首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bacillus cereus 809A and Burkholderia sp. 711C were isolated from soil. These strains demonstrate hydrolysis activity towards prochiral 2-phenyl-1,3-propanediol diacetate and accumulated the corresponding chiral monoacetates into the reaction mixture. When 2-phenyl 1,3-propanediol diacetate was used as a substrate, the produced monoacetates with Burkholderia sp. 711C were obtained in a racemic form but that produced by Bacillus cereus 809A showed an excess of the (S)-form. The resting cell reaction revealed that for Bacillus cereus 809A, there was an enrichment of one of the enantiomers of the monoacetate such that the enantiomeric excess (e.e.) of the (S)-form was over 95%. The purified enzyme from Bacillus cereus 809A hydrolyzed diacetate to monoacetate, and the e.e. value of the (S)-form increased by prolonged reaction in a way similar to the resting cell reaction. From N-terminal amino acids, this esterase is conserved in some strains of Bacillus for which the genomic sequences have been reported.  相似文献   

2.
Summary A key chiral intermediate lactol(3)[3aS (3a,4,7,7a)]-hexahydro-4,7-epoxy-isobenzofuran-1 (3H)-one was prepared for the total synthesis of a new thromboxane antagonist. The stereoselective hydrolysis of (exo,exo)-7-oxabicyclo[2.2.1]heptane-2,3-dimethanol, diacetate ester (1) to the corresponding chiral monoacetate ester (2) was carried out with lipases, among which Amano P-30 lipase from Pseudomonas sp. was most effective since it gave the desired enantiomer of monoacetate ester. A yield of 75 mol% and optical purity of >99% was obtained when the reaction was conducted in a biphasic system with 10% toluene at 5 g/l of the substrate. Lipase P-30 was immobilized on Accurel polypropylene (PP) and the immobilized enzyme was reused (five cycles) without loss of enzyme activity, productivity or optical purity. The reaction process was scaled-up to 80 1 (400 g substrate) and monoacetate (2) was isolated in 80 mol% yield with 99.3% optical purity as determined by chiral HPLC and nuclear magnetic resonance (NMR) analysis. A gas chromatography of 99.5% and specific rotation, []D of -7.6° was obtained. The chiral monoacetate ester (2) was oxidized to its corresponding aldehyde and subsequently hydrolyzed to give lactol (3).  相似文献   

3.
A theoretical model for the lipase-catalyzed hydrolysis of high-concentration olive in biphasic isooctane-aqueous systems has been proposed and confirmed by experiments. The enzymatic reaction of the Michaelis-Menten type that occurred at the interface between organic and aqueous phases was assumed in deriving the rate equations, from which the maximum reaction rate could be obtained by carefully adjusting the volume ratio between the two phases to the optimal value. Equilibrium conversions higher than 98% for 0.1 g/L olive oil in isooctane were attained for systems with volume ratios up to one. Fractions of lipase and lipase-substrate complex adsorbed at the interface increased and seemed to approach to asymptotic values asthe rotation speed of impeller increased. Activity of the lipase showed no apparent change between 26 and 37 degrees C, but decrease rapidly with temperature above 43 degrees C. The methodology presented in this work might be used to find kinetic parameters for reactor design and scaleup.  相似文献   

4.
Polymorphic influences on the phase behavior of two types of binary mixtures of saturated monoacid 1,3-propanediol esters (PADEs), dipalmitate/distearate (PP/SS) and dimyristate/distearate (MM/SS) were examined by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and by solid fat content (SFC), hardness and microscopy measurements. Three stacking modes have been found in the PP/SS binary system. Mixed SS-PP bilayers were detected in all mixtures, SS-SS bilayers in x(PP)=0.0-0.4 mixtures and PP-PP bilayers in x(PP)=0.6-0.1 mixtures. Two different but close beta polymorphs and one beta' polymorph were detected for this system. beta' was only detected in x(PP)=0.5-0.9 mixtures for the mixed bilayers. For the MM/SS binary system, only MM-MM and SS-SS bilayers were detected and both solid phases crystallized in two different beta forms. XRD data evidenced clearly that the MM and SS components were completely immiscible in the solid state. The phase diagrams constructed using DSC data, exhibited a typical eutectic-type phase boundary. The presence of eutectics, the shape of the solidus lines as well as the analysis of the individual enthalpies of melting indicated typical phase separation for both systems. A thermodynamic study based on the Hildebrand equation and using the Bragg-Williams approximation for non-ideality of mixing confirmed the phase separation in the solid phase and suggested that the PP and SS were miscible in the liquid phase and that SS formed an ideal mixing with MM. Avrami analysis of SFC vs. time curves indicated heterogeneous nucleation and spherulitic crystal development from sporadic nuclei, and suggested that the nucleation rate was higher for the mixture at the eutectic composition. The relative hardness was correlated with the enthalpies, the final SFC and the microscopy measurements.  相似文献   

5.
The kinetics of the hydrolysis of fluoresceindiacetate and fluorescein-di-beta-D-galactopyranoside were investigated by thin-layer chromatography. The time course of the concentrations of substrate, monosubstituted intermediate, and product was simulated numerically. The mathematical model takes into account the competition of substrate and intermediate and the accumulation of the intermediate at the enzyme.  相似文献   

6.
2-Aryloxypropionic acids 3a–f, compounds with herbicidal activity, have been prepared with high enantiomeric purity by microbial hydrolysis of the corresponding racemic nitriles and amides in presence ofBrevibacterium imperiale cells.  相似文献   

7.
Microbial asymmetric oxidation of 2-butyl-1,3-propanediol was investigated for an efficient synthesis of S- and R-enantiomers of 2-hydroxymethylhexanoic acid (2-HMHA). From an intensive survey of the stocked bacterial strains, Acetobacter pasteurianus IAM 12073 and Pseudomonas putida IFO 3738 were found to show the highest S- and R-2-HMHA-producing activity, respectively. Under optimized conditions, A. pasteurianus (351 mg dry cell weight) and P. putida (642 mg dry cell weight) cells produced 12.0 g l−1 S-2-HMHA with 89% enantiomeric excess (e.e.) at 24 h of incubation and 5.1 g l−1 R-2-HMHA with 94% e.e. at 35 h of incubation from 2-butyl-1,3-propanediol.  相似文献   

8.
Lipase-catalyzed hydrolysis of 2-naphtyl esters in biphasic system   总被引:1,自引:0,他引:1  
The authors measured the rate of hydrolysis of the homologs of 2-naphtyl ester by using a Lewis cell with constant interfacial area to elucidate the kinetic mechanism of the lipase-catalyzed hydrolysis in biphasic system. On the basis of the two-film model, it was found from the analysis of experimental results that the hydrolysis of these substrates proceeds at the interface between the aqueous and organic phases. The interfacial reaction rate could be correlated by Michaelis-Menten mechanism. The values of the rate constant and the Michaelis constant were almost independent of the kinds of 2-naphtyl ester. The values of the interfacial kinetic parameters for 2-naphtyl ester were much greater than those for the hydrolysis in the aqueous phase.  相似文献   

9.
The compound X, which had previously been found to be accumulatedin the soybean nodules formed by infection with wild-type H2-uptakenegative Bradyrhizobium japonicum strains, was identified asserinol (2-amino-1,3-propanediol) by means of elementary analysis,infrared spectrometry, 1H-nuclear magnetic resonance, 13C-nuclearmagnetic resonance, high-performance liquid chromatography andgas chromatography/mass spectrometry. During the process ofpurification of compound X, it was also elucidated that 3-amino-1,2-propanediolwas present in the soybean nodules as a minor component. (Received January 6, 1986; Accepted June 16, 1986)  相似文献   

10.
Microbial production of 1,3-propanediol   总被引:79,自引:2,他引:77  
1,3-Propanediol (1,3-PD) production by fermentation of glycerol was described in 1881 but little attention was paid to this microbial route for over a century. Glycerol conversion to 1,3-PD can be carried out by Clostridia as well as Enterobacteriaceae. The main intermediate of the oxidative pathway is pyruvate, the further utilization of which produces CO2, H2, acetate, butyrate, ethanol, butanol and 2,3-butanediol. In addition, lactate and succinate are generated. The yield of 1,3-PD per glycerol is determined by the availability of NADH2, which is mainly affected by the product distribution (of the oxidative pathway) and depends first of all on the microorganism used but also on the process conditions (type of fermentation, substrate excess, various inhibitions). In the past decade, research to produce 1,3-PD microbially was considerably expanded as the diol can be used for various polycondensates. In particular, polyesters with useful properties can be manufactured. A prerequisite for making a “green” polyester is a more cost-effective production of 1,3-PD, which, in practical terms, can only be achieved by using an alternative substrate, such as glucose instead of glycerol. Therefore, great efforts are now being made to combine the pathway from glucose to glycerol successfully with the bacterial route from glycerol to 1,3-PD. Thus, 1,3-PD may become the first bulk chemical produced by a genetically engineered microorganism. Received: 12 January 1999 / Received revision: 9 March 1999 / Accepted: 14 March 1999  相似文献   

11.
The hydrolysis of palm oil and beef tallow by lipase has been studied for practical applications in a biphasis isooactane-aqueous system using a high substrate concentration. The effective lipase concentration for the hydrolysis was found to be about 120 IU per g of substrate. The addition of twenty percent isooctane brought about the most rapid reaction and produced the highest percentage of hydrolysis. For both palm oil and beef tallow, a percentage of hydrolysis higher than 98% was achieved in the 20% isooctane system at a higher concentration of 50%. However, when the substrate concentration was higher than 50%, the final value of hydrolysis decreased as the concentration of the substrate increased. Utilization of recycled lipase was attempted using an ultrafiltration membrane reactor. Approximately 60$% of the lipase activity was recoverable after each reaction.  相似文献   

12.
The aim of this work was to evaluate (R)-&#103-hydroxyisobutyric acid (HIBA) production by microbial stereoselective oxidation of 2-methyl-1,3 propanediol under different conditions, and to compare the performance of this bioconversion in traditional aqueous media and aqueous/organic biphasic media. The oxidation is a two-step reaction with hydroxyisobutanal as an intermediate. Among the operational factors tested, pH and aeration were those, which most significantly affected the biocatalytic activity. Enantiomeric excesses higher than 95% were consistently obtained. For substrate concentrations above 50 mg ml?1 a slight substrate inhibition was observed. Product inhibition was much stronger, and together with the decrease of the pH during the bioconversion was the most important limiting factor in long-term bioconversions. Kinetic parameters were determined for different pH values. A compromise pH value of 4 was determined to be the optimum for HIBA production and simultaneous extraction with an organic phase of trioctyl phosphine oxide (TOPO) in isooctane.  相似文献   

13.
Some 3-t-butyldimethylsilyloxy derivatives, synthesized from the cheap commercially available (1S,2S)-2-amino-1-phenyl-1,3-propanediol [(1S,2S)- 1 ], have been successfully employed as new chiral ligands in the asymmetric Reformatsky reaction on aldehydic substrates. The influence both of the substrate and of the ligand on the stereochemical pathway has been investigated by varying the structure of the carbonyl substrate and of the optically active aminodiols. © 1995 Wiley-Liss, Inc.  相似文献   

14.
The aim of this work was to evaluate (R)-g-hydroxyisobutyric acid (HIBA) production by microbial stereoselective oxidation of 2-methyl-1,3 propanediol under different conditions, and to compare the performance of this bioconversion in traditional aqueous media and aqueous/organic biphasic media. The oxidation is a two-step reaction with hydroxyisobutanal as an intermediate. Among the operational factors tested, pH and aeration were those, which most significantly affected the biocatalytic activity. Enantiomeric excesses higher than 95% were consistently obtained. For substrate concentrations above 50 mg ml-1 a slight substrate inhibition was observed. Product inhibition was much stronger, and together with the decrease of the pH during the bioconversion was the most important limiting factor in long-term bioconversions. Kinetic parameters were determined for different pH values. A compromise pH value of 4 was determined to be the optimum for HIBA production and simultaneous extraction with an organic phase of trioctyl phosphine oxide (TOPO) in isooctane.  相似文献   

15.
16.
Summary A key intermediate, S-(–)-3-benzoylthio-2-methylpropanoic acid (1) was made in high optical purity by the lipase-catalyzed stereoselective esterification of racemic 1 with methanol in an organic solvent system. Among various lipases evaluated, Amano P-30 lipase from Pseudomonas sp. efficiently catalyzed the esterification of 1 to yield R-(+) methyl ester and unreacted S-(–) 1. A reaction yield of 40 mol% and an optical purity of 97.2% were obtained for compound 1 at a substrate concentration of 0.1 m (22 mg/ml). Lipase P-30 was immobilized on Accurel polypropylene (PP) and the immobilized enzyme was reused (23 cycles) in the esterification reaction without loss of enzyme acitivity, productivity or optical purity. Among various solvents evaluated, toluene was found to be the most suitable organic solvent and methanol was the best alcohol for the esterification of racemic 1 by immobilized lipase. Substrate concentrations as high as 1.0 m were used in the esterification reaction. When the temperature was increased from 28° C to 60° C, the reaction time required for the esterification of 0.1 m substrate decreased from 16 h to 2 h. On increasing the methanol to substrate molar ratio from 1:1 to 4:1, the rate of esterification decreased. A lipase fermentation using Pseudomonas sp. ATCC 21 808 was developed. In the batch-fermentation process, 56 units/ml of extracellular lipase activity was obtained. A fed-batch process using soybean oil gave a significant increase in the lipase activity (126 units/ml). Crude lipase recovered from the filtrate by ethanol precipitation and immobilized on Accurel PP was also effective: S-(–) compound 1 was obtained in 35 mol% yield and 95% optical purity. Offsprint requests to: R. N. Patel  相似文献   

17.
In the Klebsiella pneumoniae reduction pathway for 1,3-propanediol (1,3-PD) synthesis, glycerol is first dehydrated to 3-hydroxypropionaldehyde (3-HPA) and then reduced to 1,3-PD with NADH consumption. Rapid conversion of 3-HPA to 1,3-PD is one of the ways to improve the yield of 1,3-PD from glycerol and to avoid 3-HPA accumulation, which depends on enzyme activity of the reaction and the amount of reducing equivalents available from the oxidative pathway of glycerol. In the present study, the yqhD gene, encoding 3-propanediol oxidoreductase isoenzyme from Escherichia coli and the dhaT gene, encoding 3-propanediol oxidoreductase from K. pneumoniae were expressed individually and co-expressed in K. pneumoniae using the double tac promoter expression plasmid pEtac-dhaT-tac-yqhD. The three resultant recombinant strains (K. pneumoniae/pEtac-yqhD, K. pneumoniae/pEtac-dhaT, and K. pneumoniae/pEtac-dhaT-tac-yqhD) were used for fermentation studies. Experimental results showed that the peak values for 3-HPA production in broth of the three recombinant strains were less than 25% of that of the parent strain. Expression of dhaT reduced formation of by-products (ethanol and lactic acid) and increased molar yield of 1,3-PD slightly, while expression of yqhD did not enhance molar yield of 1,3-PD, but increased ethanol concentration in broth as NADPH participation in transforming 3-HPA to 1,3-PD allowed more cellular NADH to be used to produce ethanol. Co-expression of both genes therefore decreased by-products and increased the molar yield of 1,3-PD by 11.8%, by catalyzing 3-HPA conversion to 1,3-propanediol using two cofactors (NADH and NADPH). These results have important implications for further studies involving use of YqhD and DhaT for bioconversion of glycerol into 1,3-PD.  相似文献   

18.
19.
In a previous study, we showed that 1,3-propanediol (1,3-PD) was still produced from glycerol by the Klebsiella pneumoniae mutant strain defective in 1,3-PD oxidoreductase (DhaT), although the production level was lower compared to the parent strain. As a potential candidate for another putative 1,3-PD oxidoreductase, we identified and characterized a homolog of Escherichia coli yqhD (88% homology in amino acid sequence), which encodes an alcohol dehydrogenase and is well known to replace the function of DhaT in E. coli. Introduction of multiple copies of the yqhD homolog restored 1,3-PD production in the mutant K. pneumoniae strain defective in DhaT. In addition, by-product formation was still eliminated in the recombinant strain due to the elimination of the glycerol oxidative pathway. An increase in NADP-dependent 1,3-PD oxidoreductase activity was observed in the recombinant strain harboring multiple copies of the yqhD homolog. The level of 1,3-PD production during batch fermentation in the recombinant strain was comparable to that of the parent strain; further engineering can generate an industrial strain producing 1,3-propanediol.  相似文献   

20.
Partition coefficients in poly(ethylene glycol)/dextran aqueous two-phase systems are reported for mixed-casein and its components, alpha, beta and kappa casein. Rates of casein proteolysis by alpha-chymotrypsin and by trypsin are reported in single-phase and aqueous two-phase reactor systems. The advantages resulting from selective partitioning of substrates, enzymes, and products are examined in terms of relative volumetric reaction rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号