首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P Clouet  C Henninger  J Bezard 《Biochimie》1982,64(10):899-906
In this work, were studied the conditions of erucic acid (cis-docosenoic, n-9) shortening by using Rat liver mitochondrial preparations which were incubated in vitro with [14-14C] erucic acid (22:1), with inhibitors of the respiratory chain (rotenone, cyanide) or not, with activators of either the shortening reaction (NAD+, NADP+), or beta-oxidation (malate, carnitine, cytochrome c) or not. The shortening activity was measured by the amount of 14C radioactivity recovered in the shorter fatty acids formed (20:1, 18:1, 16:1) when beta-oxidation was inhibited. The beta-oxidation activity was measured by the amount of 14C recovered in the acid-soluble products (P A S). The incubations were performed under conditions which were the least favourable to peroxysomal activity. Data showed that, with increasing amounts of albumin, which inhibits peroxysomal activity, increasing amounts of shorter fatty acids (20:1, 18:1, 16:1) were formed from erucic acid. This shortening reaction was strongly stimulated by NAD+, more than by NADP+; it was also stimulated by cytochrome c and much more when both NAD+ and cytochrome c were added. Similar data were observed in beta-oxidation, except that practically NADP+ did not exhibit any stimulating effect. Oxidation of NADH by mitochondria only occurred when cytochrome c was added to the medium and was not modified by the addition of ADP or rotenone. These data show that liver mitochondria are capable of shortening erucic acid, as are peroxysomes. This shortening reaction is highly NAD+-dependent and seems to be localized outside the matrix. This system could constitute a second route for utilization of fatty acids in mitochondria, besides the well-known path of beta-oxidation.  相似文献   

2.
In order to investigate the regulation of polyunsaturated fatty acid oxidation in the heart, the effect of the phosphodiesterase inhibitor enoximone on the oxidation of [1-14C] arachidonic acid, and [1-14C] arachidonyl-CoA, were studied in adult rat myocytes, and isolated rat heart mitochondria. Enoximone stimulated arachidonate oxidation by 94%, at a concentration of 0.25 mM. The apparent Vmax value of arachidonate oxidation in the presence of enoximone (6.98 nmol/mg protein/30 min), was approximately 75% higher than the value observed with the control (4.0 nmol/mg protein/30 min) in isolated myocytes. Also, enoximone stimulated arachidonate uptake by 27% at a concentration of 0.25 mM. On the other hand, enoximone had no effect on the oxidation of [1-14C] arachidonyl-CoA in isolated rat heart mitochondria. These results suggest that the oxidation of polyunsaturated fatty acids in myocytes is regulated by the rate of uptake of these acids across sarcolemmal membranes.  相似文献   

3.
Hearts from 4 week-old weanling pigs were capable of continuous work output when perfused with Krebs-Henseleit buffer containing 11 mM glucose. Perfused hearts metabolized either glucose or fatty acids, but optimum work output was achieved by a combination of glucose plus physiological concentrations (0.1 mM) of either palmitate or erucate. Higher concentrations of free fatty acids increased their rate of oxidation but also resulted in a large accumulation of neutral lipids in the myocardium, as well as a tendency to increased acetylation and acylation of coenzyme A and carnitine. When hearts were perfused with 1 mM fatty acids, the work output declined below control values. Erucic acid is known to be poorly oxidized by isolated rat heart mitochondria and, to a lesser degree, by perfused rat hearts. In addition, it has been reported that erucic acid acts as an uncoupler of oxidative phosphorylation. In isolated perfused pig hearts used in the present study, erucic acid oxidation rates were as high as palmitate oxidation rates. When energy coupling was measured by 31P-NMR, the steady-state levels of ATP and phosphocreatine during erucic acid perfusion did not change noticeably from those during glucose perfusion. It was concluded that the severe decrease in oxidation rates and ATP production resulting from the exposure of isolated pig and heart mitochondria to erucic acid are not replicated in the intact pig heart.  相似文献   

4.
Metabolism of Erucic Acid was studied in rat heart in comparison with that of oleic acid, particularly in relation with diet lipids. Rats were fed for 3 or 60 days a diet containing 30% of the calories of either Rapessed Oil, rich in erucic acid or sunflower seed oil rich in linoleic acid. They were I.V. injected with tritiated erucic or oleic acid. After 1 or 15 min the radioactivity recovered in heart lipids was very low whatever the diet (1 to 2%). One minute after injection of erucic acid the radioactivity was mainly recovered in the free fatty acid fraction and as untransformed erucic acid. After 15 min the major part of radioactivity was recovered in the triacylglycerol fraction which contained a high proportion of labelled oleic acid formed by shortening of erucic acid. When oleic was injected, the radioactivity was principally recovered in triacylglycerols as untransformed oleic acid whatever the experimental conditions. Electron microscopy showed that a much higher proportion of peroxisomes, was present in heart cells, following sunflower seed oil diet as compared to rapeseed oil diet. In all cases mitochondria supported the greater part of radioactivity, especially when erucic acid was injected in rats fed rapeseed oil. After sunflower seed oil, a noticeable radioactivity was observed in peroxisomes, most of them containing silver grains, especially when oleic acid was injected. According to the data reported, peroxisomes do not seem more implicated than mitochondria in the metabolism of erucic acid in myocardium.  相似文献   

5.
14CO2 production is no adequate measure of [14C]fatty acid oxidation   总被引:3,自引:0,他引:3  
Palmitate oxidation was comparatively assayed in various cell-free and cellular systems by 14CO2 production and by the sum of 14CO2 and 14C-labeled acid-soluble products. The 14CO2 production rate was dependent on incubation time and amount of tissue in contrast to the total oxidation rate. The 14CO2 contribution to the oxidation rate of [1-14C]palmitate varied with homogenates from 1% with rat liver to 28% with rat kidney and amounted to only 2-4% with human muscles. With cellular systems the 14CO2 contribution varied between 20% in human fibroblasts and 70% in rat muscles and myocytes. Addition of cofactors increased the oxidation rate, but decreased the 14CO2 contribution. Various conditions appeared also to influence to a different extent the 14CO2 production and the total oxidation rate with rat tissue homogenates and with rat muscle mitochondria. Incorporation of radioactivity from [1-14C]palmitate into protein was not detectable in cell-free systems and only 2-3% of the sum of 14CO2 and 14C-labeled acid-soluble products in cellular systems. Assay of 14CO2 and 14C-labeled acid-soluble products is a much more accurate and sensitive estimation of fatty acid oxidation than assay of only 14CO2.  相似文献   

6.
1. The metabolism of [14-14C]erucate and [U-14C]palmitate has been investigated in perfused heart from rats fed 0.3% clofibrate for 10 days and from control rats. 2. The total uptake of fatty acids in the heart increased in the clofibrate fed group. Clofibrate increased the oxidation of [14-14C]erucic acid by 100% and the oxidation of [U-14C]palmitic acid by 30% compared to controls. 3. The chain-shortening of erucate to C20:1 and C18:1 fatty acids in the perfused heart was stimulated at least two-fold by clofibrate feeding. 4. The activity of the peroxisomal marker enzyme catalase increased 60%, the activity of cytochrome oxidase increased approx. 16% and the content of total coenzyme A increased 30% in heart homogenates from rats fed clofibrate compared to controls. 5. The isolated mitochondrial fraction from clofibrate fed rats showed an increased capacity for oxidation of palmitoylcarnitine and decanoylcarnitine, while the oxidation of erucoylcarnitine showed little change. 6. It is suggested that clofibrate increases the oxidation of [14-14C]erucic acid in the perfused heart by increasing the capacity for chain-shortening of [14-14C]erucate in the peroxisomal beta-oxidation system.  相似文献   

7.
Long-chain alkylthioacetic acids (3-thia fatty acids) inhibit fatty acid synthesis from [1-14C]acetate in isolated hepatocytes, while fatty acid oxidation is nearly unaffected or even stimulated. Desaturation of [1-14C]stearate (delta 9-desaturase) is also unaffected. [1-14C]Dodecylthioacetic acid (a 3-thia fatty acid) is incorporated in triacylglycerol and in phospholipids more efficiently than [1-14C]palmitate in isolated hepatocytes. The metabolism of [1-14C]dodecylthioacetic acid to acid-soluble products (by omega-oxidation) is slow compared to the oxidation of [1-14C]palmitate. In hepatocytes from adapted rats (rats fed tetradecylthioacetic acid for 4 days) the rate of [1-14C]palmitate oxidation is increased and its rate of esterification is decreased. Stearate desaturation is also decreased. The rate of cyanide-insensitive peroxisomal fatty acid beta-oxidation is several-fold increased. The metabolic effects of long-chain 3-thia fatty acids are discussed and it is concluded that they behave essentially like normal fatty acids except for their slow breakdown due to the sulfur atom in the 3 position, which blocks normal beta-oxidation.  相似文献   

8.
Long chain acyl-CoA synthetase (ACSL) catalyzes the initial step in long chain fatty acid metabolism. Of the five mammalian ACSL isoforms cloned and characterized, ACSL5 is the only isoform found to be located, in part, on mitochondria and thus was hypothesized to be involved in fatty acid oxidation. To elucidate the specific roles of ACSL5 in fatty acid metabolism, we used adenoviral-mediated overexpression of ACSL5 (Ad-ACSL5) in rat hepatoma McArdle-RH7777 cells. Confocal microscopy revealed that Ad-ACSL5 colocalized to both mitochondria and endoplasmic reticulum. When compared with cells infected with Ad-GFP, Ad-ACSL5-infected cells at 24 h after infection had 2-fold higher acyl-CoA synthetase activities and 30% higher rates of fatty acid uptake when incubated with 500 microM [1-(14)C]oleic acid. Metabolism of [1-(14)C]oleic acid to cellular triacylglycerol (TAG) increased 42% in Ad-ACSL5-infected cells, but when compared with control cells, metabolism to acid-soluble metabolites, phospholipids, and medium TAG did not differ substantially. The incorporation of [1-(14)C]oleate and [1,2,3-(3)H]glycerol into TAG was similar in Ad-ACSL5-infected cells, thus indicating that Ad-ACSL5 increased TAG synthesis through both de novo and reacylation pathways. However, [1-(14)C]acetic acid incorporation into cellular lipids showed that, when compared with control cells, Ad-ACSL5-infected cells did not increase the metabolism of fatty acids that were derived from de novo synthesis. These results suggest that uptake of fatty acids into cells is regulated by metabolism and that overexpressed ACSL5 partitions exogenously derived fatty acids toward TAG synthesis and storage.  相似文献   

9.
1. The metabolism of [14(-14)C]erucic acid and [U-14C]palmitic acid was studied in perfused hearts from rats fed diets containing hydrogenated marine oil, rapeseed oil or peanut oil for three weeks. 2. [14C]Erucic acid was shortened to [14C]eicosenoic acid (20 : 1, n -- 9) and [14C]oleic acid (18 : 1, n -- 9) in perfused rat hearts from all diet groups. The rapeseed oil diet caused a three-fold increase and the marine oil diet a four-fold increase in the amount of chain-shortened products recovered in heart lipids at the end of perfusion, compared to peanut oil diet. 3. The content of C16:1, C18:1 and C20:1 fatty acids was increased in heart lipids of rats fed hydrogenated marine oil or rapseed oil diet, compared to peanut oil diet. 4. Feeding hydrogenated marine oil or rapeseed oil to the rats induced a 85% increase in catalase activity, a 20% increase in the activity of cytochrome oxidase and a 30--40% increase in the content of total CoA in the heart compared to rats fed peanut oil diet. 5. It is suggested that [14(-14)C]erucic acid is shortened by the beta-oxidation system of peroxisomes in the heart. The increased chain shortening in the hearts from animals fed rapeseed oil or partially hydrogenated marine oil for three weeks may be an important part of an adaptation process.  相似文献   

10.
Parallel incubations with uniformly 14C-labeled oleic and elaidic acids were conducted to compare oxidation rates in tissue homogenates prepared from rat and human hearts. Radioactivity in 14CO2 and 14C-labeled chain-shortened acid-soluble products was used to measure the extent of oxidation. Oxidation rates (pmol/min per mg heart protein) determined on 14C-labeled acid-soluble products suggest that oleic acid was oxidized 35-40% faster than elaidic acid by both male and female rat heart homogenates, whereas human heart homogenates oxidized these fatty acids at equal rates. Rates for female heart homogenates were somewhat higher than those for males in rats and humans. Rates of formation of 14CO2 were the same for each acid in rat and human heart tissue. Comparative rates of formation of oxidation products expressed as oleic/elaidic ratios from parallel incubations confirm that preferential oxidation of oleic acid occurred with rat heart homogenates, but not with the human heart homogenates. These data suggest that the presence of the trans double bond in elaidic acid does not impair its utilization for energy by human heart muscle.  相似文献   

11.
Oxidative decarboxylation and transamination of 1-14C-branched chain amino and alpha-keto acids were examined in mitochondria isolated from rat heart. Transamination was inhibited by aminooxyacetate, but not by L-cycloserine. At equimolar concentrations of alpha-ketoiso[1-14C]valerate (KIV) and isoleucine, transamination was increased by disrupting the mitochondria with detergent which suggests transport may be one factor affecting the rate of transamination. Next, the subcellular distribution of the aminotransferase(s) was determined. Branched chain aminotransferase activity was measured using two concentrations of isoleucine as amino donor and [1-14C]KIV as amino acceptor. The data show that branched chain aminotransferase activity is located exclusively in the mitochondria in rat heart. Metabolism of extramitochondrial branched chain alpha-keto acids was examined using 20 microM [1-14C]KIV and alpha-ketoiso[1-14C]caproate (KIC). There was rapid uptake and oxidation of labeled branched chain alpha-keto acid, and, regardless of the experimental condition, greater than 90% of the labeled keto acid substrate was metabolized during the 20-min incubation. When a branched chain amino acid (200 microM) or glutamate (5 mM) was present, 30-40% of the labeled keto acid was transaminated while the remainder was oxidized. Provision of an alternate amino acceptor in the form of alpha-keto-glutarate (0.5 mM) decreased transamination of the labeled KIV or KIC and increased oxidation. Metabolism of intramitochondrially generated branched chain alpha-keto acids was studied using [1-14C]leucine and [1-14C]valine. Essentially all of the labeled branched chain alpha-keto acid produced by transamination of [1-14C]leucine or [1-14C]valine with a low concentration of unlabeled branched chain alpha-keto acid (20 microM) was oxidized. Further addition of alpha-ketoglutarate resulted in a significant increase in the rate of labeled leucine or valine transamination, but again most of the labeled keto acid product was oxidized. Thus, catabolism of branched chain amino acids will be favored by a high concentration of mitochondrial alpha-ketoglutarate and low intramitochondrial glutamate.  相似文献   

12.
1. The effects of the hypoglycaemic compound, pent-4-enoic acid, and of four structurally related non-hypoglycaemic compounds (pentanoic acid, pent-2-enoic acid, cyclopropanecarboxylic acid and cyclobutanecarboxylic acid), on the oxidation of saturated fatty acids by rat liver mitochondria were determined. 2. The formation of (14)CO(2) from [1-(14)C]palmitate was strongly inhibited by 0.01mm-pent-4-enoic acid. 3. The inhibition of oxygen uptake was less than that of (14)CO(2) formation, presumably because fumarate was used as a sparker. 4. The oxidation of [1-(14)C]-butyrate, -octanoate or -laurate was not strongly inhibited by 0.01mm-pent-4-enoic acid. 5. The other four non-hypoglycaemic compounds did not inhibit the oxidation of any saturated fatty acid when tested at 0.01mm concentration, though they all inhibited strongly at 10mm. 6. The oxidation of [1-(14)C]-myristate and -stearate, but not of [1-(14)C]decanoate, was strongly inhibited by 0.01mm-pent-4-enoic acid. 7. The oxidation of [1-(14)C]palmitate was about 50% carnitine-dependent under the experimental conditions used. 8. The percentage inhibition of [1-(14)C]palmitate oxidation by pent-4-enoic acid was the same whether carnitine was present or not. 9. Acetoacetate formation from saturated fatty acids was inhibited by 0.1mm-cyclopropanecarboxylic acid to a greater extent than their oxidation. 10. The other compounds tested inhibited acetoacetate formation from saturated fatty acids proportionately to the inhibition of oxidation. 11. Possible mechanisms for the inhibition of long-chain fatty acid oxidation by pent-4-enoic acid are discussed. 12. There was a correlation between the ability to inhibit long-chain fatty acid oxidation and hypoglycaemic activity in this series of compounds.  相似文献   

13.
Ruminant products are the major source of CLA for humans. However, during periods of fat mobilization, the liver might play an important role in CLA metabolism which would limit the availability of the latter for muscles and milk. In this context, rumenic acid (cis-9, trans-11 CLA) metabolism in the bovine liver (n = 5) was compared to that of oleic acid (n = 3) by using the in vitro liver slice method. Liver slices were incubated for 17 h in a medium containing 0.75 mM of FA mixture and 55 microM of either [1-(14)C] rumenic acid or [1-(14)C] oleic acid at 37 degrees C under an atmosphere of 95% O(2)-5% CO(2). Rumenic acid uptake by liver slices was twice (P = 0.009) that of oleic acid. Hepatic oxidation of both FA (> 50% of incorporated FA) led essentially to the production of acid-soluble products and to a lower extent to CO(2) production. Rumenic acid was partly converted (> 12% of incorporated rumenic acid) into conjugated C18:3. CLA and its conjugated derivatives were mainly esterified into polar lipids (71.7%), whereas oleic acid was preferentially esterified into neutral lipids (59.8%). Rumenic acid secretion as part of VLDL particles was very low and was one-fourth lower than that of oleic acid. In conclusion, rumenic acid was highly metabolized by bovine hepatocytes, especially by the oxidation pathway and by its conversion into conjugated C18:3 for which the biological properties need to be elucidated.  相似文献   

14.
In an attempt to clarify why the brain oxidizes fatty acids poorly or not at all, the activities of beta-oxidation enzymes present in rat brain and rat heart mitochondria were measured and compared with each other. Although the apparent Km values and chain-length specificities of the brain and heart enzymes are similar, the specific activities of all but one brain enzyme are between 4 and 50% of those observed in heart mitochondria. The exception is 3-ketoacyl-CoA thiolase (EC 2.3.1.16) whose specific activity in brain mitochondria is 125 times lower than in heart mitochondria. The partially purified brain 3-ketoacyl-CoA thiolase was shown to be catalytically and immunologically identical with the heart enzyme. The low rate of fatty acid oxidation in brain mitochondria, estimated on the basis of palmitoylcarnitine-supported respiration and [1-14C]palmitoylcarnitine degradation to be less than 0.5 nmol/min/mg of protein, may be the consequence of the low activity of 3-ketoacyl-CoA thiolase. Inhibition of [1-14C]palmitoylcarnitine oxidation by 4-bromocrotonic acid proves the observed oxidation of fatty acids in brain to be dependent on 3-ketoacyl-CoA thiolase and thus to occur via beta-oxidation. Since the reactions catalyzed by carnitine palmitoyltransferase (EC 2.3.1.21) and acyl-CoA synthetase (EC 6.2.1.3) do not seem to restrict fatty acid oxidation in brain, it is concluded that the oxidation of fatty acids in rat brain is limited by the activity of the mitochondrial 3-keto-acyl-CoA thiolase.  相似文献   

15.
For the investigation of the mechanism responsible for the hypotriglyceridemic effect of NK-104, a new synthetic inhibitor of HMG-CoA reductase, the rate-limiting enzyme for cholesterol synthesis, isolated rat liver was perfused with or without NK-104 in the presence of exogenous [1-(14)C]oleic acid substrate. Addition of NK-104 tended to increase the ketone body production while it caused a significant decrease in the secretion rate of triglyceride by the perfused liver without affecting uptake of exogenous [1-(14)C]oleic acid. The inhibitor also significantly decreased hepatic triglyceride concentration. The altered triglyceride secretion was accompanied by a concomitant decreased incorporation of exogenous [1-(14)C]oleate into triglyceride. The conversion of exogenous [1-(14)C]oleic acid substrate indicated an inverse relationship between the pathways of oxidation and esterification. No effect of NK-104 on hepatic secretion of cholesterol was observed. These results suggest that NK-104 exerts its hypotriglyceridemic action, primarily by diverting the exogenous free fatty acid to the pathways of oxidation at the expense of esterification.  相似文献   

16.
1. 2-Methyl[1-14C]octanoic acid was synthesized from 2-bromo-octane and 14CO2. 2. 2-Methyl[1-14C]octanoic acid was readily oxidized to propionic acid and carbon dioxide by mitochondrial preparations from liver, less readily oxidized by adrenal and kidney (mitochondria), and only poorly oxidized by heart, spleen and brown fat (mitochondria). 3. 3β-Hydroxy[26-14C]cholest-5-en-26-oic acid was rapidly oxidized by mammalian-liver mitochondria to propionic acid and carbon dioxide. Caiman-liver and toad-liver mitochondria also oxidized this steroid acid. 4. The oxidation of propionic acid, octanoic acid and palmitic acid by mitochondrial preparations from these various tissues was also studied. 5. Added carnitine did not stimulate 2-methyloctanoic acid oxidation and feebly stimulated 3β-hydroxycholest-5-en-26-oic acid oxidation. 6. The significance of these results is discussed in relation to sterol catabolism in mammals and non-mammalian species.  相似文献   

17.
N6′, O2′-dibutyryl adenosine 3′, 5′-cyclic monophosphoric acid, but not other cyclic nucleotides stimulates [14C]ketone body production from [14C]palmitate in isolated rat liver mitochondria. Butyrate alone, as well as unlabeled acetate, octanoate and palmitate had similar effects. This redistribution of the oxidative products of [14C]palmitate can best be explained by exceeding the capacity of the Krebs cycle and/or changes in the acetyl coenzyme A/coenzyme A ratio. In contrast to [14C]palmitate, [14C]octanoate oxidation to [14C]O2 and [14C]ketone bodies was inhibited by the addition of unlabeled fatty acids. This suggests that an additional mechanism by which unlabeled fatty acids may stimulate [14C]ketone body production is by enhancing the carnitine-dependent transport of [14C]palmitate into mitochondria.  相似文献   

18.
The biosynthetic origin of the carbon skeleton of 3-ethylidene-L-azetidine-2-carboxylic acid (polyoximic acid) is described. This unique cyclic amino acid is the C terminus of the nucleoside peptide antibiotics, the polyoxins, elaborated by Streptomyces cacaoi var, asoensis. In vivo experiments show that 14-C from [1-14-C]isoleucine, [U-14-C]isoleucine, [1-14-C]methionine, [U-14-C]methionine, [U-14-C]threonine, and [1-14-C]glutamate is incorporated into polyoximic acid; however, 14-C from [5-14-C]glutamate and [methyl-14-C]methionine is not incorporated. The distribution of 14-C in polyoximic acid clearly shows that the intact carbon skeleton of L-isoleucine is utilized directly. The incorporation of 14-C from [U-14-C]methionine, [U-14-C]threonine, and [1-14-CA1glutamate into polyoximic acid occurred only after their conversion to isoleucine via 2-ketobutyrate. A scheme is presented in which either of the two beta-unsaturated amino acids isolated from Bankera fuligineoalba, L-2-amino-3-hydroxymethyl-3-pentenoic acid or L-2-amino-3-formyl-3-penetenoic acid, is regarded as a possible intermediate amino acid between isoleucine and polyoximic acid.  相似文献   

19.
In the Zellweger syndrome where peroxisomes are absent, extremely long fatty acids (24:0 and 26:0) accumulate in tissues suggesting that these fatty acids are normally beta-oxidized in the peroxisomes. Previous studies with rat hepatocytes suggest that peroxisomes are also important in oxidation of C22 unsaturated fatty acids. This study shows that cultured fibroblasts from normal human controls shorten [14-14C]erucic acid (22:1(n-9)) to oleic acid (18:1(n-9)) efficiently while Zellweger fibroblasts are deficient in chain-shortening. [2-14C]Adrenic acid (22:4(n-6)) is oxidized in control fibroblasts probably by chain-shortening to arachidonic acid (20:4(n-6)). Only a little adrenic acid is oxidized in Zellweger fibroblasts. Linolenic acid (18:3(n-3)) is desaturated and chain-elongated in both control and Zellweger fibroblasts. The results support the view that peroxisomes play a normal physiological role in the shortening of C22 unsaturated fatty acids and that this function is deficient in Zellweger fibroblasts.  相似文献   

20.
The metabolism of long chain unsaturated fatty acids was studied in cultured fibroblasts from patients with X-linked adrenoleukodystrophy (ALD) and with neonatal ALD. By using [14-14C] erucic acid (22:1(n-9)) as substrate it was shown that the peroxisomal beta-oxidation, measured as chain shortening, was impaired in cells from patients with neonatal ALD. The beta-oxidation of adrenic acid (22:4(n-6)), measured as acid-soluble products, was also reduced in the neonatal ALD cells. The peroxisomal beta-oxidation of [14-14C]erucic acid (22:1(n-9)) and [2-14C]adrenic acid (22:4(n-6)) was normal in cells from X-ALD patients. The beta-oxidation, esterification and chain elongation of [1-14C]arachidonic acid (20:4(n-6)) and [1-14C]eicosapentaenoic acid (20:5(n-3)) was normal in both X-linked ALD and in neonatal ALD. Previous studies suggest that the activation of very long chain fatty acids by a lignoceryl (24:0)-CoA ligase is deficient in X-linked ALD, while the peroxisomal beta-oxidation enzymes are deficient in neonatal ALD. The present results suggest that the peroxisomal very long-chain acyl-CoA ligase is not required for activation of unsaturated C20 and C22 fatty acids and that these fatty acids can be efficiently activated by the long chain acyl-(palmityl)-CoA ligase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号