首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K Kuwajima  Y Ogawa  S Sugai 《Biochemistry》1979,18(5):878-882
A stopped-flow technique has been developed for the zero-time spectrophotometric titration of tyrosine residues in the purely native or in the purely alkaline denatured state of alpha-lactalbumin that undergoes an alkaline conformational transition in the pH region of tyrosine ionization. The progressive absorption change at 298 nm caused by a pH jump from neutral pH is shown to result from the change in ionization of the tyrosine residues brought about by a first-order process of the conformational transition. Extrapolation to zero time gives the titration curve for purely native alpha-lactalbumin. Similarly, the pH jump from highly alkaline pH gives the titration curve for the purely alkaline denatured protein. The method should be generally applicable to other proteins that contain tyrosines. Analysis of the titration curves suggests that the four tyrosines in native alpha-lactalbumin have pK values of 10.5, 11.8, 11.8, and 12.7, respectively. After the alkaline transconformation, all of them become titrated normally with a pK value of 10.3. A comparison of these results with the ionization behavior of tyrosines in hen egg white and human lysozymes is presented and discussed in terms of differences in the sequences of the proteins.  相似文献   

2.
At pH 7.0 the alkaline mesentericopeptidase has ultraviolet absorption spectrum with a minimum at 251 nm and a maximum at 280 nm and no visible absorption. From the tyrosine to tryptophan ratio a value of 3 tryptophyl residues per mole of protein is obtained. The molar extinction coefficient at 280 nm is 3.55 X 10(4)M-1cm-1. Spectrophotometric titration studies show that the molecule of mesentericopeptidase contains seven phenolic groups with a pKapp - 9.92 and four to five groups with a pKapp = 11.96. Denaturing agents, such as 5 M guanidine hydrochloride or alkali, normalize the ionization of the tyrosyl residues. There is a good correlation between the spectrophotometric titration data and the results for the reactivities of the tyrosines in mesentericopeptidase towards tetranitromethane. The correlation is explained by the mechanism of nitration. Conclusions about the state of the tyrosyl residues and the three-dimensional structure of mesentericopeptidase are made.  相似文献   

3.
The reaction of hemoglobin with N-acetyl imidazole at neutral pH indicated that in carboxyhemoglobin 1.80 residues per heme were acetylated while in deoxyhemoglobin only 1.15 residues were available to the reagent. The reversible titration of these residues in alkali was followed by difference spectrophotometry at 245 nm. Hill plots of the titration data, assuming 2 residues titrable per heme an3 Δε = 10500 per tyrosyi residue upon ionization, showed a slope of 1.5 and a pH near 11. The average pK of these groups in carboxyhemoglobin was previously found to be near 10.5. Also. by difference spectrophotometry it was shown that exposure of deoxyhemoglobin to alkaline pH was accompanied by a modification of the Soret region of the absorption spectrum, which might indicate the appearance of liganded conformation in the deoxyhemoglobin system. The sedimentation velocity of deoxyhemoglobin demonstrated that at alkaline pH dissociation into duners occurred at pH's lower than 10, where no ionization of tyrosines was detectable. The titration of tyrosines was independent from protein concentration.The low availability of tyrosyl residues to acetylation in deoxyhemoglobin, the cooperativity of proton binling of these residues and the change in conformation of hemoglobin concomitant with their titration are all consistent with results of Simon et al., Moffat, and Moffat et al., and with the model proposed by Perutz for explaining the heme-heme interaction. The free energy of the pK shift of the tyrosyl residues in carboxy and deoxyhemoglobin can be included in the free energy of the heme-heme interaction.  相似文献   

4.
Spectrophotometric titration of human serum albumin indicates that ionization of the 18 tyrosine residues takes place between pH 9 and 12.7. A Hill plot indicates that protons dissociate co-operatively from tyrosine residues, in pure albumin between pH 11.0 and 11.4 with a Hill coefficient 1.7, and in the bilirubin-albumin complex between pH 11.2 and 11.7 with a Hill coefficient 1.6. With a stopped-flow technique it is shown that about seven of the tyrosines ionize fast, with rate constants well above 10(2) s-1, when pH is suddenly changed from near neutral to pH 11.76. Further residues ionize slowly, with rate constants around 10(2) s-1 or less. The N-form of albumin (pH 6) contains one more fast ionizing tyrosine than the B-form of albumin (pH 10). Binding of bilirubin or laurate to the albumin molecule (molar ratio 1:1) transforms one to three of the fast ionizing tyrosines to slowly ionizing.  相似文献   

5.
Phenolic titration of ovalbumin was performed in the pH range 7-12 at 30 degrees C and at three ionic strengths viz. 0.033, 0.133 and 0.200. The conformational integrity of ovalbumin was studied by viscosity measurements at different pH values in the pH range 7-12.4. At ionic strength 0.133 two phenolic groups titrated reversibly with pKint = 10.31, and w = 0.032 up to pH 11.25 under native conditions. The value of w expectedly decreased with increase in ionic strength. Two additional phenolic groups became available for reversible titration between pH 11.25 and 11.95 after some conformational change. Above pH 12, the phenolic titration became irreversible and all of the nine tyrosine residues were titrated at pH 13.3 Exposure of ovalbumin to alkaline pH (12.4) caused considerable disruption of the native protein conformation. The reduced viscosity increased from 4.2 ml/g at pH 7.0 to 16.8 ml/g at pH 12.4 under identical conditions of the protein concentration. All of the nine tyrosyl groups of ovalbumin were titrated normally (pKint = 9.9) in a mixture of 5 M guanidine hydrochloride and 1.2 M urea. However, even in this mixture electrostatic interaction, as measured by w was not completely abolished.  相似文献   

6.
The effect of pH on the circular dichroism spectra of phenylmethanesulfonyl-mesentericopeptidase (peptidyl peptide hydrolase, EC 3.4.21) was studied. The ellipticity of the bands below 250 nm, which reflects the backbone conformation of the protein molecule, remains almost unchanged in the pH range 6.2--10.4. However, below pH 6.2 and above pH 10.4 a conformational transition occurs. The pH-dependent changes above 250 nm were also studied. The titration of the CD band at 296 nm reflects the ionization of the "exposed" tyrosines, which phenolic groups are fully accessible to the solvent. An apparent pK of 9.9 is calculated from the titration curve. It is concluded that ionization of the tyrosyl residues with normal pK's is complete before conformational changes in the protein molecule occur.  相似文献   

7.
An ultraviolet absorption difference spectrum that is typical of a change in ionization state (pKa 9.7 leads to greater than 11.5) of a tyrosyl residue has been observed on the binding between Streptomyces subtilisin inhibitor (SSI) and subtilisin BPN' [EC 3.4.21.14] at alkaline pH, ionic strength 0.1 M, at 25 degrees C (Inouye, K., Tonomura, B., and Hiromi, K., submitted). When the complex of SSI and subtilisin BPN' is formed at an ionic strength of 0.6 M and pH 9.70, the characteristic features of the protonation of a tyrosyl residue in the difference spectrum are diminished. These results suggest that the pKa-shift of a tyrosyl residue observed at alkaline pH and lower ionic strength results from an electrostatic interaction. Nitration of tyrosyl residues of SSI and of subtilisin BPN' was performed with tetranitromethane (TNM). By measurements of the difference spectra observed on the binding of the tyrosyl-residue-nitrated SSI and the native subtilisin BPN', and on the binding of the native SSI and the tyrosyl-residue-nitrated subtilisin BPN' and alkaline pH, the tyrosyl residue in question was shown to be one out of the five tyrosyl residues of pKa 9.7 of the enzyme. This tyrosyl residue was probably either Tyr 217 or Tyr 104 on the basis of the reactivities of tyrosyl residues of the enzyme with TNM and their locations on the enzyme molecule. Carboxyl groups of SSI were modified by covalently binding glycine methyl ester with the aid of water-soluble carbodiimide, in order to neutralize the negative charges on SSI. In the difference spectrum which was observed on the binding of subtilisin BPN' and the 5.3-carboxyl-group-modified SSI at alkaline pH, the characteristic features of the protonation of a tyrosyl residue were essentially lost, and the difference spectrum is rather similar to that observed on the binding of the native SSI and the enzyme at neutral pH. This phenomenon indicates that the pKa of a tyrosyl residue of the enzyme is shifted upwards by interaction with carboxyl group(s) of SSI on the formation of the enzyme-inhibitor complex.  相似文献   

8.
The ionization of tyrosine residues in diazotized pepsin under various solvent conditions was studied. All tyrosyl residues of the protein titrated normally with a pK of 10.02 in 6 M guanidine hydrochloride solution. On the other hand, two stages in the phenolic group titration curve were observed for the inactivated protein in the absence of guanidine hydrochloride; only about 10 tyrosine residues ionized reversibly up to pH 11, above which titration was irreversible. The irreversible titration zone corresponds to the pH range 11--13 in which unfolding, leading to the random coil state, was shown to occur by circular dichroism and viscosity measurements. The number of tyrosine residues exposed in the native and alkali-denatured (pH 7.5) states of diazotized protein were also studied by solvent perturbation techniques; 10 and 12 groups are exposed in the native and denatured states, respectively.  相似文献   

9.
Ultraviolet difference spectroscopy has been used to study the binding of the transition state analog saccharo-1,4-lactone to purified rat preputial gland beta-glucuronidase. At pH 4.5 (the pH optimum), the inhibitor induces a difference spectrum indicative of a change in the environment of tryptophyl residues. Based on the magnitude of the induced difference spectrum as a quantitative measure of inhibitor binding, a titration curve for saccharo-1,4-lactone was obtained. A Scatchard plot of the titration data indicates that 4 molecules of inhibitor bind to the enzyme tetramer at a K-I of 4 times 10-7 M. The inhibitor also induces a similar difference spectrum at pH 7.5, although the binding is considerably weaker at this pH than at pH 4.5. When the native enzyme at pH 4.5 is compared with the native enzyme at pH 7.5, a difference spectrum, distinct from that of the binding of saccharo-1,4-lactone, is observed, indicating that the enzyme exists in different conformations at these pH values. The indication that tryptophyl residues are perturbed upon binding of saccharo-1,4-lactone was supported by studies carried out with N-bromosuccinimide. At pH 4.3, this reagent was found to oxidize 6 tryptophyl residues in the native enzyme but only three in the saccharo-1,4-lactone-inhibited enzyme. A spectrophotometric titration of the enzyme indicated that of the 33 tyrosyl residues per subunit, only 5 to 6 ionize at the pK expected for free phenolic groups.  相似文献   

10.
In our earlier communications, we had studied the acid induced unfolding of stem bromelain, glucose oxidase and fetuin [Eur. J. Biochem. 269 (2002) 47; Biochem. Biophys. Res. Comm. 303 (2003) 685; Biochim. Biophys. Acta 1649 (2003) 164] and effect of salts and alcohols on the acid unfolded state of alpha-chymotrypsinogen and stem bromelain [Biochim. Biophy. Acta 1481 (2000) 229; Arch. Biochem. Biophys. 413 (2) (2003) 199]. Here, we report the presence of molten globule like equilibrium intermediate state under alkaline, native and acid conditions in the presence of SDS and butanol. A systematic investigation of sodium dodecyl sulphate and butanol induced conformational alterations in alkaline (U(1)) and acidic (U(2)) unfolded states of horse heart ferricytochrome c was examined by circular dichroism (CD), tryptophan fluorescence and 1-anilino-8-napthalene sulfonate (ANS) binding. The cytochrome c (cyt c) at pH 9 and 2 shows the loss of approximately 61% and 65% helical secondary structure. Addition of increasing concentrations of butanol (0-7.2 M) and sodium dodecyl sulphate (0-5 mM) led to an increase in ellipticity value at 208 and 222 nm, which is the characteristic of formation of alpha-helical structure. Cyt c is a heme protein in which the tryptophan fluorescence is quenched in the native state by resonance energy transfer to the heme group attached to cystines at positions 14 and 17. At alkaline and acidic pH protein shows enhancement in tryptophan fluorescence and quenched ANS fluorescence. Addition of increasing concentration of butanol and SDS to alkaline or acid unfolded state leads to decrease in tryptophan and increase in ANS fluorescence with a blue shift in lambda(max), respectively. In the presence of 7.2 M butanol and 5 mM SDS two different intermediate states I(1) and I(2) were obtained at alkaline and acidic pH, respectively. States I(1) and I(2) have native like secondary structure with disordered side chains (loss of tertiary structure) as predicted from tryptophan fluorescence and high ANS binding. These results altogether imply that the butanol and SDS induced intermediate states at alkaline and acid pH lies between the unfolded and native state. At pH 6, in the presence of 7.2 M butanol or 5 mM SDS leads to the loss of CD bands at 208 and 222 nm with the appearance of trough at 228 nm also with increase in tryptophan and ANS fluorescence in contrast to native protein. This partially unfolded intermediate state obtained represents the folding pathway from native to unfolded structure. To summarize; the 7.2 M butanol and 5 mM SDS stabilizes the intermediate state (I(1) and I(2)) obtained at low and alkaline pH. While the same destabilizes the native structure of protein at pH 6, suggesting a difference in the mechanism of conformational stability.  相似文献   

11.
Upscale titration from pH 2.5 to 11.2 is used as a means for probing solvent accessibility of ionizing groups in zinc-free preparations of native and mutant insulins. Stoichiometry and pK alpha values of ionizing groups in the titration curves are determined by iterative curve fitting. Under denaturing conditions, the titration curve of human insulin is in good agreement with that predicted from the sum of unperturbed titrations of the constituent ionizing groups and yields an apparent isoionic point of 5.3. Under nondenaturing conditions where aggregation and precipitation occur, titrations show that only five out of six carboxylate residues of human insulin ionize in the expected region. Consequently, one carboxylate ionization is masked and the apparent isoionic point located at pH 6.4. Correlation between ionization behavior and patterns of aggregation and solubility is established by titrations of mutant insulins and of dilute native insulin. Titration of an unusually soluble species, B25-Phe----His, shows that precipitation is not responsible for the masked carboxylate ionization of native insulin. Titrations of mutants B13-Glu----Gln and B9-Ser----Asp show that the masked ionization probably originates from monomer-monomer interactions in the insulin dimer. We conclude that the B13-Glu side chain is responsible for the masked carboxylate ionization in aggregated forms of human insulin.  相似文献   

12.
W E Hull  B D Sykes 《Biochemistry》1976,15(7):1535-1546
19F nuclear magnetic resonance (NMR) spectroscopy has been used to study a fully active E. coli fluorotyrosine alkaline phosphatase. The fluorotyrosine resonances provide sensitive probes of the conformational states of the protein. They were used to follow the addition of zinc or cobalt to the apoprotein, and the titration of the protein with inorganic phosphate or the inhibitor 2-hydroxy-5-nitrobenzylphosphonate. The results indicate that 2 molecules of inorganic phosphate per dimer of alkaline phosphatase are required to complete a general conformational change in the protein involving perturbations to the environment of several tyrosines. Spectra of the cobalt enzyme indicate that on specific tyrosine per subunit may be near the metal site. The 19F NMR results, combined with the 31P NMR results in the accompanying paper, lead directly to the conclusion that dissociation of noncovalently bound inorganic phosphate from the enzyme is the rate-limiting process in enzyme catalysis at high pH. The local environment of the individual fluorotyrosines is also discussed.  相似文献   

13.
The conformation of human placental alkaline phosphatase (EC 3.1.3.1) has been studied using the spectroscopic structural probes of pH difference spectroscopy, solvent perturbation difference spectroscopy, and circular dichroism. Of the 37 ± 1 tyrosine residues in placental alkaline phosphatase (PAP), 5 ± 1 residues are observed by pH difference spectroscopy to be “free” and presumed to be located on the surface of the enzyme molecule. The ionization of these 5 “free” tyrosyl groups is not time dependent and is reversible with a pKapp of 10.29. The remaining 32 ± 1 tyrosines are considered “buried” and ionization is observed to be both time dependent and irreversible. Treatment of the enzyme with 4 m guanidine-hydrochloride normalizes all 37 ± 1 tyrosine residues (pKapp = 10.08). The difference pH titration studies thus provide spectrophotometric evidence for a change in molecular conformation of PAP in the pH region of 10.5. Using solvent perturbation difference spectroscopy and circular dichroism, the local environments of tyrosine and tryptophan residues were elucidated for the native enzyme and the enzyme in the presence of ligands that influence catalytic function: inorganic phosphate (competitive inhibitor), l-phenylalanine (uncompetitive inhibitor), d-phenylalanine (noninhibitor). and Mg2+ ion (activator). The spectral observations from these studies led to the following interpretations: (i) the binding of inorganic phosphate, a competitive inhibitor, induces a conformational change in the enzyme that may alter the active site and thereby decrease enzyme catalytic function; (ii) perturbation with l-phenylalanine gives spectral results indicating a conformational change consistent with the postulate that this uncompetitive inhibitor prevents the dissociation of the phosphoryl enzyme intermediate; and (iii) Mg2+ ion causes a slight separation of the enzyme subunits, which could increase accessibility to the active site and, thus, enzyme activity.  相似文献   

14.
The behavior of holo-retinol-binding protein (RBP) from human plasma at alkaline pH was examined by absorption and circular dichroism measurements. Between pH 7.5 and 11.7 the ionization of the phenolic hydroxyl groups is reversible. However, there is a gradual irreversible loss of retinol as the pH is raised. After 4 hours at pH 11.7, 13 percent of retinol is lost from retinol-RBP. Alkaline titration of apo-RBP was time-independent and reversible between pH 7.5 and 11.7. The titration data of the phenolic hydroxyl groups in apo-RBP could be fitted with a single theoretical ionization curve of 8.6 phenolic groups having an apparent pK of 11. Acetylation of retinol-RBP with 10-fold molar excess of N-acetylimidazole over tyrosine resulted in the acetylation of all lysine residues and in the acetylation of 0.9 to 1.3 tyrosyl residues per molecule (out of eight). Acetylation of retinol-RBP, APO-RBP, and retinol-RBP-prealbumin complex with 50-fold molar excess of N-acetylimidazole resulted, again, with all of the lysine residues being acetylated and between 1.8 and 2.8 tyrosyl residues per molecule being acetylated. The acetylation did not affect the interaction between retinol and RBP. However, acetylation disrupted the normal binding between retinol-RBP and prealbumin. Deacetylation of tyrosyl residues with hydroxylamine failed to restore the normal binding of retinol-RBP to prealbumin. This excludes the acetylated tyrosyl-residues from being involved in the binding between the two proteins.  相似文献   

15.
The difference absorption spectra of hen and turkey lysozymes in the alkaline pH region had three maxima at around 245, 292, and 300 nm and had no isosbestic points. The ratio of the extinction difference at 245 nm to that at 295 nm changed with pH. These spectral features are quite different from those observed when only tyrosyl residues are ionized, and it was impossible to determine precisely the pK values of the tyrosyl residues in lysozyme by spectrophotometric titration. A time-dependent spectral change was observed above about pH 12. This is not due to exposure of a buried tyrosyl residue on alkali denaturation. The disulfide bonds and the peptide bonds in the lysozyme molecule were cleaved by alkali above about pH 11. The intrinsic pK value of Tyr 23 of hen lysozyme was determined to be 10.24 (apparent pK 9.8) at 0.1 ionic strength and 25 degrees C from the CD titration data. Comparison of the CD titration of turkey lysozyme with that of hen lysozyme suggested that Tyr 3 and Tyr 23 in turkey lysozyme have apparent pK values of 11.9 and 9.8, respectively.  相似文献   

16.
Ultraviolet difference absorption spectra produced by ethylene glycol were measured for hen lysozyme [EC 3.2.1.17] and bovine chymotrypsinogen. N-Acetyl-L-tryptophanamide and N-acetyl-L-tyrosinamide were employed as model compounds for tryptophyl and tyrosyl residues, respectively, and their ultraviolet difference spectra were also measured as a function of ethylene glycol concentration. By comparison of the slopes of plots of molar difference extinction coefficients (delta epsilon) versus ethylene glycol concentration for the proteins with those of the model compounds at peak positions (291-293 and 284-287 nm) in the difference spectra, the average number of tyrosyl as well as tryptophyl residues in exposed states could be estimated. The results gave 2.7 tryptophyl and 1.9 tyrosyl residues exposed for lysozyme at pH 2.1 and 2.6 tryptophyl and 3.4 tyrosyl residues exposed for chymotrypsinogen at pH 5.4. The somewhat higher tyrosyl exposure of chymotrypsinogen, compared with the findings from spectrophotometric titration and chemical modification, was not unexpected, because delta epsilon285 was larger than delta epsilon292, and the situation is discussed with reference to preferential interaction of ethylene glycol with the tyrosyl residues and/or side chains in the vicinity of the chromophore in the protein. The procedure employed in the present work seems to be suitable for estimation of the average number of exposed tryptophyl and tyrosyl residues in tryptophan-rich proteins. The effects of ethylene glycol on the circular dichroism spectra of lysozyme at pH 2.1 and chymotrypsinogen at pH 5.4 were also investigated. At high ethylene glycol concentrations, both proteins were found to undergo conformational changes in the direction of more ordered structures, presumably more helical for lysozyme and more beta-structured for chymotrypsinogen.  相似文献   

17.
The ionization constants of the tyrosyl groups of chymotrypsinogen and of nitrated-chymotrypsinogen (two tyrosyl residues nitrated) have been determined by difference spectrophotometry. In chymotrypsinogen, two of the four tyrosyl groups ionize without any time dependence. Above pH greater than ca. 12.5, time-dependent spectral changes are seen for 0.7 group equivalent. The data can be fitted to the values of pK1 9.75 ± 0.07, pK2 11.55 ± 0.05, pK3 13.30 ± 0.05. In nitrated-chymotrypsinogen, the two nitrated tyrosyl residues have pK1 6.44 and pK2 8.30. For both proteins, these pK′ values are in agreement with those evaluated from potentiometric titration and calorimetric data using computer-assisted curve-fitting analysis.  相似文献   

18.
The relationship between pH-induced conformational changes in iso-2 cytochrome c from Saccharomyces cerevisiae and the guanidine hydrochloride induced unfolding transition has been investigated. Comparison of equilibrium unfolding transitions at acid, neutral, and alkaline pH shows that stability toward guanidine hydrochloride denaturation is decreased at low pH but increased at high pH. In the acid range the decrease in stability of the folded protein is correlated with changes in the visible spectrum, which indicate conversion to a high-spin heme state--probably involving the loss of heme ligands. The increase in stability at high pH is correlated with a pH-induced conformational change with an apparent pK near 8. As in the case of homologous cytochromes c, this transition involves the loss of the 695-nm absorbance band with only minor changes in other optical parameters. For the unfolded protein, optical spectroscopy and 1H NMR spectroscopy are consistent with a random coil unfolded state in which amino acid side chains serve as (low-spin) heme ligands at both neutral and alkaline pH. However, the paramagnetic region of the proton NMR spectrum of unfolded iso-2 cytochrome c indicates a change in the (low-spin) heme-ligand complex at high pH. Apparently, the folded and unfolded states of the (inactive) alkaline form differ from the corresponding states of the less stable native protein.  相似文献   

19.
The oxidized state of cytochrome c is a subject of continuous interest, owing to the multitude of conformations which the protein can adopt in solution and on surfaces of artificial and cell membranes. The structural diversity corresponds to a variety of functions in electron transfer, peroxidase and apoptosis processes. In spite of numerous studies, a comprehensive analysis and comparison of native and non-native states of ferricytochrome c has thus far not been achieved. This results in part from the fact that the influence of solvent conditions (i.e., ionic strength, anion concentration, temperature dependence of pH values) on structure, function and equilibrium thermodynamics has not yet been thoroughly assessed. The current study is a first step in this direction, in that it provides the necessary experimental data to compare different non-native states adopted at high temperature and alkaline pH. To this end, we employed visible electronic circular dichroism (ECD) and absorption spectroscopy to probe structural changes of the heme environment in bovine and horse heart ferricytochrome c as a function of temperature between 278 and 363 K at different neutral and alkaline pH values. A careful selection of buffers enabled us to monitor the partial unfolding of the native state at room temperature while avoiding a change to an alkaline state at high temperatures. We found compelling evidence for the existence of a thermodynamic intermediate of the thermal unfolding/folding process, termed III h, which is structurally different from the alkaline states, IV 1 and IV 2, contrary to current belief. At neutral or slightly acidic pH, III h is populated in a temperature region between 320 and 345 K. The unfolded state of the protein becomes populated at higher temperatures. The ECD spectra of the B-bands of bovine and horse heart cytochrome c (pH 7.0) exhibit a pronounced couplet that is maintained below 343 K, before protein unfolding replaces it by a rather strong positive Cotton band. A preliminary vibronic analysis of the B-band profile reveals that the couplet reflects a B-band splitting of 350 cm (-1), which is mostly of electronic origin, due to the internal electric field in the heme cavity. Our results suggest that the conformational transition from the native state, III, into a thermally activated intermediate state, III h, does not substantially affect the internal electric field and causes only moderate rearrangements of the heme pocket, which involves changes, rather than a rupture, of the Fe (3+)-M80 linkage. In the unfolded state, as well as in the alkaline states IV and V, the band splitting is practically eliminated, but the positive Cotton effect observed for the B-band suggests that the proximal environment, encompassing H18 and the two cysteine residues 14 and 17, is most likely still intact and covalently bound to the heme chromophore. Both alkaline states IV and V were found to melt via intermediate states. Unfolded states probed at neutral and alkaline pH can be discriminated, owing to the different intensities of the Cotton bands of the respective B-band transitions. Differences between the ECD intensities of the B-bands of the different unfolded states and alkaline states most likely reflect different degrees of openness of the corresponding heme crevice.  相似文献   

20.
The fluorescence of 1,8-anilinonaphthalene sulfonate (ANS) was enhanced in the presence of ovine lutropin (oLH). Fluorescence titration curves were sigmoidal with 50% saturation between 200 and 500 μm. Exclusion chromatography experiments indicated that the hormone self-associates to form dimers in the presence of excess ANS. By contrast, the isolated a and β subunits of oLH caused a much smaller enhancement of the fluorescence of ANS and did not self-associate in its presence. Dissociation of the intact hormone into its subunits was accompanied by 1) a loss in the ability to enhance ANS fluorescence, 2) the appearance of a negative differential absorption spectrum whose magnitude indicated the increased solvent-exposure of at least two tyrosines, and 3) a loss in conformational rigidity as evidenced by a decrease in polarization (P) of tyrosyl fluorescence from ~0.17 to ~0.13. Similar rates of dissociation were obtained by all three measurements and the first order rate constant at pH 3.6 and 37 °C under conditions of low ionic strength was k = 0.18 min?1; at high ionic strength, e.g., 0.5 m KC1, dissociation was incomplete even after prolonged incubation. Acid-dissociated subunits recombined readily in 0.5 m acetate buffer, pH 5.3, and the recovery of the intrinsic absorption and fluorescence properties as well as the ability to enhance ANS fluorescence ranged between 70 and 90%. Titration of the isolated α and β subunits with acid or GdmCl had little or no effect on P, suggesting that residual secondary or tertiary structure is either absent, very stable, or its disruption does not alter the rigidity of the tyrosyl environment. The relatively high P for oLH-β (0.17) suggests a conformation which is rigid compared with oLH-α (0.13). P for both subunits decreased smoothly with increasing temperature between 20 and 70 °C. By contrast, oLH exhibited a thermal transition near 50 °C characterized by a drop in P from a value near that of β to a value near that of a as the subunits dissociated. Because α has more tyrosines with a higher average quantum yield, its fluorescence would be expected to dominate that of the hormone or of an equimolar mixture of subunits. Thus, most of the conformation changes which accompany dissociation and recombination appear to occur in the α subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号