首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary A temperature-sensitive EFG mutant of Bacillus subtilis was isolated and characterized. This mutant, ts32, synthesizes stable RNA at 48° C with or at 50° C without accompanied protein synthesis. The initial rate of the RNA synthesis at 48° C or 50° C was 1.5 to 2.0 times as much as that at 30° C.This mutant as well as its parent (both leu -) showed stringent response for the RNA synthesis upon deprivation of amino acids with an accumulation of the MS nucleotides (pp Gpp and pppGpp). On raising temperature to 48° C or 50° C, the ts-cells immediately began to synthesize the stable RNA with an initial increase of the MS nucleotides. No drastic decrease in amount of the MS was observed during the active RNA synthesis.These results suggest that EFG is somehow involved in repressing the stable RNA synthesis, and have broken the close relationship between the stable RNA synthesis and the MS nucleotides hitherto reported.  相似文献   

3.
Attempts to correlate differences in cell shape with aspects of peptidoglycan structure were investigated. The parent strain, Bacillus subtilis 168, and its temperature-sensitive tagB mutant were grown in the chemostat under different growth conditions. The composition of the peptidoglycan was similar in all samples, regardless of cellular shape and anionic polymer content. Muropeptides, released by digestion with muramidase, comprised mainly dimers and monomers with only small amounts of trimer and traces of tetramer muropeptide. Overall, cross-linking did not vary greatly and the cross-linking index was less than 38%. Reverse-phase HPLC separation showed a complex fine structure. The principal muropeptides in all samples appeared to be the tetra monomer, tetra-tetra dimer and tetra-tetra-tetra trimer. While the major components looked the same in all samples, two specific components, a monomer and a dimer, were seen exclusively in the samples that had coccal morphology.  相似文献   

4.
We have isolated a mutant of Baccillus subtilis with a temperature-sensitive lesion in the process of spore germination. The temperature-sensitive mutation affects only germination and outgrowth, and the earliest defect observed is an early block of ribonucleic acid synthesis during germination at 46 C. Upon return to 35 C there is a complete repair of the impaired function, even in the absence of protein synthesis. Protein synthesis inhibition during germination of the mutant spores at 46 C has the effect of increasing the amount of ribonucleic acid made. The temperature-sensitive mutation is located near aroI.  相似文献   

5.
A colony screening procedure was devised to detect Bacillus subtilis mutants containing temperature-sensitive trypsin-like intracellular protease activity. The enzyme was characterized as a non-sulfhydryl serine protease on the basis of inhibitor studies. It was also inhibited by D- or L-histidine but not by any other amino acid tested. The long-term survival at 45 degrees C of these mutants in a minimal salts medium was decreased, with rapid lysis occurring within 24 h. A D-histidine function in long-term survival and inhibition accounted for the presence of additional protease mutants among survivors of histidine auxotrophs selected for their ability to utilize D-histidine. In addition to being lysed when incubated at 45 degrees C under nongrowth conditions, all of the protease mutants had a decreased rate of protein turnover and produced spores deficient in a major low-molecular-weight spore coat polypeptide. The morphology of the undercoat layers was altered, but there was no effect on spore heat resistance or on germination. The missing spore coat polypeptide appeared to be processed from a larger precursor by cleavage to produce N-terminal histidine. A defect in this protease could account for the lack of processing and thus the absence of this polypeptide in spore coats.  相似文献   

6.
7.
At 45 C, in a temperature-sensitive initiation mutant (TsB134) of Bacillus subtilis 168 Thy- tryp-, growing in a glucose-arginine minimal medium, chromosome completion occurred over a period of 80 to 90 min, after which there was no further nuclear division. Normal symmetrical cell divisions continued for a generation afterwards, so that nuclei were segregated into separate cells. During this period asymmetric divisions started to occur. Septa appeared at 25 to 30% from one end of the cell, giving a small anucleate cell and a larger nucleate cell. During inhibition of deoxyribonucleic acid (DNA) synthesis by thymine starvation under the restrictive conditions, asymmetrical division also occurred until there was approximately one nucleus per cell (about one generation time). Asymmetric division, giving anucleate cells, then occurred. Similar results were obtained when DNA synthesis was inhibited by nalidixic acid. After 3 h at 45 C, the rate of anucleate cell production in the presence and absence of thymine was constant at one division per 85 min per chromosome terminus present when DNA synthesis stopped. In the absence of DNA synthesis (during thymine starvation) at 35 C, growth in cell length was linear (i.e., the rate was constant), but at 45 C during thymine starvation the rate gradually increased by more than twofold. It is suggested that this was due to the establishment of new sites of growth associated with anucleate cell production. In the presence of thymine at 45 C, the rate of length extension increased by more than fourfold, which it is suggested was caused by the appearance of new growth zones as a result of chromosome termination and a contribution associated with anucleate cell production. If the mutant was incubated at 45 C for 90 min, both in the presence and absence of thymine, then anucleate cell formation could continue on restoration to 35 C in the absence of thymine...  相似文献   

8.
9.
Two mutants of Bacillus subtilis temperature-sensitive in RNA synthesis were isolated. One mutation (rna-20) was demonstrated to be an allele of a previously identified gene (Riva et al., 1976). The other mutation (rna-16) identified a different gene and was mapped near aroI. The rna-16 mutation at the permissive temperature affected the spore outgrowth process. Purified RNA polymerase from rna-16 did not show any temperature sensitivity or structural defect.  相似文献   

10.
The changes in cell morphology of Bacillus subtilis rodB during a temperature shift from 20 to 42 degrees C, in the absence of added anions, are described. At 20 degrees C the organisms grow as rods but gradually become spherical in shape when placed at 42 degrees C. The shape change is initiated by an increase in diameter at the cell equator, resulting in a bulged morphology, which is further modified to the morphology of a coccus. This change may involve a modification of the pattern of normal cylindrical extension such that incorporation of newly synthesized wall leads only to increase in diameter, perhaps from a growth zone of limited extent. The pattern of surface growth was followed by reconstructing the sequence of cross wall formation and pole construction in rods grown at 20 degrees C and in organisms incubated at 42 degrees C for 75 and 150 min. In thin section, wall forming the septum and nascent poles can be distinguished from the surface distal to the division site by the presence of raised tears, perhaps analogous to the wall bands of streptococci. By using an analog rotation technique involving the three-dimensional reconstruction of cells by mathematical rotation of axial thin sections about their longitudinal axis, it is shown that the proportion of septal wall increases during the shape change. In the coccal forms, all surface growth may arise from septal growth sites.  相似文献   

11.
12.
A class of rifampin-resistant (rfm) mutations of Bacillus subtilis suppresses the temperature-sensitive sporulation of a fusidic acid-resistant mutant. FUS426, which has an altered elongation factor G. The rfm mutation suppressed only the sporulation defect caused by the elongation factor G mutation, but could not suppress other types of induced sporulation defects. Genetic and biochemical analyses showed that the sporulation suppression by the rfm mutation was caused by a single mutation in RNA polymerase. After the early sporulation phase, the apparent rate of RNA synthesis of FUS426, measured by [3H]uracil or [3H]uridine incorporation into RNA, became lower than that of the wild-type strain, and this decrease was reversed by the rfm mutation. However, when the total rate of RNA synthesis of FUS426 was calculated by measuring the specific activity of [3H]UTP and [3H]CTP, it was higher than that of the rfm mutant, RIF122FUS426. The possible mechanism of the functional interaction between elongation factor G and RNA polymerase during sporulation is discussed.  相似文献   

13.
Summary Mutants of Saccharomyces cerevisiae lacking pyruvate kinase (EC 2.7.1.40) are described. These have less than 0.5% of the pyruvate kinase activity of the wild type. All the other glycolytic enymes are present in normal amounts in these mutants. The mutation is recessive and segregates in diploids as a single gene. Five alleles examined fail to complement one another. Tetrad analysis and mitotic recombination data place the mutation on the left arm of chromosome I distal to cys 1. The majority of single-step spontaneous revertants on glucose regain the enzyme activity fully and this activity appears, by a number of criteria, to be due to the same enzyme present in the wild type. Some of these revertants become nuclear petites. The mutants do neither grow on nor ferment sugars but do grow on ethyl alcohol or pyruvate. Glucose addition to cultures growing on alcohol arrests growth until glucose is exhausted. The steady state rate of glucose utilization is slower than in the wild type. This is associated with the accumulation of as much as 5 moles P-enolpyruvate per g wet weight of cells and proportional amounts of 2-P-glyceric and 3-P glyceric acids.The mutation is believed to involve some regulatory element in the synthesis of pyruvate kinase.  相似文献   

14.
A new relaxed mutant of Bacillus subtilis.   总被引:3,自引:1,他引:2       下载免费PDF全文
A new relaxed mutant of Bacillus subtilis was isolated by screening Rifr clones for alterations in stringent control. The Rifr relaxed mutant which is described was found to contain a second-site mutation conferring a relaxed response to an energy source downshift and was partially relaxed after amino acid starvation. The new rel locus, called relG, was distinct from the two other known rel loci in B. subtilis, relA, and relC.  相似文献   

15.
The content and distribution of autolysin were measured in temperature-sensitive morphological mutants of Bacillus subtilis. Strains RUB1000 and RUB1012 grew as rods at 30 C. At 45 C the mutants contained disproportionately less teichoic acid than peptidoglycan and grew as irregular spheres. The amount of enzyme that could be extracted from rods was at least 31 times the amount extracted from spheres. The rate of autolysis of cell walls was 7- to 28-fold greater in rods than in spheres. The low activity found associated with the cell walls of spheres was not compensated for by larger amounts of autolytic activity in the cytoplasm. No activity was found in the growth medium at either temperature. The failure of the mutant cells to autolyze was due to low amidase activity and relatively resistant cell walls. Revertants of RUB1012 were isolated that had 13, 23, and 55% of the normal proportions of teichoic acid when grown at the nonpermissive temperature. Cell walls from the revertants were as sensitive to added amidase as the wild-type strain. None of the revertant strains regained the wild-type ability to produce more amidase at 45 C. However, the deficiency in autolysin observed with RUB1012 was partially restored in revertants containing higher proportions of teichoic acid.  相似文献   

16.
A temperature-sensitive mutant of Bacillus stearothermophilus, TS-13, was unable to grow above 58 degrees C, compared to 72 degrees C for the wild type. Actively growing TS-13 cells lysed within 2 h when exposed to a restrictive temperature of 65 degrees C. Peptidoglycan synthesis stopped within 10 to 15 min postshift before a shut down of other macromolecular syntheses. Composition of preexisting peptidoglycan was not altered, nor was new peptidoglycan of aberrant composition formed. No significant difference in autolysin activity was observed between the mutant and the wild type at 65 degrees C. Protoplasts of TS-13 cells were able to synthesize cell wall material at 52 degress C, but not at 65 degrees C. This wall material remained closely associated with the cell membrane at the outer surface of the protoplasts, forming small, globular, membrane-bound structures which could be visualized by electron microscopy. These structures reacted with fluorescent antibody prepared against purified cell walls. Production of this membrane-associated wall material could be blocked by bacitracin, which inhibited cell wall synthesis at the level of transport through the membrane. The data were in agreement with previous studies showing that at the restrictive temperature this mutant is unable to alter its membrane fatty acid and phospholipid composition with temperature such that it is not able to maintain a membrane lipid composition which permits normal membrane function at the restrictive temperature.  相似文献   

17.
A temperature-sensitive, 5-fluorotryptophan (5FT)-resistant mutant of Bacillus subtilis was isolated which forms an altered tryptophanyl transfer ribonucleic acid synthetase [l-tryptophan: sRNA ligase (AMP), EC 6.1.1.2]. The mutant grows well at 30 C but not at 42 C. At the latter temperature, protein and ribonucleic acid (RNA) synthesis are abolished while deoxyribonucleic acid (DNA) synthesis proceeds for a considerable time. Tryptophanyl-transfer RNA (tRNA) synthetase activity is not detectable in the extracts of the mutant grown at 30 C whether this activity is measured by the attachment of l-tryptophan to tRNA or the l-tryptophan-dependent exchange of (32)P-pyrophosphate with adenosine triphosphate. Mixing experiments with extracts from the wild type and the mutant have ruled out the presence of an inhibitor or the absence of an activator as possible causes. Attempts to retrieve enzyme activity in vitro by various means (different conditions for cell disruption, addition of l-tryptophan, and adenosine triphosphate to the extraction buffer containing glycerol) were unsuccessful. The mutation in the locus of the tryptophanyl tRNA synthetase (trpS) was mapped on the bacterial chromosome by transformation and transduction. It is located between argC and metA. All temperature-resistant transformants recover wild-type levels of tryptophanyl tRNA synthetase activity and sensitivity to 5FT. Spontaneous revertants to temperature resistance are 5FT sensitive, but their levels of tryptophanyl tRNA synthetase activity and the thermolability of this enzyme in cell-free extracts varies. These revertants do not support the growth of a presumed nonsense mutant of phase SPO-1. Transduction experiments with phage PBS-1 indicated that reversion must be the result of an event at the site of the original mutation or at a site extremely close to it.  相似文献   

18.
Cd2+ and Mn2+ accumulation was studied with wild-type Bacillus subtilis 168 and a Cd2+-resistant mutant. After 5 min of incubation in the presence of 0.1 microM 109Cd2+ or 54Mn2+, both strains accumulated comparable amounts of 54Mn2+, while the sensitive cells accumulated three times more 109Cd2+ than the Cd2+-resistant cells did. Both 54Mn2+ and 109Cd2+ uptake, which apparently occur by the same transport system, demonstrated cation specificity; 20 microM Mn2+ or Cd2+ (but not Zn2+) inhibited the uptake of 0.1 microM 109Cd2+ or 54Mn2+. 54Mn2+ and 109Cd2+ uptake was energy dependent and temperature sensitive, but 109Cd2+ uptake in the Cd2+-resistant strain was only partially inhibited by an uncoupler or by a decrease in temperature. 109Cd2+ uptake in the sensitive strain followed Michaelis-Menten kinetics with a Km of 1.8 microM Cd2+ and a Vmax of 1.5 mumol/min X g (dry weight); 109Cd2+ uptake in the Cd2+-resistant strain was not saturable. The apparent Km value for the saturable component of 109Cd2+ uptake by the Cd2+-resistant strain was very similar to that of the sensitive strain, but the Vmax was 25 times lower than the Vmax for the sensitive strain. The Km and Vmax for 54Mn2+ uptake by both strains were very similar. Cd2+ inhibition of 54Mn2+ uptake had an apparent Ki of 3.4 and 21.5 microM Cd2+ for the sensitive and Cd2+-resistant strains, respectively. Mn2+ had an apparent Ki of 1.2 microM Mn2+ for inhibition of 109Cd2+ uptake by the sensitive strain, but the Cd2+-resistant strain had no defined Ki value for inhibition of Cd2+ uptake by Mn2+.  相似文献   

19.
Deoxyribonucleic acid repair synthesis was studied in one wild-type and two mutant strains of Bacillus subtilis that are defective in excision of pyrimidine dimers. The cells were irradiated with ultraviolet light, and 6-(p-hydroxyphenyl-azo)-uracil was used to block replicative synthesis, allowing only repair synthesis. One of the mutations (uvs-42) resulted in a severe inhibition of incision, dimer excision, and repair synthesis. In contrast, the other mutant (uvr-1) slowly incised and excised dimers and did repair synthesis in patches which appear to be several-fold longer than those in the wild-type strain, apparently because large gaps are produced at excision sites. The results indicate that the primary defect in uvs-42 cells is in initiation of dimer excision, whereas the uvr-1 mutation appears to be a defect in the exonuclease normally used to complete dimer excision.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号