首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Collapse of interlayer spaces of soil clay minerals can by caused by ammonium cation in concentrations as low as 10(-3) mol/l. The collapse leads to substantial decrease in the soil ability to fix 137Cs. This effect is reversible and the soil fixation ability recovers after the ammonium concentration decrease.  相似文献   

2.
在自行建立的人工海洋小生境中,采用示踪法综合地研究~(137)Cs、~(134)Cs在人工小生境中的行为。结果表明,~(137)Cs和~(134)Cs具有共同的生理生态行为,并表现出相似的规律、沉积物对~(137)Cs、~(134)Cs的吸附能力甚低,~(137)Cs、~(134)Cs在海洋动物体内趋于全身性的分布。各主要生化物质均能检出~(137)Cs、~(134)Cs。排泄实验后,海洋动物的胃肠、肝(消化腺)~(137)Cs、~(134)Cs损失显著。沉积物表现为解吸-重吸附的过程。  相似文献   

3.
The redistribution of soil water by tree root systems   总被引:29,自引:0,他引:29  
Plant roots transfer water between soil layers of different water potential thereby significantly affecting the distribution and availability of water in the soil profile. We used a modification of the heat pulse method to measure sap flow in roots of Grevillea robusta and Eucalyptus camaldulensis and demonstrated a redistribution of soil water from deeper in the profile to dry surface horizons by the root system. This phenomenon, termed “hydraulic lift” has been reported previously. However, we also demonstrated that after the surface soils were rewetted at the break of season, water was transported by roots from the surface to deeper soil horizons – the reverse of the “hydraulic lift” behaviour described for other woody species. We suggest that “hydraulic redistribution” of water in tree roots is significant in maintaining root viability, facilitating root growth in dry soils and modifying resource availability. Received: 26 January 1998 / Accepted: 15 April 1998  相似文献   

4.
The present-day levels of 137Cs global fallout in frozen soils of the tundra and taiga zones of Yakutia are analyzed in the paper. Patterns of radionuclide migration in different types of zonal soils have been considered. Influence of the frozen forms of micro- and mesorelief over redistribution of 137Cs in soils is investigated. Mean velocities of vertical 137Cs migration in the main types of the frozen soils have been determined. We have found that mean velocity of 137Cs vertical migration in soil profiles depends on water condition and texture of soils.  相似文献   

5.
Summary The Cs-134/137 activities were measured from different tree organs of spruce, larch and sycamore maple. Two locations in South Bavaria were monitored during a period of 2.5 years following the Chernobyl accident. Samples taken in 1985 allow to determine the Cs-137 contamination before the accident. Increasing Cs-137 activities from older to younger needle years ofPicea abies caused by root-uptake of the global weapons' fallout are due to the high phloem mobility of this element and the remaining of the needles at the tree for about 6–7 years. In contrast, the Cs-137 activity was much smaller in leaves of larch and sycamore maple. After the Chernobyl accident, the higher contamination of spruce > larch > sycamore maple is dependent on the roughness of bark, absolute bark surface and the existence of leaves during the deposition of Chernobyl-derived radioactivity. The Cs-134/137 activity (Bq/kg d.w.) was about 25-times higher in bark compared to wood ofPicea abies and 1.5–4.7 times higher in directly contaminated twig-axes than in leaves. Till the end of the investigation the major contamination of the shoots was due to direct deposition of cesium on the trees. A maximum of 5–15% of the total activity of the directly contaminated branches of the plants was calculated to be part of root-uptake, depending on the amount of initial retention. 20% of the translocated cesium into new leaves of larch and about 50% into sycamore maple resulted from root-uptake 2.5 years after the accident.  相似文献   

6.
7.
Influence of soil gas contamination on tree root growth   总被引:1,自引:0,他引:1  
Summary Rooted-cuttings and saplings of green ash (Fraxinus lanceolata) and hybrid poplar (Populus spp) were planted on a former municipal refuse landfill and on a nearby nonlandfill control plot. The root systems of four trees of each species and size were excavated on the landfill plot-two growing in an area where the concentrations of anaerobic landfill gases were relatively high and two in a relatively low-gas area. Two trees of each species and size were also excavated on the control. The root systems of both species were significantly shallower on the landfill plot than on the control. Green ash appeared to avoid the adverse gas environment of the deeper soil layers on the landfill by producing adventitious roots. Hybrid poplar became adapted in a different manner, by redirecting root growth from the deepter soil layers to the soil surface.  相似文献   

8.
Water uptake by plant roots is a main process controlling water balance in field profiles and vital for agro-ecosystem management. Based on the sap flow measurements for maize plants (Zea mays L.) in a field under natural wet- and dry-soil conditions, we studied the effect of vertical root distribution on root water uptake and the resulted changes of profile soil water. The observations indicate that depth of the most densely rooted soil layer was more important than the maximum rooting depth for increasing the ability of plants to cope with the shortage of water. Occurrence of the most densely rooted layer at or below 30-cm soil depth was very conducive to maintaining plant water supply under the dry-soil conditions. In the soil layers colonized most densely by roots, daytime effective soil water saturation (S e) always dropped dramatically due to the high-efficient local water depletion. Restriction of the rooting depth markedly increased the difference of S e between the individual soil layers particularly under the dry-soil conditions due likely to the physical non-equilibrium of water flow between the layers. This study highlights the importance of root distribution and pattern in regulating soil water use and thereby improving endurance of plants to seasonal droughts for sustainable agricultural productivity.  相似文献   

9.
The soil-potato transfer factor for 137Cs (TF) was estimated by using results of 137Cs activity concentration measurements in 214 samples of soil and potato taken at fields with various level of contamination with 137Cs. The relationships between the coefficient TF and soil characteristics (acidity pH (KCl), content of K2O, P2O5, CaO and MgO in soil) and soil contamination with 137Cs have been analysed. The results show that the TF values tend to decrease with increasing concentration of 137Cs, K2O, P2O5, and CaO in considered sod-podsolic sandyloam soil. The regression function describing the TF dependence of 137Cs, K2O, P2O5, and CaO content in soil has been derived.  相似文献   

10.
Understanding the mechanism of tree anchorage in a forest is a priority because of the increase in wind storms in recent years and their projected recurrence as a consequence of global warming. To characterize anchorage mechanisms during tree uprooting, we developed a generic finite element model where real three-dimensional (3D) root system architectures were represented in a 3D soil. The model was used to simulate tree overturning during wind loading, and results compared with real data from two poplar species (Populus trichocarpa and P. deltoides). These trees were winched sideways until failure, and uprooting force and root architecture measured. The uprooting force was higher for P. deltoides than P. trichocarpa, probably due to its higher root volume and thicker lateral roots. Results from the model showed that soil type influences failure modes. In frictional soils, e.g., sandy soils, plastic failure of the soil occurred mainly on the windward side of the tree. In cohesive soils, e.g., clay soils, a more symmetrical slip surface was formed. Root systems were more resistant to uprooting in cohesive soil than in frictional soil. Applications of this generic model include virtual uprooting experiments, where each component of anchorage can be tested individually.  相似文献   

11.
通过室内培养试验,研究了不同温度(9 ℃、14 ℃、24 ℃和28 ℃)条件下桤木、杉木和火力楠细根分解对土壤活性有机碳的影响.结果表明,不同树种细根的分解率不同,树种间差异显著,大小依次为火力楠>桤木>杉木.细根分解率随着培养温度的增加而增大,随着培养时间的延长而降低.添加细根的种类、培养温度和培养时间均对实验系统中土壤微生物碳和水溶性有机碳的含量产生影响.3个树种细根分解使土壤微生物碳和水溶性有机碳含量显著高于对照,大小依次为火力楠>桤木>杉木>对照; 培养中期以及中等培养温度条件下细根分解对应着较高的土壤微生物碳和水溶性有机碳含量.细根分解对土壤易氧化碳含量无显著影响.  相似文献   

12.
Phylogenetic trees can be rooted by a number of criteria. Here, we introduce a Bayesian method for inferring the root of a phylogenetic tree by using one of several criteria: the outgroup, molecular clock, and nonreversible model of DNA substitution. We perform simulation analyses to examine the relative ability of these three criteria to correctly identify the root of the tree. The outgroup and molecular clock criteria were best able to identify the root of the tree, whereas the nonreversible model was able to identify the root only when the substitution process was highly nonreversible. We also examined the performance of the criteria for a tree of four species for which the topology and root position are well supported. Results of the analyses of these data are consistent with the simulation results.  相似文献   

13.
Basic features of seasonal and multiyear dynamics of accumulation of Chernobyl-derived 137Cs and 90Sr in wood are considered. Seasonal variation in the radionuclide concentration are shown to be more regular and predictable than the multiyear variation. Seasonal dynamics of 137Cs is opposite by trend to that of 90Sr. The multiyear dynamics of both 137Cs and 90Sr in the wood is variable and depends on chemical nature of individual radionuclide, type of landscape, kinetics of the radionuclide plant-available forms, and irreversible fixation of the radionuclides in the root-abundant soil layer.  相似文献   

14.
Summary The137Cs content of 118 species (668 samples) of higher fungi collected in the period from August 1984 to October 1989 at three different locations in Styria, Austria, was determined by gamma-spectrometry. The Cs-content of most mushrooms has been increasing since September 1986. In order to find out which factors determine the137Cs-contamination of mushrooms and the transfer-value soil to mushroom, the concentration of total and plant-available radiocesium in soils as well as the pH-value, the content of humus, clay, silt, sand, exchangeable cations, the composition of the clay minerals, and the particle size distribution of the soils of two different locations were examined. The higher the137Cs contamination of the soil, the thicker the layer of humus and the higher the content of humus, the lower the pH-value, and the lower the amount of essential cations, especially of K+, the higher the amount of137Cs plant-available will be. Therefore, the contamination of the mushrooms in the coniferous forest of Koralpenblick (1000 m) is higher than in the mixed forest at the Rosenberg around Graz at approx. 500 m height. Of 26 different species of mushrooms measured at both sites, only 61% show the highest TF-values soil to mushrooms also at the Koralpenblick. In the spruce forest at Koralpenblick there are many species of mushrooms with high137Cs-contamination which were not found at the Rosenberg. However, the properties of the species to which a mushroom belongs are more important than environmental conditions and soil properties. The transfer values of40K stay within narrow bounds, whereas those of137Cs differ widely.Dedicated to Prof. Dr. Otto Härtel on the occasion of his 80th birthday  相似文献   

15.
植物根孔在土壤生态系统中的功能   总被引:31,自引:4,他引:31  
王大力  尹澄清 《生态学报》2000,20(5):869-874
综合论述了植物根孔的概念,在土壤中的形成、分布以及生态功能。指出植物根孔是土壤大孔隙研究中的重要部分,是一个由植物根系、土壤、土壤微生物、水、空气等组成的“多介质界面”,众多的土壤生物过程在此发生,它在土壤水分、溶质传输以及环境污染物的迁移和转化等过程中具有重要意义。特别是在湿地生态系统中,发达的地下根孔系统为利用人工湿地系统净化污水、处理污泥等工程提供良好的污染物吸附转化界面以及“微生物消化池”  相似文献   

16.
The root zone dynamics of water uptake by a mature apple tree   总被引:14,自引:0,他引:14  
We report the results from a field experiment in which we examined the spatial and temporal patterns of water uptake by a mature apple tree (Malus domestica Borkh., ‘Splendour’) in an orchard. Time Domain Reflectometry (TDR) was used to measure changes in the soil's volumetric water content, and heat-pulse was used to monitor locally the rates of sap flow in the trunk and roots of the tree. We also measured the tree's distribution of root-length density and obtained supporting data to characterize the soil's hydraulic properties. The experimental data were used to examine the output of the WAVE-model (Vanclooster et al, 1995; Ecol. Model. 81, 183–185) in which soil water transport is predicted using Richards' equation, and where root uptake is represented by a distributed macroscopic sink term. When the surface soil layers were uniformly wet, 70% of the trees water uptake occurred in the top 0.4 m of the root zone, in which approximately 70% of the tree's fine roots were located. When a partial irrigation was applied to just one side of the root zone, the apple tree quickly shifted its pattern of water uptake with an almost two-fold increase in uptake from the wetter soil parts and a corresponding reduction in uptake from the drier parts. The response of root-sap flow to irrigation was almost immediate (i.e. root flow increased within hours of the irrigation). Following subsequent irrigations over the whole soil surface, TDR measurements revealed a surface-ward shift in the pattern of water extraction, and root flow measurements revealed a recovery in the uptake function of seemingly inactive roots located in the previously-dry soil. Via our root sap flow measurements, we observed two roots on the same tree locally responding quite differently to similar events of soil wetting. This observation suggests that there may be considerable functional variability across the apple root system. Our measurement-model calculations yielded similar results and stress the prime role played by the plant in modifying the root zone balance of water. Following an irrigation or rainfall event, root uptake by apple appears to be more dependent upon the near-surface availability of water than it is related to the distribution of fine roots.  相似文献   

17.
The range of researches was made on 137Cs and 90Sr distribution regularities in pine tree plantations depending on different edaphic conditions. It is shown that total radionuclide amount in the forest litter depends on its thickness and is thought to be 10 to 70% for 137Cs and 20 to 60% for 90Sr. When soil fertility come increases from trophotop "A" to "C", 137Cs and 90Sr transfer factors for wood reduce. Soil humidity increase for each grade of trophic net results in increase of 137Cs transfer factors to wood and decrease for 90Sr. Total activity of 37Cs and 90Sr in pine wood plantation depends on plantation productivity and radionuclide transfer factors depending on different plantation conditions. In the most prevailing edaphotops pine wood accumulates 1-3% of 137Cs and 6-11% of 90Sr from total activity of radionuclides in biogeocenosis.  相似文献   

18.

Background and Aims

As part of a study on growth of tree roots in hostile soil, we envisaged that establishment and survival of trees on hard, dry soil may depend on their ability to exert axial root growth pressures of similar magnitude to those of the roots of agricultural plants (with significant root thickening when roots grow across an air gap or cracks and biopores). We selected tree species originating from a range of different soil and climatic conditions to evaluate whether their relative success on harsh soil (in an evolutionary sense) might be related to the magnitude of root growth pressures they could exert, or how they performed in the very early stages of growth after germination.

Methods

We measured the maximum axial root growth force (Fmax) on single lateral root axes of 3- to 4- month old seedlings of 6 small-seeded eucalypts from 2 different habitats and 2 contrasting soil types. Root growth rate, root diameter and Fmax were also measured on the primary root axes of a large-seeded acacia and a domesticated annual (Pisum sativum) seedling for up to 10 days following germination.

Results

The lateral roots of the 6 eucalypts and the primary roots of the acacia were considerably smaller than the primary roots of P. sativum and they exerted average forces of similar magnitude to one another (0.198 to 0.312 N). The maximum axial root growth pressures were all in the range 150 to 250 kPa but E. leucoxylon, E. loxophleba and A. salicina exerted the greatest pressures among the trees, and comparable pressures to those exerted by the primary roots of 2-day-old P. sativum (211-252 kPa). Although the primary roots of acacia seedlings exerted increasing axial root growth pressures over a 10-day period following germination, the pressures were still only slightly greater than those of the domesticated plant, P. sativum.

Conclusions

The lack of any very large differences in axial root growth pressures between trees and domesticated plants suggests that trees that grow well in harsh soil don’t do so by exerting higher root growth pressures alone but by also exploring the network of cracks and pores more effectively than do other plants that are less successful.  相似文献   

19.
Bardgett  Denton  & Cook 《Ecology letters》1999,2(6):357-360
Extremely little is known about the ecosystem-level implications of below-ground herbivory, which often represents the dominant form of consumption of primary productivity. We provide the first empirical evidence that low levels of below-ground herbivory may promote soil nutrient flux and root growth of both host plants and companion plants. Low levels of white clover ( Trifolium repens L.) root infection by clover cyst nematodes ( Heterodera trifolii Goffart) increased root growth by 141% and 219% in the host plant and the uninfected neighbouring grass ( Lolium perenne L.), respectively. Root infection increased the size of the soil microbial biomass in the root zone and the transfer of 15N from the host plant to soil and the neighbouring grass. These data suggest that low amounts of below-ground herbivory may increase the transfer of plant carbon and nitrogen below-ground, leading to increases in root growth and soil nutrient recycling in grasslands. Presumably, such interactions will influence the competitive interactions between plant species, altering plant community structure in grasslands.  相似文献   

20.
Erkki Aura 《Plant and Soil》1996,186(2):237-243
The assumption of uniform water flow to the root or uniform water potential at the root surface was shown by Hainsworth and Aylmore (1986, 1989) to be erroneous. The present paper demonstrates how the non-uniform uptake of water by a single root can be modeled. Differential equations are numerically solved to describe simultaneous water movement in the plant and in the soil. In the plant, boundary conditions are the water potentials at the root surface (Ψs) and in the xylem at the root base (Ψb). A set of difference equations describe the flow of water radially through the cortex to the xylem and in the xylem axially upwards to the base. For calculating the water flow in the soil and the values of Ψs, i.e. the boundary conditions for flow in the root, the finite element method (FEM) is used, the boundary conditions being the flux of water into the plant root and the zero flow across the wall, bottom and surface of a hypothetical soil cylinder surrounding the root. ei]Section editor: B E Clothier  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号