首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxygenation measurements at equilibrium were carried out for solutions of pure haemoglobin (Hb) Olympia (alpha 2 beta 2 20 (B2) Val----Met) at 200 microM (haem) and revealed a high oxygen affinity (P50 = 4.2 torr at pH 7.20, 25 degrees C) compared to HbA (P50 = 5.6 torr), with the Hill coefficient (eta H) reduced from the normal value of 2.9 to 2.5 for Hb Olympia at neutral pH. 2,3-Diphosphoglycerate and chloride effects were normal, but measurements of the alkaline Bohr effect indicated an excess Bohr effect of about 20% for Hb Olympia. Precise determinations of the oxygen binding curves gave the unexpected finding of a dependence of co-operativity on pH with eta H rising from 2.4 at pH 6.8 to 3.0 at pH 8. Moreover, the Hill coefficient was dependent upon the concentration at alkaline pH and fell to 1.8 in low concentration solutions (approximately 30 microM-haem) of the haemoglobin variant; at this concentration the Bohr effect was normal. This effect of concentration on co-operativity could be accounted for fully by the allosteric model, with introduction of Hb Olympia self-association. In this case the allosteric constant L' for the supramolecular species has the value of the allosteric constant L for the tetramer species, raised to a power equal to the number of molecules in the aggregates and modulated by the ratio of the dissociation constants of the aggregates, DNR/DNT. Model curves with N tetramers per aggregate (where N approximately 2 at pH 7.5 and N approximately 4 at pH 8.0) fully represented the concentration dependence for Hb Olympia of the eta H values and the detailed shape of the experimental curves for eta H as a function of log[y/(1-y)], the first derivative of the Hill plot. These curves are much steeper when supramolecular species are present. Direct measurements of the protein aggregation by centrifugation confirmed the presence of aggregates in the solutions of Hb Olympia. Hb Olympia is therefore one of the few examples of mutant human haemoglobins that self-associate with functional consequences in terms of oxygen binding properties.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Hemoglobins (Hb) Yakima and Kempsey were purified from patients' blood with diethylaminoethyl cellulose column chromatography. The oxygen equilibrium curves of the two hemoglobins and the effects of organic phosphates on the function were investigated. In 0.1 M phosphate buffer, Hill's constants n for Hb Yakima and Hb Kempsey were 1.0 to 1.1 at the pH range for 6.5 to 8.0 and the oxygen affinities of both the mutant hemoglobins were about 15 to 20 times that of Hb A at pH 7.0. The Bohr effect was normal in Hb Yakima and one-fourth normal in Hb Kempsey. In the presence of inositol hexaphosphate, the oxygen affinities to Hb Yakima and Hb Kempsey were greatly decreased, and an interesting result revealed that these hemoglobins showed clear cooperativity in oxygen binding. Hill's constant n in the presence of inositol hexaphosphate was 1.9 for Hb Kempsey and 2.3 for Hb Yakima at pH 7.0. The cooperativities of these mutant hemoglobins were pH-dependent, and Hb Kempsey showed high cooperativity at low pH (n equal 2.1 at pH 6.6) and low cooperativity at high pH (n equal 1.0 at pH 8.0). Hb Yakima showed similar pH dependence in cooperativity. In the presence of inositol hexaphosphate, Hb A showed a pH-dependent cooperativity different from those of Hb Yakima and Hb Kempsey, namely, Hill's n was the highest in alkaline pH (n equal 3.0 at pH 8.0) and decreased at lower pH (n equal 1.5 at pH 6.5). 2,3Diphosphoglycerate bound with the deoxygenated Hb Yakima and Hb Kempsey, however, had no effect on the oxygen binding of these abnormal hemoglobin. The pH-dependent cooperativity of alpha1beta2 contact anomalous hemoglobin and normal hemoglobin was explained by the shifts in the equilibrium between the high and low ligand affinity forms.  相似文献   

3.
We report an optical and EPR spectral study of three hemoglobins, Hb I, II, and III, from the gill of the clam Lucina pectinata. Hemoglobin I reacts much more avidly with hydrogen sulfide than do Hbs II and III. The proximal ligand to the heme iron of each hemoglobin is histidyl imidazole. The acid/alkaline transition of ferric Hb I occurs with pK 9.6; those of ferric Hbs II and III with pK 6.6 and 5.9, respectively. At their acid limits each ferric hemoglobin exists as aquoferric hemoglobin. Broadening of the g = 6 resonance suggests that the bound water enjoys great positional freedom. Ferric Hb I, at the alkaline limit (pH 11), exists as ferric hemoglobin hydroxide. Ferric Hbs II and III, at their alkaline limit (pH 7.5), each exist as equal mixtures of two species. The low spin species with optical maxima near 541 and 576 nm and g values of 2.61, 2.20, and 1.82, are identified as ferric hemoglobin hydroxide. The high spin species, with optical maxima near 486 and 603 nm and g values of 6.71, 5.87, and 5.06, resemble Dicrocoelium hemoglobin and hemoglobin MSaskatoon. Here we show that Hbs II and III resemble hemoglobin MSaskatoon in which a distal tyrosinate oxygen ligated to the ferric heme iron at alkaline pH is displaced by water at acid pH. The H2S product of ferric Hb I is identified as ferric hemoglobin sulfide.  相似文献   

4.
Dissociation of alpha beta and alpha gamma dimers of human hemoglobins (Hb) A and F into monomers was studied by alpha chain exchange (Shaeffer, J. R., McDonald, M. J., Turci, S. M., Dinda, D. M., and Bunn, H. F. (1984) J. Biol. Chem. 259, 14544-14547). Unlabeled carbonmonoxy-Hb A was incubated with trace amounts of preparatively purified, native, 3H-alpha subunits in 10 mM sodium phosphate, pH 7.0, at 25 degrees C. At appropriate times, free alpha monomers were separated from Hb A tetramers by anion exchange high performance liquid chromatography. Transfer of radioactivity from the alpha chain pool into Hb A was measured, yielding a first order dimer dissociation rate constant, k2 = (3.2 +/- 0.3) X 10(-3) h-1. The Arrhenius plot of k2 was linear between 7 and 37 degrees C, yielding an enthalpy of activation of 23 kcal/alpha beta dimer. As the chloride concentration was raised from 0 to 0.2 M, the dissociation rate increased 3-fold; with higher salt concentrations, however, the rate gradually returned to baseline. This rate was not altered by raising the pH from 6.5 to 7.2, but as pH was further raised to 8.4, kappa 2 increased about 3-fold. Hb F, which has an increased stability at alkaline pH, dissociated into alpha and gamma monomers 3 times more slowly than Hb A. Moreover, the dimer-monomer dissociation of Hb F was characterized by a significantly reduced pH dependence. These results demonstrate that both alpha beta and alpha gamma dimers of Hb A and Hb F dissociate reversibly into monomers under physiologic conditions. The differential pH dependence for dimer dissociation between Hb A and Hb F suggests that specific amino acid replacement at the alpha 1 gamma 1 interface confers increased resistance to alkaline denaturation.  相似文献   

5.
The oxygen binding property of Hb Sawara (alphaA4 Asp replaced by Ala) was studied at different pH values with and without addition of 2,3-diphosphoglycerate. The oxygen affinity of Hb Sawara was shown to be increased, the difference of the log P50 value between normal and abnormal hemoglobins being 0.37 at pH 7.0. Both the magnitude of the alkaline Bohr effect and the effect of 2,3-diphosphoglycerate upon oxygen affinity of Hb Sawara were comparable to those of Hb A. The amino acid substitution of alanine for alphaA4 aspartic acid might result in the loss of a stabilizing force for ionic interaction between the alpha-amino group of NA (1)alpha1 valine and the alpha-carboxyl of HC3(141)alpha2 arginine in the deoxy-form.  相似文献   

6.
Hemoglobin Deer Lodge is an abnormal human hemoglobin with arginine substituted for histidine at the beta 2 position. X-ray crystallography of normal human hemoglobin has shown that the beta 2 residue is normally part of the binding site for 2,3-diphosphoglycerate. The substitution of arginine for histidine at beta 2 affects both the kinetics and equilibria of ligand binding. When stripped of anions, Hb Deer Lodge has an increased oxygen affinity and a decreased degree of cooperativity relative to Hb A. The alkaline Bohr effect is slightly increased and there are marked increases in oxygen affinity below pH 6 and above pH 8. In the presence of 2,3-diphosphoglycerate the cooperativity in increases to nromal and the pH dependence of oxygen binding is reduced. This contrasts with the enhanced Bohr effect seen for Hb A in the presence of organic phosphates. Due to enhanced anion binding at high pH, Hb Deer Lodge has a slightly lower oxygen affinity than Hb A at pH 9 in the presence of 2,3-diphosphoglycerate or inositol hexaphosphate. Kinetic studies at neutral pH in the absence of organic phosphates revealed biphasicity in the rate of oxygen dissociation from Hb Deer Lodge, while approximately linear time courses were observed for Hb A. The fast phase of the oxygen dissociation kinetics shows great pH sensitivity, and organic phosphates increase the rate and percentage of the fast phase without greatly affecting the slow phase. The two phases are not resolvable at high pH. CO combination kinetics are much like those of Hb A except that "fast" and "slow" phases were apparent at wavelengths near the deoxy-CO isobestic point. We suggest that functional differences between the alpha and beta chains are enhanced in Hb Deer Lodge. After flash photolysis of the CO derivative, the percentage of quickly reacting material was slightly greater for Hb Deer Lodge than for Hb A. This may imply a somewhat greater tendency to dissociate into high affinity subunits. The substitution of arginine for histidine at beta 2 thus results in a macromolecule whose ligand-binding properties are significantly altered, the primary differences being expressed at high pH where Hb Deer Lodge binds anions more strongly than Hb A. The properties of Hb Deer Lodge are compared to those of other hemoglobin variants with substitutions at residues involved in binding of 2,3-diphosphoglycerate.  相似文献   

7.
IR spectroscopy was used to study the rate of hydrogen-deuterium (H-D) exchange of peptide NH atoms in different forms of human hemoglobin (Hb) at pH 5–10 and temperatures of 10–63°C. The pH dependence of the H-D exchange rate fits the EX2 mechanism. At 10–30°C, there are two pH-dependent conformers of liganded Hb forms, the fluctuation probability being lower for the alkaline conformer. The differences between the conformers disappear at 40°C, where a third conformer, with a higher probability of local fluctuations, appears. Deoxyhemoglobin has no pH-dependent conformers in the pH range 6–9 at 20°C, and the probability of local fluctuations is considerably decreased compared to the acid conformer of liganded Hb. The destabilization of the liganded Hb structure by decreasing the pH to 5.0 at 20°C or increasing the temperature to 50–60°C at pH 7.1 enhances global fluctuations of the native structure ensuring the H-D exchange of slowly exchanging NH atoms. The mechanisms of local and high-temperature global fluctuations, as well as the possible similarity between the two pH-dependent conformers of liganded Hb and its functional R and R2 states revealed by X-ray analysis and NMR spectroscopy, are discussed.  相似文献   

8.
Haemoglobin polymorphism in Brahman cattle and seven Southern African cattle breeds was investigated by means of starch gel electrophoresis. A difference was found between the migration rates of the Hb C of Brahman cattle and that of the indigenous Southern African cattle breeds, showing that these are actually two separate variants. We suggest that the faster migrating type, which occurs in Brahman cattle, should be called Hb C, while the slower migrating type of the Southern African breeds, should be called Hb I.
A comparison of the migration of the α and β chains of all the variants we encountered, including foetal haemoglobin, was carried out by means of starch gel electrophoresis in urea at acid and alkaline pH levels. Evidence was found of a difference in mobility of the non-a chains of haemoglobin A, B, C, I and F at different pH levels while no difference was detected in the migration rate of their respective α chains. These results confirm the theory that genetic variation is restricted to the non-α chain of bovine haemoglobin.
Progeny studies on 225 families confirm that the Hb I variant is allelic to Hb A and Hb B variants. The gene frequencies have been calculated on the basis that Hb I and Hb C are allelic at the β locus. The distribution of the different phenotypes is in accordance with this theory, assuming that the populations obey Hardy-Weinberg equilibrium.  相似文献   

9.
Lumbricus terrestris HbO2 and HbCO dissociated below pH 5.0; a time-dependent alteration to the met form occurred at pH less than 5 and pH less than 4.5, respectively. The extent of dissociation was unaffected by alkaline earth cations but was decreased by an increase in ionic strength. HbO2 and HbCO exposed to pH 4.0-4.8 were centrifuged to obtain the undissociated pellet (P1) and dissociated supernatant (S1) fractions. S1 was reassociated at pH 7.0 by dialysis against various buffers and then centrifuged to obtain the reassociated pellet (P2) and unreassociated supernatant (S2) fractions. Reassociation was possible only if S1 was dialyzed against water prior to return to neutral pH; otherwise precipitation occurred starting at about pH 5.3. The extent of reassociation varied from about 40 to 80%, was usually higher for HbCO than HbO2, and was unaffected by an increase in ionic strength or by Ca(II). Gel filtration of P2 on Sephacryl S-300 at neutral pH gave one peak IaR, eluting at a slightly greater volume than the native Hb; S1 and S2 gave in addition, three peaks, Ib (200 kDa), II (65 kDa), and III (18 kDa). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that P2 was slightly deficient in subunit M relative to the Hb, that Ib was deficient in subunits D1 and D2 and that II and III consisted of subunits D1 + D2 + T and subunit M, respectively. Scanning transmission electron microscopy of P2 showed that it was smaller than the native hemoglobin: 25 nm in diameter and 16 nm in height, instead of 30 X 20 nm. Comparison of the results of the dissociations of Lumbricus Hb at alkaline pH (Kapp, O. H., Polidori, G., Mainwaring, M., Crewe, A. V., Vinogradov, S. N. (1984) J. Biol. Chem. 259, 628-639) with those obtained in this study suggested that the Hb quaternary structure was not multimeric and that an alternative model had to be considered. In the proposed model it is assumed that subunits D1 and D2 form a scaffolding or "bracelet," decorated with 12 complexes of M and T subunits.  相似文献   

10.
The rate of the H-D exchange of the peptide NH atoms of the different forms of human Hb was studied at the range of pH 5-10 and temperature 10-63 degrees C by the IR spectroscopy. The pH-dependence of the H-D exchange rate is accordance with the EX2 mechanism. Two pH-dependent conformers of ligand forms of Hb existes at 10-30 degrees C with lower probability of local fluctuations of the alkaline conformer. The difference between two conformers vanishes at 40 degrees C with the appearance of the third conformer with higher probability of local fluctuations. The deoxyHb at 20 degrees C and pH range 6-9 has no pH-dependent conformers and the probability of local fluctuations is considerably reduced in comparison to the acid conformer of ligand Hb. Upon the destabilization of the ligand Hb structure by the pH decreasing to 5.0 at 20 degrees C or the temperature increasing up to 50-60 degrees C at pH 7.1 the global fluctuations of the native structure are intensified providing the H-D exchange of the slowest exchanging NH atoms. The nature of the local and global fluctuations and possible similarity between the two pH-dependent conformers of ligand Hb and its functional R and R2 states revealed by the X-ray analysis and NMR spectroscopy were discussed.  相似文献   

11.
1. Six different hemoglobin (Hb) fractions were isolated and characterized from the larvae of Chironomus thummi thummi using column chromatographic procedures. 2. Chromatographic and sedimentation-analytic studies (sedimentation coefficients of 2.0 +/- 0.2 (S)) have shown three Hb fractions to exist basically in a monomeric form. The molecular weight of component M-2 was determined by sedimentation equilibrium technique to be 15,470 +/- 400. The dimeric Hb was found to have sedimentation coefficients of 3.0 +/- 0.1 (S) in the weakly acidic pH region. In alkaline milieu, the reversible dissociation proceeds into the monomeric molecules (S20, W = 1.9 +/- 0.1 (S)). Molecular weights vary between pH 5.7 and 9.8 not only with hydrogen ion concentration, but also with protein concentration in correspondence with a dissociation-association equilibrium consisting of monomers and dimers. 3. For the Hb fraction M-2, a friction ratio of f/fo = 1.03 was calculated, suggesting an almost spherical shape of this protein. In contrast, the dimeric component appears to have a much more asymmetric structure (f/fo = 1.19). 4. The indivdual MetHb fractions bind the ligands: fluoride, imidazole and azide with different affinities.  相似文献   

12.
1. Hemoglobins from three phenotypes of Italian water buffalo (Bubalus bubalis), named AA, AB and BB, were selected by starch gel electrophoresis at alkaline pH and analyzed using polyacrylamide gel isoelectric focusing and subsequent analysis of titration curves to reveal differences between two types of hemoglobin identified as Hb fast and Hb slow. 2. Globins from Hb fast and Hb slow were purified by fast protein liquid chromatography (FPLC). Electrophoretic differences were found in the respective alpha-chains using polyacrylamide gel disc-electrophoresis at acid pH, polyacrylamide gel isoelectric focusing and by subsequently analyzing titration curves. 3. The results suggest that the alpha chains of Hb fast and Hb slow, called I alpha and II alpha, respectively, differ in at least two aminoacid residues. Subsequently, these amino acids were identified as lysine and cysteine.  相似文献   

13.
Hemoglobin (Hb) Chico (Lys beta 66----Thr at E10) has a diminished oxygen affinity (Shih, D. T.-b., Jones, R. T., Shih, M. F.-C., Jones, M. B., Koler, R. D., and Howard, J. (1987) Hemoglobin 11, 453-464). Our studies show that its P50 is about twice that of Hb A and that its cooperativity, anion, and Bohr effects between pH 7 and 8 are normal. The Bohr effect above pH 8 is somewhat reduced, indicating a small but previously undocumented involvement of the ionic bond formed by Lys beta 66 in the alkaline Bohr effect. Since the oxygen affinity of the alpha-hemes is likely to be normal, that of the beta-hemes in the tetramer is likely to be reduced by the equivalent of 1.2 kcal/mol beta-heme in binding energy. Remarkably, both initial and final stages of oxygen binding to Hb Chico are of lowered affinity relative to Hb A under all conditions examined. The isolated beta chains also show diminished oxygen affinity. In T-state Hb A, Lys(E10 beta) forms a salt bridge with one of the heme propionates, but comparison with other hemoglobin variants shows that rupture of this bridge cannot be the cause of the low oxygen affinity. X-ray analysis of the deoxy structure has now shown that Thr beta 66 either donates a hydrogen bond to or accepts one from His beta 63 via a bridging water molecule. This introduces additional steric hindrance to ligand binding to the T-state that results in slower rates of ligand binding. We measured the O2/CO partition coefficient and the kinetics of oxygen dissociation and carbon monoxide binding and found that lowered O2 and CO affinity is also exhibited by the R-state tetramers and the isolated beta chains of Hb Chico.  相似文献   

14.
Red blood cells of yellow-spotted river turtles (Podocnemis unifilis, Pleurodira, Chelonia, REPTILIA) have two hemoglobin (Hb) components, Hb A and Hb D. We purified the hemoglobin component homologous to amniote (reptiles, birds, and mammals) adult Hb A which comprises two identical α(A) -globin polypeptides and two identical β-globin polypeptides. To establish the crystal structure of Podocnemis Hb A, we first determined the globin primary structures using cDNA nucleotide sequencing with the assistance of protein sequencing. The purified Podocnemis Hb A produced a different form of crystal for each of the two different buffer systems used: form A, tetragonal crystals (space group, P4?2?2), produced under neutral pH (pH 7-8) conditions; and form B, hexagonal crystals (space group, P6?22), produced under high alkaline pH (pH 11-13) conditions. Single crystals of the two forms were examined by Raman microscopy with an excitation of 532 nm, indicating their structural differences. The crystal structures of the two forms were constructed by X-ray crystallographic diffraction at a resolution of 2.20 ? for form A and 2.35 ? for form B. The differences of the tertiary and quaternary structures of the two forms were marginal; however, one clear difference was found in helix structure. When comparing Podocnemis Hb A with Hb A from specimens in other taxa, such as Anser indicus (birds) and Homo sapiens (mammals) by SHELXPRO, the root mean square deviation (RMSD) between the corresponding Cα atoms of the two globins does not exceed 2.0 ?. These low values indicate the crystal structures resemble each other. Our data on X-ray crystal structures and Raman spectra not only reveal the first findings on the two crystal forms of Podocnemis unifilis Hb A but also provide the first refined models for reptilian adult Hb A.  相似文献   

15.
The Antarctic fish Pagothenia bernacchii has one major haemoglobin, Hb1 (over 95% of the total blood content). Hb1 has a strong alkaline Bohr effect and at low pH exhibits the reduced ligand affinity and co-operativity that comprise the Root effect. We have determined the complete amino acid sequence of P. bernacchii Hb1 and also the structure of its carbonmonoxy derivative by X-ray crystallography, to a resolution of 2.5 A. The crystallographic R-factor of the refined structure is 18%. The three-dimensional structure of this fish haemoglobin is similar to that of human haemoglobin A, with a root-mean-square difference in main-chain atom positions of 1.4 A after superimposition of the two structures, despite only 48% homology of their amino acid sequences (including insertion of a single residue in the CD region of the fish alpha-chain). Large structural differences occur only at the N and C termini of both the alpha- and beta-chains. Neither these nor other smaller structural differences provide any obvious explanation of the Root effect of this or other fish haemoglobins.  相似文献   

16.
Hemoglobin Attleboro, a new alpha-chain variant with a substitution of proline for serine at position 138 (H21), was found to be a noncooperative high-affinity hemoglobin (P50 = 0.26 mmHg at pH 7 and 20 degrees C) which lacked an alkaline Bohr effect. Addition of 2,3-diphosphoglycerate (DPG) or inositol hexaphosphate (IHP) led to a decrease in oxygen affinity but to no alteration in either Bohr effect or cooperativity. Ligand binding kinetics studies revealed an overall rate of oxygen dissociation at pH 7.0 and 20 degrees C that was 2.7-fold slower than that for Hb A. At pH 8.5, the kinetic profile was identical with that at pH 7, confirming the absence of a Bohr effect for this variant hemoglobin. Measurement of the rate of oxygen dissociation with carbon monoxide replacement indicated a lack of cooperativity. Sedimentation velocity experiments yielded s20,w values of 2.8 and 4.3 for 65 microM solutions of oxyhemoglobins Attleboro and A, respectively (indicating an enhancement in the oxy dimer population of this variant). Studies of the carbon monoxide combination of this variant revealed an association rate 20-fold faster than that for Hb A; only in the presence of a 1000-fold molar excess of IHP was there a significant reduction in the overall rate. Rapid-scan and traditional stopped-flow experiments conducted in the Soret Soret region demonstrated an alteration in the structure and rate of assembly of the deoxy tetramer of Hb Attleboro relative to that of Hb A. The abnormal properties of this hemoglobin variant can be attributed to major perturbations in the C-terminal region.  相似文献   

17.
During the reaction of oxyhemoglobin (HbO2) with nitrite, the concentration of residual nitrite, nitrate, oxygen, and methemoglobin (Hb+) was determined successively. The results obtained at various pH values indicate the following stoichiometry for the overall reaction: 4HbO2 + 4NO2- 4H+ leads to 4Hb+ + 4NO3- + O2 + 2H2 O (Hb denotes hemoglobin monomer). NO2- binds with methemoglobin noncooperatively with a binding constant of 340 M-1 at pH 7.4 and 25 degrees C. Thus, the major part of Hb+ produced is aquomethemoglobin, not methemoglobin nitrite, when less than 2 equivalents of nitrite is used for the oxidation.  相似文献   

18.
The apparent cytoplasmic proton diffusion coefficient was measured using pH electrodes and samples of cytoplasm extracted from the giant neuron of a marine invertebrate. By suddenly changing the pH at one surface of the sample and recording the relaxation of pH within the sample, an apparent diffusion coefficient of 1.4 +/- 0.5 x 10(-6) cm2/s (N = 7) was measured in the acidic or neutral range of pH (6.0-7.2). This value is approximately 5x lower than the diffusion coefficient of the mobile pH buffers (approximately 8 x 10(-6) cm2/s) and approximately 68x lower than the diffusion coefficient of the hydronium ion (93 x 10(-6) cm2/s). A mobile pH buffer (approximately 15% of the buffering power) and an immobile buffer (approximately 85% of the buffering power) could quantitatively account for the results at acidic or neutral pH. At alkaline pH (8.2-8.6), the apparent proton diffusion coefficient increased to 4.1 +/- 0.8 x 10(-6) cm2/s (N = 7). This larger diffusion coefficient at alkaline pH could be explained quantitatively by the enhanced buffering power of the mobile amino acids. Under the conditions of these experiments, it is unlikely that hydroxide movement influences the apparent hydrogen ion diffusion coefficient.  相似文献   

19.
A new haemoglobin with increased oxygen affinity, beta82 (EF6) lysine leads to threonine (Hb Rahere), was found during the investigation of a patient who was found to have a raised haemoglobin concentration after a routine blood count. The substitution affects one of the 2, 3-diphosphoglycerate binding sites, resulting in an increased affinity for oxygen, but both the haem-haem interaction and the alkaline Bohr effect are normal in the haemolysate. This variant had the same mobility as haemoglobin A on electrophoresis at alkaline pH but was detected by measuring the whole blood oxygen affinity; it could be separated from haemoglobin A, however, by electrophoresis in agar at acid pH. The raised haemoglobin concentration was mainly due to a reduction in plasma volume (a relative polycythaemia) and was associated with a persistently raised white blood count. This case emphasises the need to measure the oxygen affinity of haemoglobin in all patients with absolute or relative polycythaemia when some obvious cause is not evident.  相似文献   

20.
The reaction between hydroxylamine (NH2OH) and human hemoglobin (Hb) at pH 6-8 and the reaction between NH2OH and methemoglobin (Hb+) chiefly at pH 7 were studied under anaerobic conditions at 25 degrees C. In presence of cyanide, which was used to trap Hb+, Hb was oxidized by NH2OH to methemoglobin cyanide with production of about 0.5 mol NH+4/mol of heme oxidized at pH 7. The conversion of Hb to Hb+ was first order in [Hb] (or nearly so) but the pseudo-first-order rate constant was not strictly proportional to [NH2OH]. Thus, the apparent second-order rate constant at pH 7 decreased from about 30 M-1 X s-1 to a limiting value of 11.3 M-1 X s-1 with increasing [NH2OH]. The rate of Hb oxidation was not much affected by cyanide, whereas there was no reaction between NH2OH and carbonmonoxyhemoglobin (HbCO). The pseudo-first-order rate constant for Hb oxidation at 500 microM NH2OH increased from about 0.008 s-1 at pH 6 to 0.02 s-1 at pH 8. The oxidation of Hb by NH2OH terminated prematurely at 75-90% completion at pH 7 and at 30-35% completion at pH 8. Data on the premature termination of reaction fit the titration curve for a group with pK = 7.5-7.7. NH2OH was decomposed by Hb+ to N2, NH+4, and a small amount of N2O in what appears to be a dismutation reaction. Nitrite and hydrazine were not detected, and N2 and NH+4 were produced in nearly equimolar amounts. The dismutation reaction was first order in [Hb+] and [NH2OH] only at low concentrations of reactants and was cleanly inhibited by cyanide. The spectrum of Hb+ remained unchanged during the reaction, except for the gradual formation of some choleglobin-like (green) pigment, whereas in the presence of CO, HbCO was formed. Kinetics are consistent with the view advanced previously by J. S. Colter and J. H. Quastel [1950) Arch. Biochem. 27, 368-389) that the decomposition of NH2OH proceeds by a mechanism involving a Hb/Hb+ cycle (reactions [1] and [2]) in which Hb is oxidized to Hb+ by NH2OH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号