首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thymidylate synthase-dihydrofolate reductase in protozoa   总被引:1,自引:0,他引:1  
In protozoa, thymidylate synthase (TS) and dihydrofolate reductase (DHFR) exist on the same polypeptide. The DHFR domain is on the amino terminus, TS is on the carboxy terminus, and the domains are separated by a junction peptide of varying size depending on the source. The native protein is a dimer of two such subunits and is 110-140 kDa. Most studies of bifunctional TS-DHFR have been performed with the protein from anti-folate resistant strains of Leishmania major, which show amplification of the TS-DHFR gene and overproduction of the bifunctional protein. The Leishmania TS-DHFR has also been highly expressed in heterologous systems. There is extensive communication between domains, and channeling of the H2folate product of TS to DHFR. Anti-folates commonly used to treat microbial infections are poor inhibitors of L. major DHFR. However, selective inhibitors of L. major vs human DHFR have been found. The TS-DHFR from Plasmodium falciparum has also been cloned and sequenced. Interestingly, pyrimethamine-resistant strains of P. falciparum have a common point mutation in the DHFR coding sequence which causes decreased binding of the folate analog. A detailed knowledge of the structure and function of protozoan TS-DHFRs will soon be available.  相似文献   

2.
The coding sequence of the bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) from a moderately pyrimethamine-resistant strain (HB3) of Plasmodium falciparum was assembled in a pUC expression vector. The coding sequence possesses unique Nco1 and Xba1 sites which flank 243 bp of the DHFR gene that include all point mutations thus far linked to pyrimethamine resistance. Wild-type (3D7) and highly pyrimethamine-resistant (7G8) TS-DHFRs were made from this vector by cassette mutagenesis using Nco1-Xba1 fragments from the corresponding cloned TS-DHFR genes. Catalytically active recombinant TS-DHFRs were expressed in Escherichia coli, albeit at low levels. Both TS and DHFR coeluted upon gel filtration and copurified upon affinity and anion exchange chromatography. Gel filtration and SDS-PAGE indicated that the enzyme was a dimer with identical 67-kDa subunits, characteristic of protozoan TS-DHFRs. Amino-terminal sequencing gave 10 amino acids which perfectly matched the sequence predicted from the nucleotide sequence. The recombinant TS-DHFR was purified to homogeneity by 10-formylfolate affinity chromatography followed by Mono Q FPLC. The inhibition properties of pyrimethamine toward the purified recombinant enzymes show that the point mutations are the molecular basis of pyrimethamine resistance in P. falciparum.  相似文献   

3.
The bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) of Leishmania major has been cloned and expressed in Escherichia coli and Saccharomyces cerevisiae. The strategy involved placing the entire 1560-bp coding sequence into a parent cloning plasmid that was designed to permit introduction of unique restriction sites at the 5'- and 3'-ends. In this manner, the entire coding sequence could be easily subcloned into a variety of expression vectors. High levels of TS-DHFR gene expression were driven by tac, pL and T7 RNA pol promoters in E. coli, and the GAPDH-ADH-2 promoter in S. cerevisiae. L. major TS-DHFR also complemented TS deficiency in E. coli. In E. coli, the protein accumulated to very high levels, but most was present as inactive inclusion bodies. Nevertheless, substantial amounts were soluble; up to 2% of the soluble protein was catalytically active TS-DHFR. In the yeast systems, essentially all of the bifunctional protein was soluble and catalytically active, and crude extracts contained about 100-fold more enzyme than do extracts from wild-type L. major. The expressed TS-DHFR from yeast and E. coli was purified to homogeneity by methotrexate-Sepharose affinity chromatography. About 8.5 mg of homogeneous, catalytically active protein is obtained from a 1-L culture of yeast, and 1.5 mg was obtained from 1 L of E. coli culture. A 200-L fermentation of the yeast expression system yielded a crude extract containing over 4 g of TS-DHFR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
In this study we used site-directed mutagenesis to test the hypothesis that substrate channeling in the bifunctional thymidylate synthase-dihydrofolate reductase enzyme from Leishmania major occurs via electrostatic interactions between the negatively charged dihydrofolate produced at thymidylate synthase and a series of lysine and arginine residues on the surface of the protein. Accordingly, 12 charge reversal or charge neutralization mutants were made, with up to 6 putative channel residues changed at once. The mutants were assessed for impaired channeling using two criteria: a lag in product formation at dihydrofolate reductase and an increase in dihydrofolate accumulation. Surprisingly, none of the mutations produced changes consistent with impaired channeling, so our findings do not support the electrostatic channeling hypothesis. Burst experiments confirmed that the mutants also did not interfere with intermediate formation at thymidylate synthase. One mutant, K282E/R283E, was found to be thymidylate synthase-dead because of an impaired ability to form the covalent enzyme-methylene tetrahydrofolate-deoxyuridate complex prerequisite for chemical catalysis.  相似文献   

5.
Thymidylate synthase and dihydrofolate reductase are peak enzymes that accompany the S phase of the unicellular green algae, Scenedesmus obliquus, and are both overproduced in the presence of 5-fluorodeoxyuridine. Such overproducing cultures have served for enzyme isolation and characterization. It has not been possible to separate the two enzyme activities by several methods of protein fractionation, including affinity chromatography on specific immobilized ligands (fluorodeoxyuridylate or N10-formylfolate); both were enriched in parallel approximately 400-fold from algal extracts. The most highly purified samples are of low stability in solution. Enzyme activities are inhibited by methotrexate, 5-fluorodeoxyuridylate, and arabinouridylate but not by hydroxyurea; FdUMP inhibition is fully reversed after removal of the nucleotide. Sedimentation in sucrose gradients (Mr 100,000) and electrophoresis in denaturing polyacrylamide gels (Mr 50,000) suggest that the protein structure resembles more the dimeric, bifunctional thymidylate synthase-dihydrofolate reductase of protozoan species than the separate enzymes found in bacteria and animal cells.  相似文献   

6.
Leishmania tropica promastigotes selected for resistance to the dihydrofolate reductase inhibitor, methotrexate, or the thymidylate synthase inhibitor, 5,8-dideaza-10-propargyl folate, overproduce a bifunctional thymidylate synthase-dihydrofolate reductase and possess a 30-kilobase region of amplified DNA. Five fragments, resulting from BglII digestion of this amplified DNA, were cloned into vectors and utilized as probes to examine mRNA in these organisms. Four mRNA species which hybridize to the amplified DNA sequences were found in both resistant and wild-type Leishmania, but were about 40-fold more abundant in the drug-resistant cells. Three of the four mRNAs are transcribed from the same strand of DNA, are clustered, and appear to have partial overlapping sequences. The thymidylate synthase-dihydrofolate reductase gene was localized to a specific region of the amplified unit of DNA by hybridization with mouse cDNA containing thymidylate synthase sequences and with a synthetic oligonucleotide 41 nucleotides in length, prepared on the basis of the partial amino acid sequence of the Leishmania enzyme. Furthermore, mRNA hybrid-selected using a plasmid containing sequences of the putative gene was shown to direct in vitro synthesis of the bifunctional protein.  相似文献   

7.
Protozoal parasites are unusual in that their thymidylate synthase (TS) and dihydrofolate reductase (DHFR) enzymes exist on a single polypeptide. In an effort to probe the possibility of substrate channeling between the TS and DHFR active sites and to identify inhibitors specific for bifunctional TS-DHFR, we used molecular docking to screen for inhibitors targeting the shallow groove connecting the two active sites. Eosin B is a 100 microm non-active site inhibitor of Leishmania major TS-DHFR identified by molecular docking. Eosin B slows both the TS and DHFR reaction rates. When Arg-283, a key residue to which eosin B is predicted to bind, is mutated to glutamate, however, eosin B only minimally inhibits the TS-DHFR reaction. Additionally, eosin B was found to be a 180 microm inhibitor of Toxoplasma gondii in both biochemical and cell culture assays.  相似文献   

8.
Dasgupta T  Anderson KS 《Biochemistry》2008,47(5):1336-1345
Plasmodium falciparum thymidylate synthase-dihydrofolate reductase (TS-DHFR) is an essential enzyme in nucleotide biosynthesis and a validated molecular drug target in malaria. Because P. falciparum TS and DHFR are highly homologous to their human counterparts, existing active-site antifolate drugs can have dose-limiting toxicities. In humans, TS and DHFR are two separate proteins. In P. falciparum, however, TS-DHFR is bifunctional, with both TS and DHFR active sites on a single polypeptide chain of the enzyme. Consequently, P. falciparum TS-DHFR contains unique distant or nonactive regions that might modulate catalysis: (1) an N-terminal tail and (2) a linker region tethering DHFR to TS, and encoding a crossover helix that forms critical electrostatic interactions with the DHFR active site. The role of these nonactive sites in the bifunctional P. falciparum TS-DHFR is unknown. We report the first in-depth, pre-steady-state kinetic characterization of the full-length, wild-type (WT) P. falciparum TS-DHFR enzyme and probe the role of distant, nonactive regions through mutational analysis. We show that the overall rate-limiting step in the WT P. falciparum TS-DHFR enzyme is TS catalysis. We further show that if TS is in an activated (liganded) conformation, the DHFR rate is 2-fold activated, from 60 s-1 to 130 s-1 in the WT enzyme. The TS rate is also reciprocally activated by approximately 1.5-fold if DHFR is in an activated, ligand-bound conformation. Mutations to the linker region affect neither catalytic rate nor domain-domain communication. Deletion of the N-terminal tail, although in a location remote from the active site, decreases the DHFR single rate and the bifunctional TS-DHFR rate by a factor of 2. The 2-fold activation of the DHFR rate by TS ligands remains intact, although even the activated N-terminal mutant has just half the DHFR activity of the WT enzyme. However, the reciprocal communication between TS active site and DHFR ligands is impaired in N-terminal mutants. Surprisingly, deletion of the analogous N-terminal tail in Leishmania major TS-DHFR causes a 3-fold enhancement of the DHFR rate from approximately 14 s-1 to approximately 40 s-1. In summary, our results demonstrate a complex interplay of domain-domain communication and nonactive-site modulation of catalysis in P. falciparum TS-DHFR. Furthermore, each parasitic TS-DHFR is activated by unique mechanisms, modulated by their nonactive site regions. Finally, our studies suggest the N-terminal tail of P. falciparum TS-DHFR is a highly selective, novel target for potential antifolate development in malaria.  相似文献   

9.
This study presents a kinetic characterization of the recently crystallized bifunctional thymidylate synthasedihydrofolate reductase (TS-DHFR) enzyme from the apicomplexa parasite, Cryptosporidium hominis. Our study focuses on determination of the C. hominis TS-DHFR kinetic mechanism, substrate channeling behavior, and domain-domain communication. Unexpectedly, the unique mechanistic features of C. hominis TS-DHFR involve the highly conserved TS domain. At 45 s(-) (1), C. hominis TS activity is 10-40-fold faster than other TS enzymes studied and a new kinetic mechanism was required to simulate C. hominis TS behavior. A large accumulation of dihydrofolate produced at TS and a lag in product formation at DHFR were observed. These observations make C. hominis TS-DHFR the first bifunctional TS-DHFR enzyme studied for which there is clear evidence against dihydrofolate substrate channeling. Furthermore, whereas with Leishmania major TS-DHFR there are multiple lines of evidence for domain-domain communication (ligand binding at one active site affecting activity of the other enzyme), no such effects were observed with C. hominis TS-DHFR.  相似文献   

10.
This review deals with recent findings in the purification and characterization of dihydrofolate reductase (DHFR) and thymidylate synthase (TS) in plants. The few enzymes purified, which differ remarkably in regard to their structure. kinetic and molecular properties and subcellular location are described. The response of DHFRs to antifolic agents and the analysis of resistance mechanisms in isolated cell lines is also reported. Problems opened by recent studies of the enzymes isolated from plants are outlined.  相似文献   

11.
A 2.0-kb fragment of Bacillus subtilis 168 chromosomal DNA has been shown to contain both the dihydrofolate reductase (dfrA) and thymidylate synthase B (thyB) genes. In addition to the close proximity of dfrA and thyB, the expression of these genes seems to be regulated coordinately. Mutations that map near or within the dfrA gene resulted in coordinate increases in both dihydrofolate reductase and thymidylate synthase B activities. Also, when trimethoprim, a specific inhibitor of dihydrofolate reductase and thymidylate synthase B activities. Also, when trimethoprim, a specific inhibitor of dihydrofolate reductase, was added to growing cells, both dihydrofolate reductase and thymidylate synthase B activities increased coordinately.  相似文献   

12.
Pattanakitsakul S. and Ruenwongsa P. 1984. Characterization of thymidylate synthetase and dihydrofolate reductase from Plasmodium berghei. International Journal for Parasitology14: 513–520. Thymidylate synthetase (TS) and dihydrofolate reductase (DHFR) from Plasmodium berghei were copurified by Sephacryl S-300 and Sephadex G-200 column chromatography and found to have an apparent mol. wt of 132,000. Electrophoresis of the partially purified enzyme under non-denaturing conditions showed the comigration of TS and DHFR. The mol. wt of TS was estimated to be 65,000 on SDS-gel electrophoresis. Both enzymes exhibit a broad pH optimum in the range of 6.5–8.0. Urea, NaCl and KC1 inhibit TS but activate DHFR. For TS, the apparent Km for dUMP and methylene-tetrahydrofolate have been found to be 71.4 and 312.5 μM, respectively. For DHFR, the apparent Km for dihydrofolate and NADPH have been found to be 4.4 and 12.5 μM, respectively. Inhibition of DHFR by pyrimethamine, methotrexate and trimethoprim are competitive with dihydrofolate with Kis of 0.63, 0.5 and 1.88 nM, respectively. FdUMP inhibition of TS is competitive with dUMP with Kis of 0.05 μM, but inhibition by methotrexate is uncompetitive with dUMP and MTHF with Kii of 103 and 23 μM, respectively.  相似文献   

13.
Dihydrofolate reductase (DHFR) and thymidylate synthase (TS) activities from cell suspension cultures of Daucus carota were shown to copurify on (NH4)2SO4 fractionation, DEAE Sephadex and methotrexate-Sepharose affinity chromatography and to share approximately the same Mr(183 kDa and 185 kDa respectively) as judged by gel filtration on Sephacryl S-200.The copurified protein migrated as a single band on polyacrylamide gel electrophoresis under denaturing conditions.Both activities could be eluted from the same position of the native gel.Moreover, methotrexate-resistant cell lines which overproduce DHFR revealed to have a parallel higher level of TS. It is therefore proposed and discussed that in carrot, similarly to protozoa, TS and DHFR are present on a single bifunctional polypeptide of 58 kDa.  相似文献   

14.
In Plasmodium falciparum, dihydrofolate reductase and thymidylate synthase activities are conferred by a single 70-kDa bifunctional polypeptide (DHFR-TS, dihydrofolate reductase-thymidylate synthase) which assembles into a functional 140-kDa homodimer. In mammals, the two enzymes are smaller distinct molecules encoded on different genes. A 27-kDa amino domain of malarial DHFR-TS is sufficient to provide DHFR activity, but the structural requirements for TS function have not been established. Although the 3'-end of DHFR-TS has high homology to TS sequences from other species, expression of this protein fragment failed to yield active TS enzyme, and it failed to complement TS(-) Escherichia coli. Unexpectedly, even partial 5'-deletion of full-length DHFR-TS gene abolished TS function on the 3'-end. Thus, it was hypothesized that the amino end of the bifunctional parasite protein plays an important role in TS function. When the 27-kDa amino domain (DHFR) was provided in trans, a previously inactive 40-kDa carboxyl-domain from malarial DHFR-TS regained its TS function. Physical characterization of the "split enzymes" revealed that the 27- and the 40-kDa fragments of DHFR-TS had reassembled into a 140-kDa hybrid complex. Thus, in malarial DHFR-TS, there are physical interactions between the DHFR domain and the TS domain, and these interactions are necessary to obtain a catalytically active TS. Interference with these essential protein-protein interactions could lead to new selective strategies to treat malaria resistant to traditional DHFR-TS inhibitors.  相似文献   

15.
Two important polymorphisms of folate cycle enzymes, methylenetetrahydrofolate reductase (MTHFR) C677T and thymidylate synthase (TS) enhancer region (TSER) 28-bp tandem repeat, are related to risk of various types of cancer, including brain tumors, although there are few studies on this subject. A case-control study of these two polymorphisms in astrocytomas of different grades was carried out using polymerase chain reaction-restriction fragment length polymorphism, also determining the immunohistochemical expression of TS. The MTHFR 677 TT genotype was less associated with astrocytic tumors (odds ratio [OR]=0.00; p=0.0238), but the TSER polymorphism did not show any significant association. Combined genotype TT-double repeats/triple repeats (2R/3R) had a protective effect against astrocytomas (OR=0.00; p=0.0388). Expression of TS protein was observed in the majority of cases, with grade IV tumors being the exception. Moreover, the median H-score for the pilocytic astrocytomas was significantly higher when compared with that for diffuse tumors. There was an inverse correlation between the 2R/2R genotype and the highest TS-expressing tumors, and 3R/3R was relatively more frequent among the tumors grouped in the third and fourth quartiles. Our results provide support for the role of MTHFR and TS polymorphism in gliomagenesis, possibly because of the alteration of DNA methylation and repair status. Moreover, high levels of TS expression were detected in these tumors.  相似文献   

16.
Dihydrofolate reductase (DHFR) and thymidylate synthase (TS) activities are associated with a 285,000 molecular weight enzyme complex in carrot (Daucus carota L.). Selection for methotrexate (MTX) resistance by stepwise increase of the concentration of MTX results in a high frequency adaptation to MTX with little or no significant increase in DHFR activity. However, when as a second step following MTX selection a specific inhibitor of TS, 5-fluoro-2-deoxyuridine was used, DHFR overproducer lines were obtained. The overproduction phenotype of the lines was almost completely lost after 8 weeks of growth in the absence of selection pressure. Although DHFR and TS are independent gene products, their activities increase in proportion (~20-fold) in the overproducer lines. This strongly suggests that DHFR and TS are not only functionally and physically linked in the same enzyme complex, but also are coregulated. These cell lines resemble the MTX-induced DHFR overproducer amplified cell lines of mammalian origin in their mode of selection, high frequency of appearance, elevated enzyme activity, and increased specific mRNA levels.  相似文献   

17.
Two different approaches were used to define the intracellular localization in mouse L929 cells of two deoxyribonucleotide biosynthetic enzymes: ribonucleoside diphosphate reductase (EC1.17.4.1) and thymidylate synthase (EC2.1.1.45). The first involved treatment with saponins, which render the plasma membrane permeable to proteins without disrupting intracellular organelles. Under conditions where nuclear DNA synthesis and the activity of the nuclear enzyme NMN adenylyltransferase were unaffected, the entire cellular complements of a cytosolic enzyme, glucose-6-phosphate dehydrogenase, and of ribonucleotide reductase and thymidylate synthase were released at the same rate and with similar dependence on saponin concentration. The second approach involved centrifugal enucleation of cells treated with cytochalasin B (CB) and measurement of the distribution of enzyme activities in the resulting cytoplast and karyoplast fractions. Whereas most NMN adenylyltransferase activity remained with the karyoplasts, glucose-6-phosphate dehydrogenase, ribonucleotide reductase, and thymidylate synthase were almost exclusively associated with the enucleated cytoplasts. These results indicate that, under conditions where nuclear DNA synthesis is apparently unperturbed, the intracellular distribution of the deoxyribonucleotide biosynthetic enzymes studied is the same as that of glucose-6-phosphate dehydrogenase, a typical cytosol enzyme, and clearly differs from that of NMN adenylyltransferase, a nuclear enzyme.  相似文献   

18.
19.
Thymidylate synthetase (TS) and dihydrofolate reductase (DHFR) in Leishmania tropica exist as a bifunctional protein. By use of a methotrexate-resistant strain, which overproduces the bifunctional enzyme, the protein was purified 80-fold to apparent homogeneity in two steps. The native protein has an apparent molecular weight of 110 000 and consists of two subunits with identical size and charge. Available data indicate that each of the subunits possesses TS and DHFR. The TS of the bifunctional protein forms a covalent 5-fluoro-2'-deoxyuridylate (FdUMP)-(+/-)-5,10-methylenetetrahydrofolate-enzyme complex in which 2 mol of FdUMP is bound per mole of enzyme. In contrast, titration of DHFR with methotrexate indicated that only 1 mol of the inhibitor is bound per mole of dimeric enzyme. Both TS and DHFR activities of the bifunctional enzyme were inactivated by the sulfhydryl reagent N-ethylmaleimide. Substrates of the individual enzymes afforded protection against inactivation, indicating that each enzyme requires at least one cysteine for catalytic activity. Kinetic evidence indicates that most, if not all, of the 7,8-dihydrofolate produced by TS is channeled to DHFR faster than it is released into the medium. Although the mechanism of channeling is unknown, the possibility that the two enzymes share a common folate binding site has been ruled out.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号