首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of the fibrinolytic system of cultured human umbilical vein endothelial cells (HUVECs) by recombinant interleukin 1 beta (rIL-1 beta) and tumor necrosis factor alpha (rTNF alpha) was investigated. Functional and immunologic assays indicated that both cytokines decreased HUVEC tissue-type plasminogen activator (tPA) and increased type 1 plasminogen activator inhibitor (PAI-1) in a dose- and time-dependent manner. Maximal effects (50% decrease in tPA antigen; 300-400% increase in PAI-1 activity) were achieved with 2.5 units/ml rIL-1 beta and 200 units/ml rTNF alpha. Combinations of rIL-1 beta and rTNF alpha were not additive at these maximal concentrations. After a 24-h pretreatment with rIL-1 beta, HUVECs secreted tPA at one-quarter of the rate of control cells and released PAI-1 at a rate that was 5-fold higher than controls. Neither the basal rate of PAI-1 release nor the increased rate of release of PAI-1 in response to rIL-1 beta was affected by subsequently treating the cells with secretagogues (e.g. phorbol myristate acetate) suggesting that PAI-1 is not contained within a rapidly releasable, intracellular storage pool. Northern blot analysis using a PAI-1 cDNA probe indicated that the cytokines increased the steady-state levels of the 3.2- and 2.3-kb PAI-1 mRNA species, but with a preferential increase in the larger mRNA form. The fact that both rIL-1 beta and rTNF alpha act in a similar manner strengthens the hypothesis that the local development of inflammatory/immune processes could reduce endothelial fibrinolytic activity.  相似文献   

2.
Cytokine regulation of interleukin 6 production by human endothelial cells   总被引:17,自引:0,他引:17  
The influence of recombinant (r) human tumor necrosis factor alpha (rTNF-alpha), r human interleukin 1 beta (rIL-1 beta), and r human interferon gamma (rIFN-gamma) on the production of interleukin 6 (IL-6) by human endothelial cells (HEC) was investigated. The addition of 1-100 U/ml of either rTNF-alpha or rIL-1 beta to cultures of HEC monolayers caused a dose-related increase in IL-6 production as detected after 24 hr of incubation. In contrast to rIL-1 beta and rTNF-alpha, the use of up to 1000 U/ml of rIFN-gamma caused only a moderate increase in IL-6 production. However, significantly greater quantities of IL-6 were produced by HEC monolayers subjected to 1000 U/ml of rIFN-gamma in combination with 1-100 U/ml of rTNF-alpha. Furthermore, the addition of graded concentrations of human transforming growth factor beta (TGF-beta) to cultures resulted in a dose-related inhibition of rIL-1 beta- and rTNF-alpha-induced IL-6 production by HEC. The results demonstrate that rIL-1 beta and rTNF-alpha share the ability to stimulate HEC for production of IL-6 and indicate that TGF-beta may act as an immunosuppressive agent, at least partially, through its ability to inhibit the action of TNF-alpha and IL-1 on endothelial cells.  相似文献   

3.
Organisms belonging to the Mycobacterium avium complex (MAC) are the most common bacterial pathogens in patients with AIDS but factors associated with the activation of cellular defense mechanisms against this atypical mycobacterium have not been defined. Peritoneal macrophages harvested from a chronic MAC infection in C57 black mice are able to kill approximately 86% of intracellular MAC in contrast to 0 to 20% killing by unstimulated human and mouse macrophages in vitro. The availability of human rTNF-alpha, rIFN-gamma, and rIL-2 permitted evaluation of the role of each of these lymphokines/monokines, alone or in combination, in activating macrophages in vitro to kill MAC. Human monocyte-derived macrophages were cultured in vitro, stimulated with rIL-2, rIFN-gamma, or rTNF, and then infected with MAC (serovars 1 and 8). Mouse peritoneal macrophages were harvested, cultured in vitro, and stimulated with rIFN-gamma. rTNF (10(4) U/ml) was associated with a modest increase of intracellular killing of MAC (58 +/- 5%) even when utilized 24 or 48 h after macrophage infection or when administered for 5 consecutive days after infection (78.1 +/- 4%). Both human and murine IFN-gamma were associated with increased intracellular growth of MAC (32 +/- 4% for murine and 38 +/- 3% for human macrophages). However, intracellular killing (53 +/- 6% compared with control) was observed after 6 days of treatment with IFN-gamma. This latter effect was fully blocked by anti-TNF antibody, whereas rIL-2 alone did not augment the intracellular killing of MAC by human macrophages. rTNF plus either rIFN-gamma or rIL-2 triggered significant increases in superoxide anion production, but subsequent MAC killing was no greater than with rTNF alone. Treatment of macrophages with 10 U/ml of rTNF followed by rIL-2 (200 U/ml) was associated with 68% of intracellular killing. TNF seems to be an important monokine, promoting activation of mycobactericidal mechanisms in human macrophages.  相似文献   

4.
Endothelial cell growth factor (ECGF) is a potent polypeptide mitogen which stimulates the growth of endothelial cells. The mitogenic effect of ECGF was inhibited by addition of recombinant interleukin-1 (rIL-1) alpha or beta in a concentration dependent manner. The morphological change was not observed distinctly. In the condition without ECGF, both types of rIL-1 enhanced [3H]-thymidine uptake slightly, but failed to increase cell numbers. These data suggest the possibility that the effect of rIL-1 on EC is modulated by the presence of ECGF.  相似文献   

5.
Human recombinant tumor necrosis factor-alpha (rTNF alpha) alone (up to 1000 units/ml) did not alter either basal or human chorionic gonadotropin (hCG)-induced testosterone formation in primary culture of rat Leydig cells. However, concomitant addition of rTNF alpha with human recombinant interleukin-1 beta (rIL-1 beta) enhanced the inhibitory effects of rIL-1 beta. The rIL-1 beta dose response curve was shifted to the left (IC50 changed from 1 ng/ml to 0.3 ng/ml). Even though rTNF alpha had no effect on testosterone formation, hCG-stimulated cyclic AMP formation was inhibited by rTNF alpha in a dose dependent manner. In the presence of both rTNF alpha and rIL-1 beta, hCG-induced cyclic AMP formation and binding of [125I]-hCG to Leydig cells were further inhibited. Testicular macrophages represent about 20% of the interstitial cells. TNF alpha and IL-1 may be produced locally by interstitial macrophages and have paracrine effects on Leydig cell function.  相似文献   

6.
7.
We report here a comparative study of the effects of several cytokines known to affect myeloid cell differentiation on functional properties of human mature granulocytes. We show that recombinant interferon-gamma (rIFN-gamma), recombinant granulocyte/macrophage-colony stimulating factor (rGM-CSF), recombinant tumor necrosis factor (rTNF), and lymphotoxin (LT) purified to homogeneity are potent stimulators of polymorphonuclear cells (PMN) activity. All cytokines enhance antibody-dependent cell-mediated cytotoxicity (Ab-CMC) mediated by human PMN; however, rGM-CSF, rTNF, and LT have an immediate and short-lived effect on the PMN, whereas the activation by rIFN-gamma requires several hours of induction but can be observed up to 24 to 48 hr of culture. Only the effect of rIFN-gamma is in part dependent on induction of a high-affinity FcR for monomeric IgG on PMN, as suggested by two-color sorting analysis, and on mechanisms that result in prolonged survival of PMN in a functionally active state to mediate oxidative burst, phagocytosis, and bactericidal activity. Greater enhancement of Ab-CMC is obtained by using rIFN-gamma in combination with the other cytokines. Our data indicate that cytokines previously defined on the basis of their cytotoxic effects mediate a wide spectrum of activities on mature myeloid cells and provide evidence for their possible role in vivo, alone or in combination with rIFN-gamma, in modulating functional activities of cells responsible for non-adaptive systems of defense.  相似文献   

8.
Cytokines are known to tip the balance of the coagulant-anticoagulant molecules on the endothelial cell surface toward intravascular coagulation. Their effects on endothelial cell surface-associated heparin-like compounds have not been examined yet. Incorporation of [35S]sulfate into heparan sulfate on cultured porcine aortic endothelial cells was suppressed by human recombinant interleukin-1 beta (rIL-1 beta) or tumor necrosis factor alpha (rTNF alpha) in a dose- and time-dependent manner with little effect on cell number, protein content, and [3H]leucine incorporation of cells. Maximal inhibition was achieved by incubation of cells with 100 ng/ml of rIL-1 beta or 5 ng/ml of rTNF alpha for 12-24 hours, resulting in a reduction of the synthesis of heparan sulfate on the cell surface by approximately 50%. The dose dependency was consistent with that seen in the stimulation of endothelial cell procoagulant activity by each cytokine. The suppression of heparan sulfate synthesis was sustained for at least 48 hours after pretreatment of cells with cytokines and was unchanged after the addition of indomethacin or polymyxin B. The rate of degradation of prelabeled 35S-heparan sulfate on the cell surface was not altered by cytokine treatments. Neither the size, the net negative charge, nor the proportion of the molecule with high affinity for antithrombin III of endothelial cell heparan sulfate was changed by cytokines. Furthermore, specific binding of 125I-labeled antithrombin III to the endothelial cell surface was reduced to 40-60% of control by cytokines. In parallel with reduction in binding, antithrombin III cofactor (heparin-like) activity was partially diminished in cytokine-treated endothelial cells. Thus, cytokine-mediated suppression of heparin-like substance on endothelial cells appears to be another cytokine-inducible endothelial effects affecting coagulation.  相似文献   

9.
D J Kawahara  J S Kenney 《Cytokine》1991,3(2):117-124
Species differences in sensitivity to human recombinant cytokines were observed when human or rat islets were co-cultured with human recombinant cytokines for 6 days. Suppression of both human and rat islet insulin secretion resulted from co-culture with recombinant interleukin-1 alpha (rIL-1 alpha) or interleukin-1 beta (rIL-1 beta); however, direct rIL-1 alpha and rIL-1 beta cytotoxicity was seen with rat islets but not with human islets. Human islet insulin secretion was also suppressed during co-culture with recombinant tumor necrosis factor (rTNF) or interferon (rIFN), but not with lymphotoxin (rLT) or rIL-6; rat islet insulin secretion was not suppressed by any of these cytokines. No direct cytotoxic effects resulted from co-culture of human islets with rLT, rTNF, rIFN, or rIL-6; rLT was slightly cytotoxic for rat islets. Human islet cytotoxic synergy occurred between rLT and rIL-1 alpha, rIL-1 beta, or rIFN; synergy in suppression of human islet insulin secretion occurred between rLT and rIL-1 beta, and between rIFN and rTNF. Pretreatment of rIL-1 with monoclonal antibody (mAb) specific for non-crossreactive epitopes on rIL-1 alpha (H43 and H12) or rIL-1 beta (H34 and H21) prevented islet cytotoxic synergy between rIL-1 alpha or rIL-1 beta, respectively, and rLT. Although all four mAb's neutralize the thymocyte and fibroblast stimulatory activities of rIL-1 alpha or rIL-1 beta, mAb H21 does not neutralize rIL-1 beta activity against rat islets. Implications for cytokine-mediated islet cytotoxicity and suppression of insulin secretion are discussed.  相似文献   

10.
A biphasic dose response curve was observed when the bone marrow-derived cell line FDCP1, used as an indicator line for IL-3 bioassays, was exposed to supernatants from some activated T cell clones but not others. The active component which inhibited proliferation at the higher supernatant concentrations appeared to be IFN-gamma, based on the following observations. 1) Only those culture supernatants which contained IFN-gamma gave a biphasic dose response curve; 2) with these supernatants, an anti-IFN-gamma mAb augmented the proliferation of FDCP1 cells at the higher supernatant concentrations; and 3) rIFN-gamma profoundly inhibited the proliferation of FDCP1 cells stimulated with rIL-3 or rIL-4. rTNF-alpha inhibited FDCP1 proliferation only to a modest extent, yet the combination of rTNF-alpha + rIFN-gamma provided greater inhibition than each agent alone. The proliferation of a second bone marrow-derived cell line, DA1, was not inhibited by rIFN-gamma or rIFN-gamma + rTNF-alpha when stimulated with rIL-3 or recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF). Fresh bone marrow cells also showed a suboptimal proliferative response when stimulated with T cell supernatants containing IFN-gamma, and this response was augmented considerably upon the addition of anti-IFN-gamma mAb. Bone marrow cell proliferation was observed upon exposure to rIL-3, rIL-4, or rGM-CSF, and these responses were inhibited by rIFN-gamma; rTNF-alpha also produced a synergistic effect with these cells. Bone marrow cell colony formation stimulated by rIL-3 or rGM-CSF also was inhibited by rIFN-gamma. Colony formation in bone marrow cell cultures was not observed in response to rIL-4. Collectively, these results suggest that Th1 cells, which in addition to IL-3 and GM-CSF also produce IFN-gamma, may regulate hemopoietic cell proliferation and colony formation differently from the way Th2 cells do, which do not produce IFN-gamma.  相似文献   

11.
We examined effects of human rTNF alpha on the synthesis of glycosaminoglycan and DNA in cultured rat costal chondrocytes. The effects of human recombinant IL-1 alpha and IL-1 beta were also given attention. rTNF alpha, as well as rIL-1 alpha and rIL-1 beta, decreased the incorporation of [35S]sulfate into glycosaminoglycan to about 10% of the levels in the control. The half-maximal doses of rTNF alpha, rIL-1 alpha or rIL-1 beta required for the suppression of glycosaminoglycan synthesis (by rTNF alpha, rIL-1 alpha, and rIL-1 beta) were 2 ng/ml, 30 ng/ml, or 5 ng/ml, respectively. rTNF alpha stimulated incorporation of [3H]thymidine in the chondrocytes in a dose- and time-dependent manner. DNA synthesis was increased to about threefold over the control cultures in the presence of 1 microgram/ml rTNF alpha for 72 hr. The stimulatory effect of rTNF alpha on DNA synthesis was observed in both subconfluent and confluent cultures, whereas rIL-1 alpha and rIL-1 beta had no stimulatory activity on DNA synthesis. The addition of rTNF alpha to the cultures of chondrocytes stimulated DNA synthesis, even in medium containing no fetal calf serum. The fetal calf serum acted synergistically with rTNF alpha in increasing DNA synthesis. We propose that both TNF and IL-1 may be involved in inflammatory diseases of cartilage, and that TNF alpha, but not IL-1, may have some physiologic growth factor function for chondrocytes.  相似文献   

12.
Mice and nude rats lethally infected with T. gondii and treated with recombinant rat interferon-gamma (rIFN-gamma) or recombinant human interleukin-2 (rIL-2) were protected against death, when compared with untreated infected controls. In mice rIFN-gamma and rIL-2 played an important role in "prophylactic treatment", but not in "curative therapy". The survival rate was 42% in mice treated with 3 doses of 20,000 U of rIFN-gamma at days -2, -1, 0 before challenge and up to 66% in mice treated with 3 doses of 10,000 U of rIFN-gamma at days -2, 0, +2 before and after infection. Whereas the survival rate was 33% in mice that received 3 doses of 500 U rIL-2 at days -2, -1, 0 before infection, or -2, 0, +2 before and after infection respectively, up to 50% of the mice treated with 3 doses of 1,000 U rIL-2 at days -2, -1, 0 survived. In nude rats rIFN-gamma had a slight effect in "prophylactic treatment", whereas rIL-2 was active only in "curative treatment". The survival rate was 25% both in nude rats treated with doses of 400,000 U of rIFN-gamma at days -3, 0 before challenge, or with doses of 5,000 U of rIL-2 at days +2, +6, +9 after infection. These results lead us to hypothesise that the mechanism by which the lymphokine treatment exerts a protective effect on Toxoplasma infected mice is different from that on nu/nu rats. We conclude that these cytokines may play a notable role in modulating the host's immune defence against T. gondii infection.  相似文献   

13.
Production of the osteolytic arachidonic acid metabolites, prostaglandin (PG) E2, PGI2 and PGF2 alpha, by neonatal mouse calvariae was quantitated by gas chromatography/mass spectrometry. Mouse recombinant interleukin 1 (rIL-1) raised medium levels of PGE2 and PGI2 (measured as 6-keto-PGF1 alpha) in the dose range tested (1.0-10.0 U/ml culture medium), while an effect on PGF2 was only observed at 10 U/ml. Bone resorption in response to rIL-1 reached a plateau at 3.0 U/ml. Mouse recombinant gamma-interferon (rIFN-gamma) between 100-500 U/ml suppressed basal PG synthesis and spontaneous resorption of cultured bone. In addition, IFN-gamma at 100 U/ml prevented stimulation of PG synthesis by 3.0 U/ml rIL-1 and thereby reduced the bone resorbing activity of the cytokine by at least 60%. 5 X 10(-7) M indomethacin was equally effective in suppression of PG synthesis and bone resorption. The present study provides evidence that IFN-gamma inhibits PG synthesis and consequently resorption of cultured bone.  相似文献   

14.
Activated murine peritoneal macrophages inhibit the intracellular proliferation of Toxoplasma gondii and produce a number of cytokines, such as TNF-alpha and IL-1. Both TNF-alpha and IL-1 have been reported to be involved in the immune response against various microorganisms, but the mechanisms responsible for these effects are not known. In the present study it was investigated whether endogenously produced TNF-alpha and IL-1 are involved in the activation of peritoneal macrophages by rIFN-gamma leading to toxoplasmastatic activity and the production of reactive nitrogen intermediates. The rIFN-gamma-induced toxoplasmastatic activity was inhibited by neutralizing antibodies against mouse TNF-alpha in a dose-dependent and time-dependent way, but neutralizing antibodies against mouse IL-1 alpha and IL-1 beta did not affect this activity. Involvement of TNF-alpha in the induction of toxoplasmastatic activity was confirmed by our finding that rTNF-alpha in combination with a nonactivating concentration of rIFN-gamma inhibited the intracellular proliferation of T. gondii. No synergistic activity of rIL-1 and rIFN-gamma on the inhibition of T. gondii proliferation was found. Both rTNF-alpha and rIL-1 alpha alone inhibited the intracellular proliferation of T. gondii only slightly. Because it has been reported recently that activated macrophages produce reactive nitrogen intermediates that are essential in the induction of toxoplasmastatic activity, we investigated whether these intermediates are involved in the TNF-dependent induction of toxoplasmastatic activity. Neutralizing antibodies against mouse TNF-alpha inhibited also the release of NO2- by rIFN-gamma-activated macrophages almost completely. Macrophages incubated with rTNF-alpha in combination with a nonactivating concentration of rIFN-gamma released substantial amounts of NO2-, but rTNF-alpha and rIL-1 alpha alone, and the combination of rIL-1 alpha and a nonactivating concentration of rIFN-gamma induced only little NO2(-)-release by macrophages. To assess whether reactive nitrogen intermediates act directly or indirectly on the intracellular proliferation of T. gondii, macrophages were incubated with the L-arginine analog NG-monomethyl-L-arginine or the NADPH-inhibitor diphenylene iodonium, both inhibitors of the generation of reactive nitrogen intermediates. Good correlation was found between toxoplasmastatic activity and the release of NO2- during the 24-h activation period before infection of the macrophages with T. gondii, but no correlation was found between toxoplasmastatic activity and the release of NO2- during infection of the macrophages.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Treatment of rat glomerular mesangial cells with recombinant human interleukin 1 alpha (rIL-1 alpha), recombinant human interleukin 1 beta (rIL-1 beta) or recombinant human tumor necrosis factor (rTNF) induces prostaglandin E2 (PGE2) synthesis and the release of a phospholipase A2 (PLA2) activity. rIL-1 beta is significantly more potent than rIL-1 alpha or rTNF in stimulating PGE2 as well as PLA2 release from mesangial cells. When given together, rTNF interacts in a synergistic fashion with rIL-1 alpha and rIL-1 beta to enhance both, PGE2 synthesis and PLA2 release. The released PLA2 has a neutral pH optimum and is calcium-dependent. Pretreatment of cells with actinomycin D or cycloheximide inhibits basal and cytokine-stimulated PGE2 and PLA2 release.  相似文献   

16.
Natural suppressor (NS) cells, which nonspecifically suppress immune responses, are present in the spleen following exposure to radiation, chronic graft-versus-host disease, or cancer and in normal bone marrow. A model system is described which allows the study of cytokines activating and inhibiting NS cells, cytokines mediating NS activity, and NS effects on cytokine synthesis. Recombinant interleukin-3 (rIL-3) and granulocyte-macrophage colony-stimulating factor (rGM-CSF) efficiently activated NS cells present in normal bone marrow and were effective at concentrations as low as 5 U/ml. At high concentrations, GM-CSF, but not IL-3, did not activate NS cells. Recombinant interferon-gamma (rIFN-gamma) blocked the activation of bone marrow NS cells by rIL-3, but did not down-regulate NS cells once activated. The NS cells secreted one or more soluble suppressor factors, which blocked IL-2 synthesis and also inhibited IL-2-dependent T cell proliferation in the presence of excess IL-2.  相似文献   

17.
Freshly isolated human peripheral blood monocytes from healthy volunteers were not cytotoxic to allogeneic A375 melanoma cells, but they were activated to the cytotoxic state by incubation in vitro with either des-methyl muramyl dipeptide (norMDP; minimal effective dose, 0.5 micrograms/ml) or recombinant human interferon-gamma (rIFN-gamma; minimal effective dose, 1 U/ml). A combination of subthreshold concentrations of these agents (norMDP, 0.5 micrograms/ml; rIFN-gamma, 10 U/ml) also induced significant cytotoxicity, indicating that the effects of norMDP and rIFN-gamma in monocyte activation are synergistic. Natural human IFN-gamma (nIFN-gamma) and norMDP also had similar synergistic effects. Pretreatment of rIFN-gamma with anti-IFN-gamma antibody completely inhibited its synergistic effect with norMDP in monocyte activation. Because pretreatment of rIFN-gamma and norMDP with polymyxin B did not interfere with their effects in monocyte activation, the preparations were not contaminated with lipopolysaccharide. Moreover, because pretreatment of monocyte monolayers with anti-Leu-11b antibody (anti-natural killer (NK) cell antibody) and complement did not interfere with the synergistic effects of norMDP and rIFN-gamma, whereas pretreatment with anti-Leu-M1 antibody (anti-monocyte antibody) caused complete inhibition of their effects, the observed tumor cytotoxicity of monocyte-rich monolayers was probably not due to a small number of adherent NK cells, but to the stimulation of the monocytes. Natural and recombinant IFN-alpha and IFN-beta at concentrations of greater than or equal to 100 U/ml also induced tumoricidal activity of monocytes, but unlike IFN-gamma, their effects were additive with norMDP, and they had less priming effect than IFN-gamma when they were added before norMDP to monocytes. These findings suggest that recombinant human IFN-gamma has much more synergistic potential with norMDP than IFN-alpha or IFN-beta, and this synergism of rIFN-gamma and norMDP for monocyte activation could be of clinical value in treatment of disseminated malignant diseases, because these compounds are readily available at standardized concentrations.  相似文献   

18.
A number of natural and recombinant human cytokines have been tested for their ability to activate basophil and neutrophil adhesiveness for human umbilical vein endothelial cells in vitro. Coincubation of basophils and endothelial cell monolayers for 10 min with biologically relevant concentrations of rIL-1, natural IL-2, rIL-4, rIL-5, rIL-6, rIL-8, rGM-CSF, and rIFN-gamma had no effect on basophil adhesiveness. In contrast, rIL-3 induced basophil adhesiveness for endothelial cells (optimal at 1 ng/ml: 144 +/- 18% of control adherence (mean +/- SEM); control basophil binding, 13 +/- 3%, n = 9, p less than or equal to 0.05). This increase in adhesiveness was similar in magnitude to that induced by an optimal concentration of a known potent inducer of basophil adhesiveness (1 microM FMLP, 164 +/- 15% of control adherence, n = 9). Under these experimental conditions, the effects of rIL-3 occurred at concentrations of 0.1 to 30 ng/ml, were partially dependent on calcium, and were not accompanied by histamine release. Fixation experiments demonstrated that the effect of rIL-3 was directed against the basophil rather than the endothelial cell. Neither rIL-3 nor the other cytokines tested had any effect on the adherence of 51Cr-labeled neutrophils, even when tested simultaneously on cells from the same donors. Under experimental conditions that permitted histamine release, no correlation was seen between the ability of rIL-3 (0.3 to 300 ng/ml) to induce histamine release or enhance adhesiveness (n = 8). mAb blocking experiments demonstrated a role for both CD11 and CD18 adherence glycoproteins in basophil adherence induced by rIL-3, and indirect immunofluorescence and flow cytometric analysis revealed that rIL-3 treatment led to rapid and sustained increases in cell surface expression of CD11b antigens on basophils but not neutrophils (e.g., after 10 min: 217 +/- 29 vs 91 +/- 11% of control mean fluorescence intensity, p less than 0.05). However, no correlation was seen between the magnitude of changes in CD11b expression and changes in adhesion when tested simultaneously. These results suggest that local production of IL-3 during allergic reactions in vivo may selectively promote basophil activation, adhesion to endothelium, and recruitment to extravascular sites of inflammation.  相似文献   

19.
Glucocorticoids inhibit cytokine-mediated eosinophil survival   总被引:17,自引:0,他引:17  
Glucocorticoids characteristically induce eosinopenia in vivo and are effective for treating allergic and other eosinophilic disorders. We studied the effect of glucocorticoids on cytokine-induced survival of human eosinophils in vitro. Eosinophils were purified from normal or mildly atopic volunteers by Percoll density gradient and incubated for 4 days in the presence of cytokine plus steroid. Cell viabilities were determined by staining cells with fluorescein diacetate and propidium iodide. In the absence of glucocorticoids, human rIL-5 enhanced eosinophil survival in a dose-dependent manner, from 22 fM for a minimal effect to 2200 fM for maximal effect. When eosinophils were cultured with a submaximal concentration of rIL-5 (220 fM), dexamethasone, methylprednisolone, and hydrocortisone inhibited eosinophil survival in a dose-dependent manner. Inhibition was time-dependent and required at least 2 days' exposure of eosinophils to dexamethasone. Dexamethasone, methylprednisolone, and hydrocortisone at 1000 nM inhibited survival by 88 +/- 2, 66 +/- 9 and 37 +/- 7%. In contrast, estradiol and testosterone (1000 nM) had no effect on eosinophil survival. When eosinophils were incubated with varying concentrations of human rIL-5 and 1000 nM dexamethasone, survival inhibition was reduced at higher concentrations of human rIL-5, and completely abolished by human rIL-5 23,000 fM. Human recombinant granulocyte-macrophage CSF, human rIL-3, and human rIFN-gamma also enhanced eosinophil survival in a dose-dependent manner and dexamethasone (1000 nM) strongly inhibited cell survival when submaximal concentrations of these cytokines were used. The effects of dexamethasone were reversed by higher concentrations of granulocyte-macrophage CSF (10 U/ml) and IL-3 (3 ng/ml). However, even 1000 U/ml IFN-gamma did not overcome dexamethasone inhibition, indicating a difference between the mechanism of eosinophil survival induced by IFN-gamma and other cytokines. These results suggest that glucocorticoids exert a direct, inhibitory effect on eosinophil survival, which may be important in the treatment of allergic and other eosinophilic disorders. Antagonism of this effect by higher amounts of cytokine may be a mechanism for glucocorticoid resistance.  相似文献   

20.
Interleukin (IL)-1, IL-6 and tumor necrosis factor (TNF) are considered as important mediators for the modulation of liver synthesis of acute phase proteins. However, studies of the direct effect of individual or a combination of these cytokines on the synthesis of acute phase proteins in human hepatocytes are still very limited. In this study, we have examined the synthesis of C-reactive protein (CRP) and serum amyloid A (SAA) in primary cultures of human hepatocytes exposed to recombinant(r)IL-1 alpha (100 U/ml), rIL-6 (2000 U/ml), rTNF alpha (30 U/ml) and to various combinations of these cytokines in the presence of 1 microM dexamethasone. Monoclonal antibodies to rTNF alpha and monospecific anti-rIL-6 sheep antiserum were also used to investigate the possible endogenous production of TNF or IL-6. The findings indicate: (1) IL-1 and IL-6 are stimulatory cytokines for the liver synthesis of CRP and SAA. Anti IL-6 abolishes the stimulatory effect of IL-1. These findings support the previous observation and indicate that IL-1 exerts its action on the enhanced synthesis of CRP and SAA at least in part via IL-6 production in the liver cell. (2) TNF is an inhibitory cytokine for the liver synthesis of CRP. It inhibits also the stimulatory effect of IL-1 and IL-6 on the synthesis of CRP and SAA. (3) Since anti-TNF enhances the stimulatory effect of IL-6 on the synthesis of CRP and SAA, it seems likely that TNF is also produced by the human hepatocytes. However, further studies for more direct evidence of the liver cell production of TNF, such as the detection of TNF messenger RNA are required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号