首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The basic physical properties of homogeneous membranes are relatively well known, while the effects of inhomogeneities with membranes are very much an active field of study. In this paper, a biphasic lipid vesicle with membrane embedded proteins is investigated. To take into account the influences of the proteins, a simple phenomenological coupling between the local fraction of proteins and the mean curvature square is suggested. By minimizing the energy of system, the E-L equations and boundary conditions are obtained and solved analytically for vesicle with a simple shape. Besides, stability phase diagrams and stability factor are put forward by linear perturbation analysis. Our results show two different situations which are strongly dependent on the nature of the proteins: a regime of easy instability when the proteins are strongly coupled to the membrane and a regime of difficult instability.  相似文献   

2.
Clathrin-mediated endocytosis involves the assembly of a network of proteins that select cargo, modify membrane shape and drive invagination, vesicle scission and uncoating. This network is initially assembled around adaptor protein (AP) appendage domains, which are protein interaction hubs. Using crystallography, we show that FxDxF and WVxF peptide motifs from synaptojanin bind to distinct subdomains on alpha-appendages, called 'top' and 'side' sites. Appendages use both these sites to interact with their binding partners in vitro and in vivo. Occupation of both sites simultaneously results in high-affinity reversible interactions with lone appendages (e.g. eps15 and epsin1). Proteins with multiple copies of only one type of motif bind multiple appendages and so will aid adaptor clustering. These clustered alpha(appendage)-hubs have altered properties where they can sample many different binding partners, which in turn can interact with each other and indirectly with clathrin. In the final coated vesicle, most appendage binding partners are absent and thus the functional status of the appendage domain as an interaction hub is temporal and transitory giving directionality to vesicle assembly.  相似文献   

3.
Yizhar O  Ashery U 《PloS one》2008,3(7):e2694
In neurons and neuroendocrine cells, docked vesicles need to undergo priming to become fusion competent. Priming is a multi-step process that was shown to be associated with vesicle immobilization. However, it is not known whether vesicle immobilization is sufficient to acquire complete fusion competence. To extend our understanding of the physical manifestation of vesicle priming, we took advantage of tomosyn, a SNARE-related protein that specifically inhibits vesicle priming, and measured its effect on vesicle dynamics in live chromaffin cells using total internal reflection fluorescence microscopy. We show here that while in control cells vesicles undergo immobilization before fusion, vesicle immobilization is attenuated in tomosyn overexpressing cells. This in turn increases the turnover rate of vesicles near the membrane and attenuates the fusion of newcomer vesicles. Moreover, the release probability of immobile vesicles in tomosyn cells is significantly reduced, suggesting that immobilization is an early and necessary step in priming but is insufficient, as further molecular processes are needed to acquire complete fusion competence. Using tomosyn as a molecular tool we provide a mechanistic link between functional docking and priming and suggest that functional docking is the first step in vesicle priming, followed by molecular modifications that do not translate into changes in vesicle mobility.  相似文献   

4.
5.
In this article, we report for the first time unusual shape changes of vesicles subjected to strong electric pulses in salt solutions of low concentration. The electric field is created by two parallel electrodes between which the vesicle solution is located. Surprisingly, the vesicles assume cylindrical shapes during the pulse. These deformations are short-lived (their lifetime is approximately 1 ms) and occur only in the presence of salt outside the vesicles, irrespective of their content. When the solution conductivities inside and outside are the same, vesicles with square cross section are observed. Using a fast digital camera, we were able to record these deformations and study the vesicle shape dynamics. The aims of this article are to report the new vesicle morphologies and their dynamics and to provoke theoretical work in this direction.  相似文献   

6.
The study of vesicles in suspension is important to understand the complicated dynamics exhibited by cells in in vivo and in vitro. We developed a computer simulation based on the boundary-integral method to model the three dimensional gravity-driven sedimentation of charged vesicles towards a flat surface. The membrane mechanical behavior was modeled using the Helfrich Hamiltonian and near incompressibility of the membrane was enforced via a model which accounts for the thermal fluctuations of the membrane. The simulations were verified and compared to experimental data obtained using suspended vesicles labelled with a fluorescent probe, which allows visualization using fluorescence microscopy and confers the membrane with a negative surface charge. The electrostatic interaction between the vesicle and the surface was modeled using the linear Derjaguin approximation for a low ionic concentration solution. The sedimentation rate as a function of the distance of the vesicle to the surface was determined both experimentally and from the computer simulations. The gap between the vesicle and the surface, as well as the shape of the vesicle at equilibrium were also studied. It was determined that inclusion of the electrostatic interaction is fundamental to accurately predict the sedimentation rate as the vesicle approaches the surface and the size of the gap at equilibrium, we also observed that the presence of charge in the membrane increases its rigidity.  相似文献   

7.
When pulling a vesicle adhered on a substrate, both the force-displacement profile and the maximum force at pull-off are sensitively dependent upon the substrate shape. Here we consider the adhesion between a two-dimensional vesicle and a rigid substrate via long-range molecular interactions. For a given contact area, the theoretical pull-off force of the vesicle is obtained by multiplying the theoretical strength of adhesion and the contact area. It is shown that one may design an optimal substrate shape to achieve the theoretical pull-off force.  相似文献   

8.
Under ordinary circumstances, the membrane tension of a giant unilamellar vesicle is essentially nil. Using visible light, we stretch the vesicles, increasing the membrane tension until the membrane responds by the sudden opening of a large pore (several micrometers in size). Only a single pore is observed at a time in a given vesicle. However, a cascade of transient pores appear, up to 30-40 in succession, in the same vesicle. These pores are transient: they reseal within a few seconds as the inner liquid leaks out. The membrane tension, which is the driving force for pore opening, is relaxed with the opening of a pore and the leakage of the inner liquid; the line tension of the pore's edge is then able to drive the closure of a pore. We use fluorescent membrane probes and real-time videomicroscopy to study the dynamics of the pores. These can be visualized only if the vesicles are prepared in a viscous solution to slow down the leakout of the internal liquid. From measurements of the closure velocity of the pores, we are able to infer the line tension,. We have studied the effect of the shape of inclusion molecules on. Cholesterol, which can be modeled as an inverted cone-shaped molecule, increases the line tension when incorporated into the bilayers. Conversely, addition of cone-shaped detergents reduces. The effect of some detergents can be dramatic, reducing by two orders of magnitude, and increasing pore lifetimes up to several minutes. We give some examples of transport through transient pores and present a rough measurement of the leakout velocity of the inner liquid through a pore. We discuss how our results can be extended to less viscous aqueous solutions which are more relevant for biological systems and biotechnological applications.  相似文献   

9.
We develop an analytical theory to explain the experimentally observed morphological transitions of quasispherical giant vesicles induced by alternating electric fields. The model treats the inner and suspending media as lossy dielectrics, and the membrane as an impermeable flexible incompressible-fluid sheet. The vesicle shape is obtained by balancing electric, hydrodynamic, bending, and tension stresses exerted on the membrane. Our approach, which is based on force balance, also allows us to describe the time evolution of the vesicle deformation, in contrast to earlier works based on energy minimization, which are able to predict only stationary shapes. Our theoretical predictions for vesicle deformation are consistent with experiment. If the inner fluid is more conducting than the suspending medium, the vesicle always adopts a prolate shape. In the opposite case, the vesicle undergoes a transition from a prolate to oblate ellipsoid at a critical frequency, which the theory identifies with the inverse membrane charging time. At frequencies higher than the inverse Maxwell-Wagner polarization time, the electrohydrodynamic stresses become too small to alter the vesicle's quasispherical rest shape. The model can be used to rationalize the transient and steady deformation of biological cells in electric fields.  相似文献   

10.
Gas vesicles are proteinaceous, gas‐filled nanostructures produced by some bacteria and archaea. The hydrophobic major structural protein GvpA forms the ribbed gas vesicle wall. An in‐silico 3D‐model of GvpA of the predicted coil‐α1‐β1‐β2‐α2‐coil structure is available and implies that the two β‐chains constitute the hydrophobic interior surface of the gas vesicle wall. To test the importance of individual amino acids in GvpA we performed 85 single substitutions and analyzed these variants in Haloferax volcanii ΔA + Amut transformants for their ability to form gas vesicles (Vac+ phenotype). In most cases, an alanine substitution of a non‐polar residue did not abolish gas vesicle formation, but the replacement of single non‐polar by charged residues in β1 or β2 resulted in Vac transformants. A replacement of residues near the β‐turn altered the spindle‐shape to a cylindrical morphology of the gas vesicles. Vac transformants were also obtained with alanine substitutions of charged residues of helix α1 suggesting that these amino acids form salt‐bridges with another GvpA monomer. In helix α2, only the alanine substitution of His53 or Tyr54, led to Vac transformants, whereas most other substitutions had no effect. We discuss our results in respect to the GvpA structure and data available from solid‐state NMR.  相似文献   

11.
Netrin is a chemotrophic factor known to regulate a number of neurodevelopmental processes, including cell migration, axon guidance, and synaptogenesis. Although the role of Netrin in synaptogenesis is conserved throughout evolution, the mechanisms by which it instructs synapse assembly are not understood. Here we identify a mechanism by which the Netrin receptor UNC-40/DCC instructs synaptic vesicle clustering in vivo. UNC-40 localized to presynaptic regions in response to Netrin. We show that UNC-40 interacted with CED-5/DOCK180 and instructed CED-5 presynaptic localization. CED-5 in turn signaled through CED-10/Rac1 and MIG-10/Lamellipodin to organize the actin cytoskeleton in presynaptic regions. Localization of this signaling pathway to presynaptic regions was necessary for synaptic vesicle clustering during synapse assembly but not for the subcellular localization of active zone proteins. Thus, vesicle clustering and localization of active zone proteins are instructed by separate pathways downstream of Netrin. Our data indicate that signaling modules known to organize the actin cytoskeleton during guidance can be co-opted to instruct synaptic vesicle clustering.  相似文献   

12.
In the classical "first approximation" theory of thin-shell structures, the constitutive relations for a generic shell element--i.e. the elastic relations between the bending moments and membrane stresses and the corresponding changes in curvature and strain, respectively-are written as if an element of the shell is flat, although in reality it is curved. In this theory it is believed that discrepancies on account of the use of "flat" constitutive relations will be negligible provided the ratio shell-radius/thickness is of sufficiently large order. In the study of drawing of narrow, cylindrical "tethers" from liposomes it has been known for many years that it is necessary to use instead a constitutive law which explicitly describes a curved element in order to make sense of the mechanics; and indeed such tethers are generally of "thick-walled" proportions. In this paper we show that the proper constitutive relations for a curved element must also be used in the study, by means of shell equations, of the buckling of initially spherical thin-walled giant liposomes under exterior pressure: these involve the inclusion of what we call the "Mkappa" terms, which are not present in the standard "first-approximation" theory. We obtain analytical expressions for both the bifurcation buckling pressure and the slope of the post-buckling path, in terms of the dimensions and elastic constants of the lipid bi-layer, and also the initial state of bending moment in the vesicle. We explain physically how the initial bending moment can affect the bifurcation pressure, whereas it cannot in "first-approximation" theory. We use these results to map the conditions under which the vesicle buckles into an oblate, as distinct from a prolate ("rugby-ball") shape. Some of our results were obtained long ago by the use of energy methods; but our aim here has been to identify precisely what is lacking in "first-approximation" theory in relation to liposomes, and so to put the "shell equations" approach onto a firm footing in mechanics.  相似文献   

13.
Mint1 (X11/human Lin-10) and Mint2 are neuronal adaptor proteins that bind to Munc18-1 (n/rb-sec1), a protein essential for synaptic vesicle exocytosis. Mint1 has previously been characterized in a complex with CASK, another adaptor protein that in turn interacts with neurexins. Neurexins are neuron-specific cell surface proteins that act as receptors for the excitatory neurotoxin alpha-latrotoxin. Hence, one possible function for Mint1 is to mediate the recruitment of Munc18 to neurexins. In agreement with this hypothesis, we now show that the cytoplasmic tail of neurexins captures Munc18 via a multiprotein complex that involves Mint1. Furthermore, we demonstrate that both Mint1 and Mint2 can directly bind to neurexins in a PDZ domain-mediated interaction. Various Mint and/or CASK-containing complexes can be assembled on neurexins, and we demonstrate that Mint1 can bind to Munc18 and CASK simultaneously. Our data support a model whereby one of the functions of Mints is to localize the vesicle fusion protein Munc18 to those sites at the plasma membrane that are defined by neurexins, presumably in the vicinity of points of exocytosis.  相似文献   

14.
We study local calcium dynamics leading to a vesicle fusion in a stochastic, and spatially explicit, biophysical model of the CA3-CA1 presynaptic bouton. The kinetic model for vesicle release has two calcium sensors, a sensor for fast synchronous release that lasts a few tens of milliseconds and a separate sensor for slow asynchronous release that lasts a few hundred milliseconds. A wide range of data can be accounted for consistently only when a refractory period lasting a few milliseconds between releases is included. The inclusion of a second sensor for asynchronous release with a slow unbinding site, and thereby a long memory, affects short-term plasticity by facilitating release. Our simulations also reveal a third time scale of vesicle release that is correlated with the stimulus and is distinct from the fast and the slow releases. In these detailed Monte Carlo simulations all three time scales of vesicle release are insensitive to the spatial details of the synaptic ultrastructure. Furthermore, our simulations allow us to identify features of synaptic transmission that are universal and those that are modulated by structure.  相似文献   

15.
Amyloid aggregates, found in patients that suffer from Alzheimer's disease, are composed of fibril-forming peptides in a beta-sheet conformation. One of the most abundant components in amyloid aggregates is the beta-amyloid peptide 1-42 (Abeta 1-42). Membrane alterations may proceed to cell death by either an oxidative stress mechanism, caused by the peptide and synergized by transition metal ions, or through formation of ion channels by peptide interfacial self-aggregation. Here we demonstrate that Langmuir films of Abeta 1-42, either in pure form or mixed with lipids, develop stable monomolecular arrays with a high surface stability. By using micropipette aspiration technique and confocal microscopy we show that Abeta 1-42 induces a strong membrane destabilization in giant unilamellar vesicles composed of palmitoyloleoyl-phosphatidylcholine, sphingomyelin, and cholesterol, lowering the critical tension of vesicle rupture. Additionally, Abeta 1-42 triggers the induction of a sequential leakage of low- and high-molecular-weight markers trapped inside the giant unilamellar vesicles, but preserving the vesicle shape. Consequently, the Abeta 1-42 sequence confers particular molecular properties to the peptide that, in turn, influence supramolecular properties associated to membranes that may result in toxicity, including: 1), an ability of the peptide to strongly associate with the membrane; 2), a reduction of lateral membrane cohesive forces; and 3), a capacity to break the transbilayer gradient and puncture sealed vesicles.  相似文献   

16.
Highly curved cell membrane structures, such as plasmalemmal vesicles (caveolae) and clathrin-coated pits, facilitate many cell functions, including the clustering of membrane receptors and transport of specific extracellular macromolecules by endothelial cells. These structures are subject to large mechanical deformations when the plasma membrane is stretched and subject to a change of its curvature. To enhance our understanding of plasmalemmal vesicles we need to improve the understanding of the mechanics in regions of high membrane curvatures. We examine here, theoretically, the shapes of plasmalemmal vesicles assuming that they consist of three membrane domains: an inner domain with high curvature, an outer domain with moderate curvature, and an outermost flat domain, all in the unstressed state. We assume the membrane properties are the same in these domains with membrane bending elasticity as well as in-plane shear elasticity. Special emphasis is placed on the effects of membrane curvature and in-plane shear elasticity on the mechanics of vesicle during unfolding by application of membrane tension. The vesicle shapes were computed by minimization of bending and in-plane shear strain energy. Mechanically stable vesicles were identified with characteristic membrane necks. Upon stretch of the membrane, the vesicle necks disappeared relatively abruptly leading to membrane shapes that consist of curved indentations. While the resting shape of vesicles is predominantly affected by the membrane spontaneous curvatures, the membrane shear elasticity (for a range of values recorded in the red cell membrane) makes a significant contribution as the vesicle is subject to stretch and unfolding. The membrane tension required to unfold the vesicle is sensitive with respect to its shape, especially as the vesicle becomes fully unfolded and approaches a relative flat shape.  相似文献   

17.
Clathrin-dependent endocytosis allows cells to bring plasma membrane and extracellular molecules into the cell. Forming a clathrin-coated vesicle requires the sequential action of numerous factors, beginning with endocytic adaptors. Adaptors are thought to initiate the process in two ways: by selecting cargo for packaging into the vesicle and assembling the clathrin coat and other components necessary to shape the vesicle. Here, we review recent work focusing on the sequential and cooperative interactions of adaptors with their binding partners, and how adaptors contribute to initial stages of endocytic internalization. The regulation of adaptors might be a key step for controlling endocytosis, and thus aid in homeostasis and cell physiology.  相似文献   

18.
Proper cell morphogenesis requires the co-ordination of cell polarity, cytoskeletal organization and vesicle trafficking. The Schizosaccharomyces pombe mutant pob1-664 has a curious lemon-like shape, the basis of which is not understood. Here, we found abundant vesicle accumulation in these cells, suggesting that Pob1 plays a role in vesicle trafficking. We identified Rho3 as a multicopy suppressor of this phenotype. Because Rho3 function is related to For3, an actin-polymerizing protein, and Sec8, a component of the exocyst complex, we analyzed their functional relationship with Pob1. Pob1 was essential for the formation of actin cables (by interacting with For3) and for the polarized localization of Sec8. Although neither For3 nor Sec8 is essential for polarized growth, their simultaneous disruption prevented tip growth and yielded a lemon-like cell morphology similar to pob1-664. Thus, Pob1 may ensure cylindrical cell shape of S. pombe by coupling actin-mediated vesicle transport and exocyst-mediated vesicle tethering during secretory vesicle targeting.  相似文献   

19.
In order to understand the role of space in ecological communities where each species produces a certain type of resource and has varying abilities to exploit the resources produced by its own species and by the other species, we carry out a comparative study of an interacting particle system and its mean-field approximation. For a wide range of parameter values, we show both analytically and numerically that the spatial model results in predictions that significantly differ from its nonspatial counterpart, indicating that the use of the mean-field approach to describe the evolution of communities in which individuals only interact locally is invalid. In two-species communities, the disagreements between the models appear either when both species compete by producing resources that are more beneficial for their own species or when both species cooperate by producing resources that are more beneficial for the other species. In particular, while both species coexist if and only if they cooperate in the mean-field approximation, the inclusion of space in the form of local interactions may prevent coexistence even in cooperative communities. Introducing additional species, cooperation is no longer the only mechanism that promotes coexistence. We prove that, in three-species communities, coexistence results either from a global cooperative behavior, or from rock-paper-scissors type interactions, or from a mixture of these dynamics, which excludes in particular all cases in which two species compete. Finally, and more importantly, we show numerically that the inclusion of space has antagonistic effects on coexistence depending on the mechanism involved, preventing coexistence in the presence of cooperation but promoting coexistence in the presence of rock-paper-scissors interactions. Although these results are partly proved analytically for both models, we also provide somewhat more explicit heuristic arguments to explain the reason why the models result in different predictions.  相似文献   

20.
A theoretical model of a two-component bilayer membrane was used in order to describe the influence of anisotropic membrane inclusions on shapes of membrane daughter micro and nano vesicles. It was shown that for weakly anisotropic inclusions the stable vesicle shapes are only slightly out-of-round. In contrast, for strongly anisotropic inclusions the stable vesicle shapes may significantly differ from spheres, i.e. they have a flattened oblate shape at small numbers of inclusions in the membrane, and an elongated cigar-like prolate shape at high numbers of inclusions in the vesicle membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号