首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Impaired muscle glycogen storage after muscle biopsy   总被引:2,自引:0,他引:2  
To assess the effects of repeated needle biopsies on the rate of muscle glycogen repletion, eight male subjects were studied immediately after and 2 days after an exhaustive cycling bout. A single biopsy was obtained from the right vastus lateralis muscle immediately after an exhaustive cycling bout. Two days later, a sample was taken 1 cm lateral or medial to sample A. In four of these subjects, additional biopsies were taken 3 cm distal and proximal. A control specimen was also taken from the left leg 2 days after the exercise. Ten days after the exercise, muscle was again sampled from each leg of these four subjects. Analysis of these samples revealed that the initial biopsy impaired glycogen storage in the muscle taken 1 cm medial or lateral to the previous site. This reduction in glycogen storage was most pronounced in the first 2 days after the exercise. Samples taken distal and proximal to the initial biopsy contained, on the average, less glycogen than the contralateral leg, but these differences were only significantly different in the distal muscle sample. Alteration in muscle glycogen storage was seen to persist for 10 days after the first biopsy, suggesting that care must be taken in selecting the site for repeated biopsies from the same muscle.  相似文献   

2.
3.
We hypothesize that training results in a faster and greater repletion of glycogen in skeletal muscles of normal and diabetic rats. Normal male Sprague-Dawley rats (100-140 g) were divided into two groups--one to train by treadmill running for 10 wk and the other to remain sedentary. Forty-eight hours after the last training session the rats of both groups were exercised to exhaustion. One subgroup of each was fed oral glucose (3 g/kg) at exhaustion and killed 60 min later. The other was killed at exhaustion. The glycogen concentration of soleus, plantaris, and red and white gastrocnemius was determined in all rats. The trained group had higher glycogen levels after glucose feeding in all muscles (P less than 0.002) and repleted their muscle glycogen more rapidly (P less than 0.05). However, in diabetic rats (45 mg streptozotocin/kg body wt) the trained and sedentary rats have similar glycogen levels and glycogen repletion rates in all muscles. Compared with the normal trained rats, the diabetic trained rats had slower glycogen repletion rates (P less than 0.05).  相似文献   

4.
Insulin stimulates glycogen synthase (GS) through dephosphorylation of serine residues, and this effect is impaired in skeletal muscle from insulin-resistant [obese and type 2 diabetic (T2DM)] subjects. Exercise also increases GS activity, yet it is not known whether the ability of exercise to affect GS is impaired in insulin-resistant subjects. The objective of this study was to examine the effect of acute exercise on GS phosphorylation and enzyme kinetic properties in muscle from insulin-resistant individuals. Lean normal glucose-tolerant (NGT), obese NGT, and obese T2DM subjects performed 40 min of moderate-intensity cycle exercise (70% of Vo(2max)). GS kinetic properties and phosphorylation were measured in vastus lateralis muscle before exercise, immediately after exercise, and 3.5 h postexercise. In lean subjects, GS fractional activity increased twofold after 40 min of exercise, and it remained elevated after the 3.5-h rest period. Importantly, exercise also decreased GS K(m) for UDP-glucose from ≈0.5 to ≈0.2 mM. In lean subjects, exercise caused significant dephosphorylation of GS by 50-70% (Ser(641), Ser(645), and Ser(645,649,653,657)), and phosphorylation of these sites remained decreased after 3.5 h; Ser? phosphorylation was not regulated by exercise. In obese NGT and T2DM subjects, exercise increased GS fractional activity, decreased K(m) for UDP-glucose, and decreased GS phosphorylation as effectively as in lean NGT subjects. We conclude that the molecular regulatory process by which exercise promotes glycogen synthesis in muscle is preserved in insulin-resistant subjects.  相似文献   

5.
6.
Goforth, Jr., Harold W., David A. Arnall, Brad L. Bennett,and Patricia G. Law. Persistence of supercompensated muscle glycogen in trained subjects after carbohydrate loading.J. Appl. Physiol. 82(1): 342-347, 1997.Several carbohydrate (CHO)-loading protocols have been used toachieve muscle glycogen supercompensation and prolong enduranceperformance. This study assessed the persistence of muscle glycogensupercompensation over the 3 days after the supercompensation protocol.Trained male athletes completed a 6-day CHO-loading protocol thatincluded cycle ergometer exercise and dietary manipulations. The 3-daydepletion phase began with 115 min of cycling at 75% peak oxygenuptake followed by 3 × 60-s sprints and included the subjectsconsuming a low-CHO/high-protein/high-fat (10:41:49%) diet. Subjectscycled 40 min at the same intensity for the next 2 days. During the3-day repletion phase, subjects rested and consumed ahigh-CHO/low-protein/low-fat (85:08:07%) diet, including aglucose-polymer beverage. A 3-day postloading phase followed, whichinvolved a moderately high CHO diet (60%) and no exercise. Glycogenvalues for vastus lateralis biopsies at baseline and postloadingdays 1-3 were 408 ± 168 (SD),729 ± 222, 648 ± 186, and 714 ± 196 mmol/kg dry wt,respectively. The CHO-loading protocol increased muscle glycogen by1.79 times baseline, and muscle glycogen remained near this levelduring the 3-day postloading period. Results indicate thatsupercompensated muscle glycogen levels can be maintained for at least3 days in a resting athlete when a moderate-CHO diet is consumed.

  相似文献   

7.
Previous measurement of insulin in human muscle has shown that interstitial muscle insulin and glucose concentrations are approximately 30-50% lower than in plasma during hyperinsulinemia in normal subjects. The aims of this study were to measure interstitial muscle insulin and glucose in patients with type 2 diabetes to evaluate whether transcapillary transport is part of the peripheral insulin resistance. Ten patients with type 2 diabetes and ten healthy controls matched for sex, age, and body mass index were investigated. Plasma and interstitial insulin, glucose, and lactate (measured by intramuscular in situ-calibrated microdialysis) in the medial quadriceps femoris muscle were analyzed during a hyperinsulinemic euglycemic clamp. Blood flow in the contralateral calf was measured by vein plethysmography. At steady-state clamping, at 60-120 min, the interstitial insulin concentration was significantly lower than arterial insulin in both groups (409 +/- 86 vs. 1,071 +/- 99 pmol/l, P < 0.05, in controls and 584 +/- 165 vs. 1, 253 +/- 82 pmol/l, P < 0.05, in diabetic subjects, respectively). Interstitial insulin concentrations did not differ significantly between diabetic subjects and controls. Leg blood flow was significantly higher in controls (8.1 +/- 1.2 vs. 4.4 +/- 0.7 ml. 100 g(-1).min(-1) in diabetics, P < 0.05). Calculated glucose uptake was less in diabetic patients compared with controls (7.0 +/- 1.2 vs. 10.8 +/- 1.2 micromol. 100 g(-1).min(-1), P < 0.05, respectively). Arterial and interstitial lactate concentrations were both higher in the control group (1.7 +/- 0.1 vs. 1.2 +/- 0.1, P < 0. 01, and 1.8 +/- 0.1 vs. 1.2 +/- 0.2 mmol/l, P < 0.05, in controls and diabetics, respectively). We conclude that, during hyperinsulinemia, muscle interstitial insulin and glucose concentrations did not differ between patients with type 2 diabetes and healthy controls despite a significantly lower leg blood flow in diabetic subjects. It is suggested that decreased glucose uptake in type 2 diabetes is caused by insulin resistance at the cellular level rather than by a deficient access of insulin and glucose surrounding the muscle cell.  相似文献   

8.
We examined the regulation of free fatty acid (FFA, palmitate) uptake into skeletal muscle cells of nondiabetic and type 2 diabetic subjects. Palmitate uptake included a protein-mediated component that was inhibited by phloretin. The protein-mediated component of uptake in muscle cells from type 2 diabetic subjects (78 +/- 13 nmol. mg protein-1. min-1) was reduced compared with that in nondiabetic muscle (150 +/- 17, P < 0.01). Acute insulin exposure caused a modest (16 +/- 5%, P < 0.025) but significant increase in protein-mediated uptake in nondiabetic muscle. There was no significant insulin effect in diabetic muscle (+19 +/- 19%, P = not significant). Chronic (4 day) treatment with a series of thiazolidinediones, troglitazone (Tgz), rosiglitazone (Rgz), and pioglitazone (Pio) increased FFA uptake. Only the phloretin-inhibitable component was increased by treatment, which normalized this activity in diabetic muscle cells. Under the same conditions, FFA oxidation was also increased by thiazolidinedione treatment. Increases in FFA uptake and oxidation were associated with upregulation of fatty acid translocase (FAT/CD36) expression. FAT/CD36 protein was increased by Tgz (90 +/- 22% over control), Rgz (146 +/- 42%), and Pio (111 +/- 37%, P < 0.05 for all 3) treatment. Tgz treatment had no effect on fatty acid transporter protein-1 and membrane-associated plasmalemmal fatty acid-binding protein mRNA expression. We conclude that FFA uptake into cultured muscle cells is, in part, protein mediated and acutely insulin responsive. The basal activity of FFA uptake is impaired in type 2 diabetes. In addition, chronic thiazolidinedione treatment increased FFA uptake and oxidation into cultured human skeletal muscle cells in concert with upregulation of FAT/CD36 expression. Increased FFA uptake and oxidation may contribute to lower circulating FFA levels and reduced insulin resistance in skeletal muscle of individuals with type 2 diabetes following thiazolidinedione treatment.  相似文献   

9.
10.
The autophagy-lysosome system is essential for muscle cell homeostasis and its dysfunction has been linked to muscle disorders that are typically distinguished by massive autophagic buildup. Among them, glycogen storage disease type II (GSDII) is characterized by the presence of large glycogen-filled lysosomes in the skeletal muscle, due to a defect in the lysosomal enzyme acid α-glucosidase (GAA). The accumulation of autophagosomes is believed to be detrimental for myofiber function. However, the role of autophagy in the pathogenesis of GSDII is still unclear. To address this issue we monitored autophagy in muscle biopsies and myotubes of early and late-onset GSDII patients at different time points of disease progression. Moreover we also analyzed muscles from patients treated with enzyme replacement therapy (ERT). Our data suggest that autophagy is a protective mechanism that is required for myofiber survival in late-onset forms of GSDII. Importantly, our findings suggest that a normal autophagy flux is important for a correct maturation of GAA and for the uptake of recombinant human GAA. In conclusion, autophagy failure plays an important role in GSDII disease progression, and the development of new drugs to restore the autophagic flux should be considered to improve ERT efficacy.  相似文献   

11.
《Autophagy》2013,9(11):1697-1700
The autophagy-lysosome system is essential for muscle cell homeostasis and its dysfunction has been linked to muscle disorders that are typically distinguished by massive autophagic buildup. Among them, glycogen storage disease type II (GSDII) is characterized by the presence of large glycogen-filled lysosomes in the skeletal muscle, due to a defect in the lysosomal enzyme acid α-glucosidase (GAA). The accumulation of autophagosomes is believed to be detrimental for myofiber function. However, the role of autophagy in the pathogenesis of GSDII is still unclear. To address this issue we monitored autophagy in muscle biopsies and myotubes of early and late-onset GSDII patients at different time points of disease progression. Moreover we also analyzed muscles from patients treated with enzyme replacement therapy (ERT). Our data suggest that autophagy is a protective mechanism that is required for myofiber survival in late-onset forms of GSDII. Importantly, our findings suggest that a normal autophagy flux is important for a correct maturation of GAA and for the uptake of recombinant human GAA. In conclusion, autophagy failure plays an important role in GSDII disease progression, and the development of new drugs to restore the autophagic flux should be considered to improve ERT efficacy.  相似文献   

12.
The importance of proper lysosomal activity in cell and tissue homeostasis is underlined by "experiments of nature", i.e. genetic defects in one of the at least 40 lysosomal enzymes/proteins present in the human cell. The complete lack of 1-4 alpha-glucosidase (glycogen storage disease type II (GSD II) or Pompe disease) is life-threatening. Patients suffering from GSD II commonly die before the age of 2 years because of cardiorespiratory insufficiency. Striated muscle cells appear to be particularly vulnerable in GSD II. The high cytoplasmic glycogen content in muscle cells most likely gives rise to a high rate of glycogen engulfment by the lysosomes. The polysaccharides become subsequently trapped in these organelles when 1-4 alpha-glucosidase activity is absent. During the course of the disease, muscle wasting occurs. It is hypothesised that the gradual loss of muscle mass is caused by a combination of disuse atrophy and lipofuscine-mediated apoptosis of myocytes. Moreover, we hypothesise that in the remaining skeletal muscle cells, longitudinal transmission of force is hampered by swollen lysosomes, clustering of non-contractile material and focal regions with degraded contractile proteins, which results in muscle weakness.  相似文献   

13.
14.
15.
Liver and skeletal muscle triglyceride stores are elevated in type 2 diabetes and correlate with insulin resistance. As postprandial handling of dietary fat may be a critical determinant of tissue triglyceride levels, we quantified postprandial fat storage in normal and type 2 diabetes subjects. Healthy volunteers (n = 8) and diet-controlled type 2 diabetes subjects (n = 12) were studied using a novel 13C magnetic resonance spectroscopy protocol to measure the postprandial increment in liver and skeletal muscle triglyceride following ingestion of 13C-labeled fatty acids given with a standard mixed meal. The postprandial increment in hepatic triglyceride was rapid in both groups (peak increment controls: +7.3 +/- 1.5 mmol/l at 6 h, P = 0.002; peak increment diabetics: +10.8 +/- 3.4 mmol/l at 4 h, P = 0.009). The mean postprandial incremental AUC of hepatic 13C enrichment between the first and second meals (0 and 4 h) was significantly higher in the diabetes group (6.1 +/- 1.4 vs. 1.7 +/- 0.6 mmol x l(-1) x h(-1), P = 0.019). Postprandial increment in skeletal muscle triglyceride in the control group was small compared with the diabetic group, the mean 24-h postprandial incremental AUC being 0.2 +/- 0.3 vs. 1.7 +/- 0.4 mmol x l(-1) x h(-1) (P = 0.009). We conclude that the postprandial uptake of fatty acids by liver and skeletal muscle is increased in type 2 diabetes and may underlie the elevated tissue triglyceride stores and consequent insulin resistance.  相似文献   

16.
The amount of glycogen and its synthesis from glucose was studied in white muscle (extensor digitorum longus -- EDL) and red muscle (soleus -- SOL) of normal rats and rats with alloxan diabetes by the anthrone method. The amount of glycogen was higher in the white muscle of normal rats, both after a 24 hours' fast (0.37+/-0.02 mg/g as against 0.29+/-0.01 mg/g in the SOL) and with feeding ad libitium (0.72+/-0.05 mg/g as against 0.58+/-0.03 mg/g in the SOL). After a 24 hours' fast, the glycogen content of both muscles was non-significantly higher in alloxan-diabetic rats than in normal animals, whereas in diabetic animals fed ad libitum it was significantly lower than in normal rats fed in the same manner (0.54+/-0.07 mg/g in the EDL and 0.33+/-0.03 mg/g in the SOL). The difference between the glycogen content of the white and red muscle of diabetic rats was also in favour of the white muscle. Muscle glycogenesis from intragastrically administered glucose was higher in the red muscle in all the experimental groups. In normal fed ad libitum the glycogen content of the EDL did not change after glucose administration, but in the SOL it rose from 0.58+/-0.03 to 0.83+/-0.05 mg/g. In fasting (24 hours) normal rats it rose sharply in both muscles, from 0.037+/-0.02 to 0.57+/-0.03 mg/g in the EDL and from 0.29+/-0.01 to 0.87+/-0.06 mg/g in the SOL. In fasting (24 hours) diabetic animals, the glycogen content rose after glucose in the SOL only, from 0.36+/-0.01 to 0.66+/-0.06 mg/g. The differences found in glycogen synthesis in the white and red muscle of normal and diabetic rats are discussed mainly from the aspect of the existence of a relationship between the glycogen concentration and glycogen synthetase activity.  相似文献   

17.
OBJECTIVE: To evaluate the inter-patient and intra-patient reproducibility of the glycemic response to a mixed meal in individuals with type 2 diabetes mellitus (DM). SUBJECTS/SETTING: Six individuals with DM were admitted to the General Clinical Research Center for 6 days. INTERVENTION: Subjects consumed 3 different meal plans consisting of 4 meals daily (breakfast, lunch, dinner and snack) on 2 separate occasions. Serum insulin and glucose levels were sampled at 19 time points every day. The glycemic response (GR) to a meal was calculated as the area under the glucose response curve after consumption of a given meal. In addition, the incremental area under the curve (IGR) was calculated assuming a pre-prandial (baseline) glucose value before each meal as zero. RESULTS: Intra-patient correlation coefficients (R) of GR for meals in subjects with DM were quite good, ranging 0.69-0.94. The range of the inter-patient coefficients of variation (CV) for the same meals was 21.5-30.4%. For IGR, the R values ranged from 0.64 to 0.91 for 8 out of 12 meals, confirming good intra-patient reproducibility for these meals. CV for IGR ranged from 31% to 113%. CONCLUSIONS: For patients with DM, the GR of individual meals exhibits excellent intra-patient reproducibility, allowing prediction of the glycemic response to a given meal in an individual subject. However, significant inter-patient variability of the GR precludes its use for the prediction of post-prandial glucose concentrations in groups of patients with diabetes.  相似文献   

18.
19.

Background

A key feature of metabolic health is the ability to adapt upon dietary perturbations. Recently, it was shown that metabolic challenge tests in combination with the new generation biomarkers allow the simultaneous quantification of major metabolic health processes. Currently, applied challenge tests are largely non-standardized. A systematic review defined an optimal nutritional challenge test, the “PhenFlex test” (PFT). This study aimed to prove that PFT modulates all relevant processes governing metabolic health thereby allowing to distinguish subjects with different metabolic health status. Therefore, 20 healthy and 20 type 2 diabetic (T2D) male subjects were challenged both by PFT and oral glucose tolerance test (OGTT). During the 8-h response time course, 132 parameters were quantified that report on 26 metabolic processes distributed over 7 organs (gut, liver, adipose, pancreas, vasculature, muscle, kidney) and systemic stress.

Results

In healthy subjects, 110 of the 132 parameters showed a time course response. Patients with T2D showed 18 parameters to be significantly different after overnight fasting compared to healthy subjects, while 58 parameters were different in the post-challenge time course after the PFT. This demonstrates the added value of PFT in distinguishing subjects with different health status. The OGTT and PFT response was highly comparable for glucose metabolism as identical amounts of glucose were present in both challenge tests. Yet the PFT reports on additional processes, including vasculature, systemic stress, and metabolic flexibility.

Conclusion

The PFT enables the quantification of all relevant metabolic processes involved in maintaining or regaining homeostasis of metabolic health. Studying both healthy subjects and subjects with impaired metabolic health showed that the PFT revealed new processes laying underneath health. This study provides the first evidence towards adopting the PFT as gold standard in nutrition research.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号