首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 135 毫秒
1.
2.
The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα+) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells.  相似文献   

3.
H Wakao  N Harada  T Kitamura  A L Mui    A Miyajima 《The EMBO journal》1995,14(11):2527-2535
  相似文献   

4.
This study was designed to investigate the neuroprotective effect of intrinsic and extrinsic erythropoietin (EPO) against hypoxia/ischemia, and determine the optimal time-window with respect to the EPO-induced neuroprotection. Experiments were conducted using primary mixed neuronal/astrocytic cultures and neuron-rich cultures. Hypoxia (2%) induces hypoxia-inducible factor-1alpha (HIF-1alpha) activity followed by strong EPO expression in mixed cultures and weak expression in neuron-rich cultures as documented by both western blot and RT-PCR. Immunoreactive EPO was strongly detected in astrocytes, whereas EPOR was only detected in neurons. Neurons were significantly damaged in neuron-rich cultures but were distinctly rescued in mixed cultures. Application of recombinant human EPO (rhEPO) (0.1 U/mL) within 6 h before or after hypoxia significantly increased neuronal survival compared with no rhEPO treatment. Application of rhEPO after onset of reoxygenation achieved the maximal neuronal protection against ischemia/reperfusion injury (6 h hypoxia followed 24 h reoxygenation). Our results indicate that HIF-1alpha induces EPO gene released by astrocytes and acts as an essential mediator of neuroprotection, prove the protective role of intrinsic astrocytic-neuronal signaling pathway in hypoxic/ischemic injury and demonstrate an optimal therapeutic time-window of extrinsic rhEPO in ischemia/reperfusion injury in vitro. The results point to the potential beneficial effects of HIF-1alpha and EPO for the possible treatment of stroke.  相似文献   

5.
Erythropoietin (EPO) and its receptor (EPOR) are required for development of erythrocytes. It has been shown that the ectopic expression of EPOR confers EPO-dependent proliferation on an interleukin 3 (IL3)-dependent cell line, Ba/F3, whereas the IL2-dependent T cell line, CTLL-2 expressing the EPOR (T-ER), fails to proliferate in response to EPO. However, the molecular basis of the EPO unresponsiveness in CTLL-2 has not been clarified. We found that the expression level of JAK2 in T-ER cells was much lower than that in Ba/F3 cells. Therefore, we examined the effects of forced expression of JAK2 in T-ER cells. In T-ER transformants expressing JAK2 (T-JER), EPO induced tyrosine phosphorylation of the EPOR, JAK2, and STAT5, and consequently STAT5-responsive genes including bcl-X and cis1 were normally induced. Furthermore, T-JER cells were resistant to apoptosis until at least 72 h after switching from IL2 to EPO. Although T-JER cells could not continuously proliferate in the presence of EPO, additional expression of JAK2 in T-JER (T-JJER) to a level similar to that in Ba/F3 cells supported long term proliferation in response to EPO. JAK2 was equally co-immunoprecipitated with the EPOR among T-JER, T-JJER, and Ba/F3 cells expressing the EPOR (BF-ER). However, EPO-dependent mitogen-activated protein (MAP) kinase activation was observed in T-JJER and BF-ER cells but not in T-JER cells. EPO-dependent long term proliferation of T-JER cells was conferred by expression of the constitutively activated form of MEK1. Our results suggest that MAP kinase activation is, at least in part, an important component for mitotic signal from the EPOR, and CTLL-2 cells probably lack signaling molecule(s) in JAK2 and the Ras-MAP kinase pathway.  相似文献   

6.
7.
The cytokine-inducible SH2 protein-3 (CIS3/SOCS-3/SSI-3) has been shown to inhibit the JAK/STAT pathway and act as a negative regulator of fetal liver erythropoiesis. Here, we studied the molecular mechanisms by which CIS3 regulates the erythropoietin (EPO) receptor (EPOR) signaling in erythroid progenitors and Ba/F3 cells expressing the EPOR (BF-ER). CIS3 binds directly to the EPOR as well as JAK2 and inhibits EPO-dependent proliferation and STAT5 activation. We have identified the region containing Tyr(401) in the cytoplasmic domain of the EPOR as a direct binding site for CIS3. Deletion of the Tyr(401) region of the EPOR reduced the inhibitory effect of CIS3, suggesting that binding of CIS3 to the EPOR augmented the negative effect of CIS3. Both N- and C-terminal regions adjacent to the SH2 domain of CIS3 were necessary for binding to EPOR and JAK2. In the N-terminal region of CIS3, the amino acid Gly(45) was critical for binding to the EPOR but not to JAK2, while Leu(22) was critical for binding to JAK2. The mutation of G45A partially reduced ability of CIS3 to inhibit EPO-dependent proliferation and STAT5 activation, while L22D mutant CIS3 was completely unable to suppress EPOR signaling. Moreover, overexpression of STAT5, which also binds to Tyr(401), reduced the binding of CIS3 to the EPOR, and the inhibitory effect of CIS3 against EPO signaling, while it did not affect JAB/SOCS-1/SSI-1. These data demonstrate that binding of CIS3 to the EPOR augments the inhibitory effect of CIS3. CIS3 binding to both EPOR and JAK2 may explain a specific regulatory role of CIS3 in erythropoiesis.  相似文献   

8.
9.
Experimental autoimmune neuritis (EAN), an autoantigen-specific T-cell-mediated disease model for human demyelinating inflammatory disease of the peripheral nervous system, is characterized by self-limitation. Here we investigated the regulation and contribution of erythropoietin (EPO) in EAN self-limitation. In EAN sciatic nerves, hypoxia, and protein and mRNA levels of hypoxia-inducible factor 1α (HIF-1α), HIF-2α, EPO and EPO receptor (EPOR) were induced in parallel at disease peak phase but reduced at recovery periods. Further, the deactivation of HIF reduced EAN-induced EPO/EPOR upregulation in EAN, suggesting the central contribution of HIF to EPO/EPOR induction. The deactivation of EPOR signalling exacerbated EAN progression, implying that endogenous EPO contributed to EAN recovery. Exogenous EPO treatment greatly improved EAN recovery. In addition, EPO was shown to promote Schwann cell survival and myelin production. In EAN, EPO treatment inhibited lymphocyte proliferation and altered helper T cell differentiation by inducing increase of Foxp3+/CD4+ regulatory T cells and decrease of IFN-γ+/CD4+ Th1 cells. Furthermore, EPO inhibited inflammatory macrophage activation and promoted its phagocytic activity. In summary, our data demonstrated that EPO was induced in EAN by HIF and contributed to EAN recovery, and endogenous and exogenous EPO could effectively suppress EAN by attenuating inflammation and exerting direct cell protection, indicating that EPO contributes to the self-recovery of EAN and could be a potent candidate for treatment of autoimmune neuropathies.  相似文献   

10.
11.
According to recent data erythropoietin receptor (EPOR) is expressed not only by bone marrow erythroid progenitors but by endothelial- and cancer cells and it was suggested that erythropoietin (EPO) may affect their functions as well. We have analyzed the effects of recombinant human erythropoietin-alpha (rHuEPOalpha) on radiation sensitivity of EPOR+ human epidermoid carcinoma (A431) xenograft model. In vivo rHuEPOalpha treatment was started after tumor cell inoculation into SCID mice. 5 Gy irradiation was performed on day 14, the effect of which was measured on day 22. Hemoglobin level, tumor-associated microvessels and HIF-1alpha expression of the xenograft were monitored during the experiment. rHuEPOalpha administration prevented the development of tumor-induced anemia of SCID mice and reduced the level of HIF-1alpha expression of the xenograft tumor without affecting tumor growth. We have found that rHuEPOalpha treatment significantly increased the efficacy of antitumor effect of irradiation which was partly mediated by complex effects on tumor-associated microvessels. In vitro rHuEPOalpha did not affect proliferation of A431 cells but enhanced the antiproliferative and proapoptotic effects of irradiation. We concluded that rHuEPOalpha administration positively modulated the antitumoral effects of irradiation at least by two pathways, decreasing systemic hypoxia resulting in decreased tumoral HIF-1alpha expression and enhancing direct effects on tumor-associated microvessels.  相似文献   

12.
Erythropoietin (EPO) and its cell surface receptor (EPOR) are essential for erythropoiesis; can modulate non-erythroid target tissues; and have been reported to affect the progression of certain cancers. Basic studies of EPOR expression and trafficking, however, have been hindered by low-level EPOR occurrence, and the limited specificity of anti-EPOR antibodies. Consequently, these aspects of EPOR biology are not well defined, nor are actions of polycythemia- associated mutated EPOR alleles. Using novel rabbit monoclonal antibodies to intracellular, PY- activated and extracellular EPOR domains, the following properties of the endogenous hEPOR in erythroid progenitors first are unambiguously defined. 1) High- Mr EPOR forms become obviously expressed only when EPO is limited. 2) EPOR-68K plus -70K species sequentially accumulate, and EPOR-70K comprises an apparent cell surface EPOR population. 3) Brefeldin A, N-glycanase and associated analyses point to EPOR-68K as a core-glycosylated intracellular EPOR pool (of modest size). 4) In contrast to recent reports, EPOR inward trafficking is shown (in UT7epo cells, and primary proerythroblasts) to be sharply ligand-dependent. Beyond this, when C-terminal truncated hEPOR-T mutant alleles as harbored by polycythemia patients are co-expressed with the wild-type EPOR in EPO-dependent erythroid progenitors, several specific events become altered. First, EPOR-T alleles are persistently activated upon EPO- challenge, yet are also subject to apparent turn-over (to low-Mr EPOR products). Furthermore, during exponential cell growth EPOR-T species become both over-represented, and hyper-activated. Interestingly, EPOR-T expression also results in an EPO dose-dependent loss of endogenous wild-type EPOR's (and, therefore, a squelching of EPOR C-terminal- mediated negative feedback effects). New knowledge concerning regulated EPOR expression and trafficking therefore is provided, together with new insight into mechanisms via which mutated EPOR-T polycythemia alleles dysregulate the erythron. Notably, specific new tools also are characterized for studies of EPOR expression, activation, action and metabolism.  相似文献   

13.
The cytoplasmic domain of the cloned erythropoietin (EPO) receptor (EPOR) contains no protein kinase motif, yet addition of EPO to EPO-responsive cells causes an increase in protein-tyrosine phosphorylation. Here we show that addition of EPO or interleukin-3 (IL-3) to an IL-3-dependent cell line expressing the wild-type EPOR causes a small fraction (less than 5%) of total cellular EPOR to shift in gel mobility from 66 to 72 kDa, due at least in part to phosphorylation. Using biotinylated EPO as an affinity reagent, we show that the 72-kDa species is greatly enriched on the cell surface. To demonstrate that a protein kinase activity associates with cell surface EPOR, cells were incubated with biotinylated EPO and then cross-linked with a thiol-cleavable chemical cross-linker. The avidin-agarose-selected complexes were incubated with [gamma-32P]ATP. After in vitro phosphorylation and denaturation without reducing agent, both antiphosphotyrosine and anti-EPOR antibodies immunoprecipitated labeled 72-kDa EPOR and an unidentified 130-kDa phosphoprotein (pp130), indicating that a protein kinase is associated with cell surface EPOR and that a fraction of the EPOR was phosphorylated on tyrosine residues either in the cells or during the cell-free phosphorylation reaction. Under reducing conditions, the 72-kDa phosphorylated EPOR but not pp130 was immunoprecipitated with an anti-EPOR antibody, suggesting that the pp130 is bound to the EPOR by the thiol-cleavable chemical cross-linker. Previously, we showed that deletion of the 42 carboxy-terminal amino acids of the EPOR allows cells to grow in 1/10 the normal EPO concentration, without affecting receptor number or affinity. Two carboxy-terminal truncated EPO receptors that are hyperresponsive to EPO were poorly phosphorylated during the in vitro reaction, suggesting that the carboxy-terminal region of the EPOR contains a site for phosphorylation or a site for interaction with a protein kinase. Our data suggests that phosphorylation or interaction with a protein kinase in the carboxy-terminal region may down-modulate the proliferative action of the EPOR.  相似文献   

14.
15.
16.
17.
18.
19.
Bisphenol A (BpA), an endocrine-disrupting chemical, is known to be a xenoestrogen and to affect the reproductive functions of animals. Recent reports have documented BpA-induced developmental abnormalities in the neuronal systems of humans and animals, and these effects appear to be non-estrogenic. In this study, we found that BpA inhibited the hypoxic response of human hepatoma cells. The expression of hypoxic response genes such as the erythropoietin (EPO) gene is done via a hypoxia inducible factor 1 (HIF-1)-dependent signaling pathway. To investigate possible structural requirements for this inhibitory effect, several BpA analogs were synthesized and added to this system. The blocking of two phenol groups in BpA did not change the effect, but the inhibition completely disappeared by the removal of two central methyl groups in BpA (the resulting compound is designated BpF). BpA, but not BpF, promoted degradation of the HIF-1alpha protein, which is a component of HIF-1, followed by inhibition of EPO induction. An immunoprecipitation assay indicated that BpA dissociated heat shock protein 90 (Hsp90) from HIF-1alpha and destabilized HIF-1alpha protein. HIF-1alpha is usually degraded first by ubiquitination and then by the proteasome pathway. Cobalt ion inhibits ubiquitination of HIF-1alpha and stabilizes it. In the present study, BpA promoted HIF-1alpha degradation in the presence of cobalt and in the presence of proteasome inhibitor. These results suggest that BpA degraded HIF-1alpha via a currently unknown pathway, and that this phenomenon required two methyl groups in BpA.  相似文献   

20.
目的:研究促红细胞生成素(erythropoietin, EPO)及其受体(EPOR)在非小性细胞肺癌中的生物学作用。方法:收集27 例非小 性细胞肺癌(NSCLC),免疫组织化学方法检测肺癌组织中EPO 和EPOR的表达;观察人源重组EPO(rhEPO)对HCC15 和 HCC1819 细胞活力和细胞周期的影响;分析缺氧对NSCLC细胞EPO 及EPOR 表达的影响。结果:27例非小细胞肺癌的组织标 本中13 例表达EPO,表达率为48 %,25 例表达EPOR,表达率为92 %。rhEPO明显增加了高表达EPOR 的HCC1819 细胞克隆 数,而对低表达EPOR 的HCC15 细胞的克隆形成没有影响。rhEPO增强了HCC1819 的细胞活力,但以siRNA干涉HCC1819 EPOR后,EPO对HCC1819 细胞活力增强作用消失。rhEPO 明显增加了HCC1819 细胞的细胞周期。缺氧促进了HCC1819 细胞的 EPO 的表达,增强了细胞活力。结论:EPO 和EPOR在非小性细胞肺癌中表达增高,EPO 通过EPOR 促进了NSCLC 细胞的增殖, 缺氧诱导了NSCLC 细胞EPO的表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号