,与正常对照组相比,肥胖组小鼠平均体重和平均血清瘦素水平显著升高,肝脏分布大量脂肪细胞,提示高脂模型建立成功;经过间歇性低氧训练后,低氧组和低氧+肥胖组小鼠的平均体重及肝脏脂肪细胞分布密度和范围分别较对照组和肥胖组低,而血清瘦素水平明显增高;低氧+肥胖组小鼠肝脏瘦素受体的表达高于肥胖组。结果提示,适度的间歇性低氧可以通过提高血清瘦素水平和增强肝脏瘦素受体表达而使体重减轻,并有效防止肝细胞脂肪变。  相似文献   

18.
The association between an adverse early life environment and increased susceptibility to later-life metabolic disorders such as obesity, type 2 diabetes and cardiovascular disease is described by the developmental origins of health and disease hypothesis. Employing a rat model of maternal high fat (MHF) nutrition, we recently reported that offspring born to MHF mothers are small at birth and develop a postnatal phenotype that closely resembles that of the human metabolic syndrome. Livers of offspring born to MHF mothers also display a fatty phenotype reflecting hepatic steatosis and characteristics of non-alcoholic fatty liver disease. In the present study we hypothesised that a MHF diet leads to altered regulation of liver development in offspring; a derangement that may be detectable during early postnatal life. Livers were collected at postnatal days 2 (P2) and 27 (P27) from male offspring of control and MHF mothers (n = 8 per group). Cell cycle dynamics, measured by flow cytometry, revealed significant G0/G1 arrest in the livers of P2 offspring born to MHF mothers, associated with an increased expression of the hepatic cell cycle inhibitor Cdkn1a. In P2 livers, Cdkn1a was hypomethylated at specific CpG dinucleotides and first exon in offspring of MHF mothers and was shown to correlate with a demonstrable increase in mRNA expression levels. These modifications at P2 preceded observable reductions in liver weight and liver∶brain weight ratio at P27, but there were no persistent changes in cell cycle dynamics or DNA methylation in MHF offspring at this time. Since Cdkn1a up-regulation has been associated with hepatocyte growth in pathologic states, our data may be suggestive of early hepatic dysfunction in neonates born to high fat fed mothers. It is likely that these offspring are predisposed to long-term hepatic dysfunction.  相似文献   

19.
Social and psychological factors interact with genetic predisposition and dietary habit in determining obesity. However, relatively few pre-clinical studies address the role of psychosocial factors in metabolic disorders. Previous studies from our laboratory demonstrated in male mice: 1) opposite status-dependent effect on body weight gain under chronic psychosocial stress; 2) a reduction in body weight in individually housed (Ind) male mice. In the present study these observations were extended to provide a comprehensive characterization of the metabolic consequences of chronic psychosocial stress and individual housing in adult CD-1 male mice. Results confirmed that in mice fed standard diet, dominant (Dom) and Ind had a negative energy balance while subordinate (Sub) had a positive energy balance. Locomotor activity was depressed in Sub and enhanced in Dom. Hyperphagia emerged for Dom and Sub and hypophagia for Ind. Dom also showed a consistent decrease of visceral fat pads weight as well as increased norepinephrine concentration and smaller adipocytes diameter in the perigonadal fat pad. On the contrary, under high fat diet Sub and, surprisingly, Ind showed higher while Dom showed lower vulnerability to obesity associated with hyperphagia. In conclusion, we demonstrated that social status under chronic stress and individual housing deeply affect mice metabolic functions in different, sometime opposite, directions. Food intake, the hedonic response to palatable food as well as the locomotor activity and the sympathetic activation within the adipose fat pads all represent causal factors explaining the different metabolic alterations observed. Overall this study demonstrates that pre-clinical animal models offer a suitable tool for the investigation of the metabolic consequences of chronic stress exposure and associated psychopathologies.  相似文献   

20.
Angiopoietin-related growth factor (AGF), a member of the angiopoietin-like protein (Angptl) family, is secreted predominantly from the liver into the systemic circulation. Here, we show that most (>80%) of the AGF-deficient mice die at about embryonic day 13, whereas the surviving AGF-deficient mice develop marked obesity, lipid accumulation in skeletal muscle and liver, and insulin resistance accompanied by reduced energy expenditure relative to controls. In parallel, mice with targeted activation of AGF show leanness and increased insulin sensitivity resulting from increased energy expenditure. They are also protected from high-fat diet-induced obesity, insulin resistance and nonadipose tissue steatosis. Hepatic overexpression of AGF by adenoviral transduction, which leads to an approximately 2.5-fold increase in serum AGF concentrations, results in a significant (P < 0.01) body weight loss and increases insulin sensitivity in mice fed a high-fat diet. This study establishes AGF as a new hepatocyte-derived circulating factor that counteracts obesity and related insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号