首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study of frequency of unstable chromosome aberrations in 50 workers of nuclear chemical plants in remote period after beginning or finishing professional contact with ionizing radiation was carried out. 14 persons from this cohort were mainly whole-body exposed to external gamma-rays and 36 were exposed to combined external and internal radiation from incorporated Pu nuclides. In results of this irradiating practically every subject had a chronical radiation sickness. In the 1-st group the frequency of unstable aberrations varied from 0.2 to 3.6 per 100 cells and exceeded reliably control level in 5 persons. In the 2-nd group the frequency of unstable aberrations varied from 0 to 11.6 per 100 cells and exceeded reliably control level in 20 examined workers. The FISH study of frequency of stable aberrations was performed in 13 subjects who were exposed to combined external and internal radiation. Total frequency of complete and incomplete translocations varied from 0.6 to 18.5 aberrations per genome per 100 cells and reliable exceeded control level in 9 subjects. Non-random participation in exchange rearrangements (translocations) was revealed for used set of chromosomes (2, 3 and 8).  相似文献   

2.
Summary Human peripheral blood was treated with ultrasound either before or after irradiation, and chromosome aberrations in lymphocytes of peripheral blood cultures compared to those resulting from an equivalent dose of irradiation given alone.When peripheral blood is sonicated at a high intensity (3 W/cm2) for 10 min after irradiation, there is an increase in aberration frequency as compared to control samples receiving the equivalent radiation dose alone. However, should the blood be sonicated at the same frequency and for the same time period before radiation there is no significant increase in total chromosome aberrations over the irradiated controls. On the contrary a significant decreases occurs in certain classes of aberration.When sonification with a lower intensity (20 mW/cm2) was used in combination with irradiation the reverse effect was noted. Ultrasound administered for 10 min after radiation caused no significant increase in aberrations. On the contrary increasing the period of sonification to one hour resulted in a lowering of all types of aberration, significant in the case of dicentrics and total chromosome aberrations, when compared to irradiation alone. Reversing the order of treatment again resulted in the opposite effect to that achieved with comparable experiments at high intensities of sonification. Ultrasound before radiation did not produce lower breakage rates. Instead, when the period of sonification was increased to one hour, the number of aberrant cells, fragments, and total aberrations rose significantly over controls.It is suggested that sonification produces chemical changes affecting cellular repair systems, which when combined with ionising radiation, results in an increased or decreased repair effect depending on the dose, duration, and order of treatment.Dedicated to Prof. Dr. Felix Mainx on the occasion of his 80th birthday  相似文献   

3.
A limited number of contradictory reports have appeared in the literature about the ability of radiofrequency (rf) radiation to induce chromosome aberrations in different biological systems. The technical documentation associated with such reports is often absent or deficient. In addition, no information is available as to whether any additional genotoxic hazard would result from a simultaneous exposure of mammalian cells to rf radiation and a chemical which (by itself) induces chromosome aberrations. In the work described, we have therefore tested two hypotheses. The first is that rf radiation by itself, at power densities and exposure conditions which are higher than is consistent with accepted safety guidelines, can induce chromosome aberrations in mammalian cells. The second is that, during a simultaneous exposure to a chemical known to be genotoxic, rf radiation can affect molecules, biochemical processes, or cellular organelles, and thus result in an increase or decrease in chromosome aberrations. Mitomycin C (MMC) and Adriamycin (ADR) were selected because they act by different mechanisms, and because they might put normal cells at risk during combined-modality rf radiation (hyperthermia)-chemotherapy treatment of cancer. The studies were performed with suitable 37 degrees C and equivalent convection heating-temperature controls in a manner designed to discriminate between any thermal and possible nonthermal action. Radiofrequency exposures were conducted for 2 h under conditions resulting in measurable heating (a maximum increase of 3.2 degrees C), with pulsed-wave rf radiation at a frequency of 2450 MHz and an average net forward power of 600 W, resulting in an SAR of 33.8 W/kg. Treatments with MMC or ADR were for a total of 2.5 h and encompassed the 2-h rf radiation exposure period. The CHO cells from each of the conditions were subsequently analyzed for chromosome aberrations. In cells exposed to rf radiation alone, and where a maximum temperature of approximately 40 degrees C was achieved in the tissue culture medium, no alteration in the frequency from 37 degrees C control levels was observed. Relative to the chemical treatment with MMC alone at 37 degrees C, for two different concentrations, no alteration was observed in the extent of chromosome aberrations induced by either simultaneous rf radiation exposure or convection heating to equivalent temperatures. At the ADR concentration that was used, most of the indices of chromosome aberrations which were scored indicated a similar result.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The quantitative prediction of the biological effects of radiation is one of the actual tasks of radiobiology. The experimental study may be impossible under certain conditions (low doses, complex radiation fields, etc). The development of theoretical tools is required to predict biological and medical consequence of the irradiation of cell and organism. The effect under the consideration in the present paper is chromosome aberrations (CA) induced by low and high LET radiation. One of the most uncertain factors in CA prediction is the impact of chromosomal and nuclear architecture. In the present study the quantitative evaluation of the mechanisms of CA induction are discussed in the framework of the biophysical modelling technique taking into account interphase chromosomes structure in the nucleus of living (human) cell. We show that the surface contacts mechanism of interchromosomal aberrations (interchange) formation does not explain the observed ratio of simple/complex interchanges induced by both low and high LET radiation. The chromatin structure repositioning following irradiation is proposed as a possible mechanism involved in the formation of the complex aberrations.  相似文献   

5.
Structural chromosome aberrations (SCAs) are sensitive indicators of a preceding exposure of the hematopoietic system to ionizing radiation. Cytogenetic investigations have therefore become routine tools for an assessment of absorbed radiation doses and their biological effects after occupational exposure or radiation accidents.Due to its speed and ease of use, fluorescence in situ hybridization (FISH) with whole chromosome painting (WCP) probes has become a method of choice to visualize SCAs. Until recently, this technique was limited to a rather small number of chromosomes, which could be tested simultaneously. As a result, only a fraction of the structural aberrations present in a sample could be detected and the overall dose effect had to be calculated by extrapolation. The recent introduction of two genome-wide screening techniques in tumor research, i.e., Spectral Karyotyping (SKY) and multicolor FISH (mFISH) now allows the detection of translocations involving any two non-homologous chromosomes.The present study was prompted by our desire to bring the power of mFISH to bear for the rapid identification of radiation-induced SCAs. We chose two model systems to investigate the utility of mFISH: lymphocytes that were exposed in vitro to 3 Gy photons and single hematopoietic progenitor cell colonies isolated from a Chernobyl victim 9 years after in vivo exposure to 5.4 Sv.In lymphocytes, we found up to 15 different chromosomes involved in rearrangements indicating complex radiation effects. Stable aberrations detected in hematopoietic cell colonies, on the other hand, showed involvement of up to three different chromosomes. These results demonstrated that mFISH is a rapid and powerful approach to detect and characterize radiation-induced SCAs in the hemopoietic system. The application of mFISH is expected to result in a more detailed and, thus, more informative picture of radiation effects. Eventually, this technique will allow researchers to rapidly delineate chromosomal breakpoints and facilitate the identification of the genes involved in radiation tumorigenesis.  相似文献   

6.
To determine the effects of a defect in NHEJ on the induction of genomic instability by radiation, we investigated X-ray-induced delayed chromosomal aberrations such as dicentrics and fragments in scid mouse cells. We found that radiosensitive scid mouse cells are more susceptible than wild-type mouse cells to the induction of delayed chromosomal aberrations when the cells are exposed to an equivalent survival dose of X-rays. Telomere FISH analysis revealed that radiation enhances the induction of telomeric fusions where telomeric sequences remain at the fused position (tel+ end-fusions), suggesting that radiation induces telomere dysfunction. Moreover, formation of the tel+ end-fusions was found to be enhanced in scid mouse cells, suggesting that DNA-dependent protein kinase catalytic subunit (DNA-PKcs) plays a role in telomeric stabilization. Thus, the present study suggests that a cause of genomic instability is telomere dysfunction induced by radiation and that a defect in DNA-PKcs enhances the telomeric destabilization.  相似文献   

7.
Precise identification of centromeres is required for accurate scoring of asymmetrical chromosome aberrations, such as dicentrics. The centromeric regions of all human chromosomes can be labeled by in situ hybridization of a 30 nucleotide oligomer having the sequence of a conserved region of an alphoid DNA consensus sequence. Fluorescent detection of the hybridized probe allows rapid identification of centromeres and accurate scoring of dicentrics, multicentrics, acentric fragments, and the centromeric content of ring chromosomes. This procedure provides a novel approach for scoring these complex chromosome aberrations, particularly damage induced by radiation or radiomimetic agents.  相似文献   

8.
Peripheral blood lymphocytes were irradiated in vitro with (213)Bi alpha particles at doses of 0, 10, 20, 50, 100, 200 and 500 mGy. Chromosome analysis was performed on 47-h cultures using single-color fluorescence in situ hybridization (FISH) to paint chromosomes 1, 3 and 5. The whole genome was analyzed for unstable aberrations to derive aberration frequencies and determine cell stability. The dose response for dicentrics was 33.60 +/- 0.47 x 10(-2) per Gy. A more detailed analysis revealed that the majority of aberrations scored as dicentrics were part of complex/multiple aberrations, with the proportion of cells containing complexes increasing with dose. Cells containing aberrations involving painted chromosomes (FISH aberrations) were further classified according to cell stability and complexity. The majority of cells with FISH aberrations were unstable. The proportion of aberrant FISH cells with complex/multiple aberrations ranged from 56% at 10 mGy to 89% at 500 mGy. A linear dose response for genomic frequencies of translocations in stable cells fitted the data from 0 to 200 mGy with a dose response of 7.90 +/- 0.98 x 10(-2) per Gy, thus indicating that they are likely to be observed in peripheral blood lymphocytes from individuals with past or chronic exposure to high-LET radiation. Comparisons with the dose response for low-LET radiation suggest an RBE of 13.6 for dicentrics in all cells and 3.2 for translocations in stable cells. Since stochastic effects of radiation are attributable to genetic changes in viable cells, translocations in stable cells may be a better measure when considering the comparative risks of different qualities of radiation.  相似文献   

9.
Hada M  Wu H  Cucinotta FA 《Mutation research》2011,711(1-2):187-192
During long-term space travel or cancer therapy, humans are exposed to high linear energy transfer (LET) energetic heavy ions. High-LET radiation is much more effective than low-LET radiation in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, and cytogenetic damage can be utilized as a biomarker for radiation insults. Epidemiological data, mainly from survivors of the atomic bomb detonations in Japan, have enabled risk estimation from low-LET radiation exposures. The identification of a cytogenetic signature that distinguishes high- from low-LET exposure remains a long-term goal in radiobiology. Recently developed fluorescence in situ hybridization (FISH)-painting methodologies have revealed unique endpoints related to radiation quality. Heavy-ions induce a high fraction of complex-type exchanges, and possibly unique chromosome rearrangements. This review will concentrate on recent data obtained with multicolor banding in situ hybridization (mBAND) methods in mammalian cells exposed to low- and high-LET radiations. Chromosome analysis with mBAND technique allows detection of both inter- and intrachromosomal exchanges, and also distribution of the breakpoints of aberrations.  相似文献   

10.
The objective of this state of the art paper is to review the mechanisms of induction, the fate, the methodology, the sensitivity/specificity and predictivity of two major cytogenetic endpoints applied for genotoxicity studies and biomonitoring purposes: chromosome aberrations and micronuclei. Chromosomal aberrations (CAs) are changes in normal chromosome structure or number that can occur spontaneously or as a result of chemical/radiation treatment. Structural CAs in peripheral blood lymphocytes (PBLs), as assessed by the chromosome aberration (CA) assay, have been used for over 30 years in occupational and environmental settings as a biomarker of early effects of genotoxic carcinogens. A high frequency of structural CAs in lymphocytes (reporter tissue) is predictive of increased cancer risk, irrespective of the cause of the initial CA increase. Micronuclei (MN) are small, extranuclear bodies that arise in dividing cells from acentric chromosome/chromatid fragments or whole chromosomes/chromatids that lag behind in anaphase and are not included in the daughter nuclei in telophase. The cytokinesis-block micronucleus (CBMN) assay is the most extensively used method for measuring MN in human lymphocytes, and can be considered as a "cytome" assay covering cell proliferation, cell death and chromosomal changes. The key advantages of the CBMN assay lie in its ability to detect both clastogenic and aneugenic events and to identify cells which divided once in culture. Evaluation of the mechanistic origin of individual MN by centromere and kinetochore identification contributes to the high sensitivity of the method. A number of findings support the hypothesis of a predictive association between the frequency of MN in cytokinesis-blocked lymphocytes and cancer development. Recent advances in fluorescence in situ hybridization (FISH) and microarray technologies are modifying the nature of cytogenetics, allowing chromosome and gene identification on metaphase as well as in interphase. Automated scoring by flow cytometry and/or image analysis will enhance their applicability.  相似文献   

11.
Ermak G  Figge JJ  Kartel NA  Davies KJ 《IUBMB life》2003,55(12):637-641
Cases of thyroid cancer among children in Belarus represent a unique model system in which the cause of the cancer is known--radiation. Although other sources of radiation-induced cancers are diminishing (survivors of Hiroshima and Nagasaki, and individuals exposed to diagnostic or therapeutic radiation) fears of radiation exposure from accidents and terrorism are increasing. Our analysis of current data reveals that Chernobyl-related cancer cases might have a specific pattern of genetic aberrations. These data strongly confirm the hypothesis that radiation-induced cancers might arise as a result of specific gene aberrations that are distinct from those in sporadic cancers, suggesting that methods of prevention and treatment of radiation-induced cancers might require a different approach. Understanding of the molecular mechanisms of Chernobyl-related papillary thyroid carcinomas will help to identify mechanisms by which radiation causes aberrations and oncogenic cell transformation. Thus, in turn, it will be important in the development of new treatments or technologies to minimize the effects of radiation damage from nuclear accidents or nuclear attacks.  相似文献   

12.
Ji  Fengmin  Luo  Liaofu 《Genome biology》2004,5(2):1-36
High doses of ionizing irradiation and chemical mutagens induce random mutations and chromosome aberrations in cells of affected organisms and cause acute symptoms, delayed increased risk of cancer and accelerated aging. The mechanism of disease development remains unclear and no treatment exists for consequences of the mutagenic damage. We have proposed recently that extracellular genomic DNA from tissue fluids of a healthy organism, innate receptor-mediated nuclear delivery of this DNA, and its homologous recombination with cellular genomic sequences might function concertedly as a natural proofreading mechanism for somatic cell genomes. Here we hypothesize that cells dying from irradiation or chemical mutagens release heavily damaged DNA fragments that propagate mutations and chromosome aberrations to DNA-recipient cells via this mechanism, inducing cell death and release of their mutated DNA again into the bloodstream. The repeated release of the mutated DNA followed by its incorporation into cellular genomes would spread mutational damage in the affected organism, thus making this DNA the etiologic agent of either radiation sickness or post-mutagen exposure syndrome. The hypothesis opens a possibility to inhibit and treat the disease via administration of non-mutated genomic DNA fragments that would compete with the circulating mutant DNA fragments, entering cells in greater numbers, leading to replacement of mutant segments in cellular genomes. Injection of fragmented mouse DNA, but not human DNA, into lethally irradiated mice dramatically increased their survival. Similarly, the mouse DNA was more potent than human and salmon DNA in accelerating recovery of the normal leukocyte level in mice treated with the chemical mutagen cyclophosphamide. The species specificity of the DNA therapy suggests that the genomic sequences are the agent producing the effects.  相似文献   

13.
Summary Analyses of structural aberrations of chromosomes and of the body burden of lead-210 were carried out in a group of workers occupationally exposed to chemical pollutants and low doses of ionizing radiation during a technological process in which coal is used as fuel. A parallel study was performed in a control group of workers.In the exposed group the percentage of chromatid and chromosome aberrations and the results of radiochemical analyses were higher than in the control group.This paper is based on work performed under International Atomic Energy Agency contract No. 2346/RB  相似文献   

14.
Energetic heavy ions pose a potential health risk to astronauts who have participated in extended space missions. High-LET radiation is much more effective than low-LET radiation in the induction of biological effects, including cell inactivation, genetic mutations, cataracts and cancer. Most of these biological end points are closely correlated with chromosomal damage, which can be used as a biomarker for radiation damage. Multicolor banding in situ hybridization (mBAND) has proven to be highly useful for the study of intrachromosomal aberrations, which have been suggested as a biomarker of exposure to high-LET radiation. To investigate biological signatures of radiation quality and the complexity of intrachromosomal aberrations, we exposed human epithelial cells in vitro to (137)Cs gamma rays or iron ions (600 MeV/nucleon) and collected chromosomes using a premature chromosome condensation technique. Aberrations in chromosome 3 were analyzed using mBAND probes. The results of our study confirmed the observation of a higher incidence of inversions for high-LET radiation. However, detailed analysis of the inversion type revealed that both iron ions and gamma rays induced a low incidence of simple inversions. Half of the inversions observed in the low-LET-irradiated samples were accompanied by other types of intrachromosome aberrations, but few inversions were accompanied by interchromosome aberrations. In contrast, iron ions induced a significant fraction of inversions that involved complex rearrangements of both inter- and intrachromosome exchanges.  相似文献   

15.
The traditional thinking has been that the biological effects of ionizing radiation occur in irradiated cells as a consequence of the DNA damage they incur. This implies that: 1) biological effects occur only in irratiated cells, 2) radiation traversal through the nucleus of the cell is a prerequisite to produce a biological response, and 3) DNA is the target molecule in the cell. Evidence has been emerging, however, for non-DNA targeted effects of radiation; that is, effects including mutations, chromosomal aberrations, and changes in gene expression which occur in cells that in themselves receive no radiation exposure. Two of these phenomena will be described in this paper. The first is radiation-induced genomic instability whereby biological effects, including elevated frequencies of mutations and chromosomal aberrations, arise in the distant descendants of irradiated cells. The second phenomenon has been termed the "bystander effect", whereby in a mixed population of irradiated and nonirradiated cells, biological effects arise in those cells that receive no radiation exposure. The damage signals are transmitted from cell to cell through gap junction channels, and the genetic effects observed in bystander cells appear to result from an upregulation of oxidative stress. The possible influence of these non-targeted effects of radiation of the respounse to low-dose exposures is discussed.  相似文献   

16.
Most chemicals are S-dependent and are potent inducers of SCE, but do not produce chromosome-type aberrations in the first metaphases after exposure. Ionizing radiation, which is an S-independent agent, produces chromosome-type aberrations, especially dicentrics and rings, but inefficiently produces chromatid-type aberrations. A series of experiments has been performed to investigate whether cytogenetic damage induced by ionizing radiation (gamma-rays) might be assessed separately from that induced by the alkylating chemical, mitomycin C (MMC), when human lymphocytes were exposed to these 2 agents in combination. Whole-blood cultures of human lymphocytes in G0 phase were exposed to gamma-rays and MMC in combination or separately. Cytogenetic analyses were done for both chromosome aberrations (CA), analyzed in cultures incubated for 56 h without BrdUrd, and sister-chromatid exchanges (SCEs) in cultures incubated for 72 h with BrdUrd. The frequency of chromosome-type aberrations (dicentrics and rings) increased with increasing doses of gamma-rays from 0.5 to 4.0 Gy. The dose-response relationships were the same with or without concomitant treatment with MMC (10(-6) M). Although the SCE frequency increased with increasing doses of MMC, the increase was nearly the same as when cells were treated with both MMC and gamma-rays (2 Gy). There was no interaction between MMC and gamma-rays concerning these 2 endpoints.  相似文献   

17.
A combined effect has been studied of 5-bromo-deoxyuridine (BDU) and gamma-radiation on human lymphocytes at the G0 stage. BDU is shown to induce chromatid aberrations irrespective of its radiation. The frequency of chromatid aberrations rises with the BDU concentration. BDU modifies the effect of gamma-radiation on human lymphocytes at the G0 stage, increasing the number of chromosome aberrations. BDU slows down the lymphocyte cell cycle.  相似文献   

18.
Melanin’s influence on the chromosome aberration frequency induced by radiation in human lymphocytes and mouse bone marrow cells has been studied. We revealed earlier that melanin significantly decreases the frequencies of different radiation-induced mutations in animal germ cells. Melanin protection in somatic cells has been found to be less effective. The melanin effect in somatic cells depends on radiation dose: the lower the damage level, the better the melanin protection. In order to determine the influence of melanin at low radiation doses, the adaptive response was investigated in mouse bone marrow cells in vivo. The level of chromosome aberrations in these cells after fractionated irradiation of 0.2 Gy+1.5 Gy with a 4-h interval was about half that after a single dose of 1.7 Gy. If melanin was injected prior to irradiation, the aberration level decreased by a factor of about two in both cases. This observed result may be due to the potential radioprotective effect of melanin and to the absence of any adaptive response, whereas in the case of melanin application between the priming and challenge doses, the combined effect of the adaptive response as well as melanin protection resulted in a 4-fold decrease of chromosome aberrations. These results allow us to draw the following conclusions: adaptive response can be prevented by a radioprotector such as melanin, and melanin is capable of completely removing low-dose radiation effects. Received: 2 December 1998 / Accepted in revised form: 15 September 1999  相似文献   

19.
Studies were conducted to determine the effects of BeSO4 or X rays, alone and in combination, on cell cycle kinetics, cell killing, and the production of chromosome aberrations in Chinese hamster ovary (CHO) cells. The concentration of BeSO4 required to kill 50% of CHO cells exposed to BeSO4 for 20 h was determined to be 1.1 mM with 95% confidence intervals of 0.72 to 1.8 mM. During the last 2 h of the 20-h beryllium treatment (0.2 and 1.0 mM), cells were exposed to 0.0, 1.0, or 2.0 Gy of X rays. Exposure to either BeSO4 or X rays produced a change in cell cycle kinetics which resulted in an accumulation of cells in the G2/M stage of the cell cycle. However, combined exposure to both agents resulted in a block similar to that observed following exposure to X rays only. The background level of chromosome damage was 0.05 +/- 0.015 aberrations/cell in the CHO cells. Seven hours after the end of exposure to 0.2 and 1.0 mM beryllium, 0.03 +/- 0.003 and 0.09 +/- 0.02 aberrations/cell, respectively, were observed. The data for chromosome aberrations following X-ray exposure were fitted to a linear model with a coefficient of 0.14 +/- 0.01 aberrations/cell/Gy. When beryllium was combined with the X-ray exposure the interactive response was predicted by a multiplicative model and was significantly higher (P less than 0.05) than predicted by an additive model. The influence of time after radiation exposure on the interaction between beryllium and X rays was also determined. No interaction between beryllium and X-ray exposure in the induction of chromosome-type aberrations (P greater than 0.05) was detected. The frequency of chromatid-type exchanges and total aberrations was significantly higher (P less than 0.05) in the radiation plus beryllium-exposed cells when compared to cells exposed to X rays only, at both 9 and 12 h after X-ray exposure. These data suggest that the multiplicative interaction may be limited to cells in the S and G2 stages of the cell cycle.  相似文献   

20.
Radiation and platinum drug interaction   总被引:1,自引:0,他引:1  
Platinum drugs have chemical as well as biochemical and biological effects on cells, all of which may interact with radiation effects. They inhibit recovery from sublethal and potentially lethal radiation damage. They produce a pattern of chromosome aberrations analogous to that from alkylating agents. Cellular sensitivity to platinum is increased when glutathione levels are reduced, just as is radiosensitivity. There is a pattern of drug sensitivity throughout the phases of the cell cycle which is different from that for radiosensitivity. The ideal platinum drug-radiation interaction would achieve radiosensitization of hypoxic tumour cells with the use of a dose of drug which is completely non-toxic to normal tissues. Electron-affinic agents are employed with this aim, but the commoner platinum drugs are only weakly electron-affinic. They do have a quasi-alkylating action however, and this DNA targeting may account for the radiosensitizing effect which occurs with both pre- and post-radiation treatments. Because toxic drug dosage is usually required for this, the evidence of the biological responses to the drug and to the radiation, as well as to the combination, requires critical analysis before any claim of true enhancement, rather than simple additivity, can be accepted. The amount of enhancement will vary with both the platinum drug dose and the time interval between drug administration and radiation. Clinical schedules may produce an increase in tumour response and/or morbidity, depending upon such dose and time relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号