首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of the activity of beta-glucan synthase was studied using microsomal preparations from corn coleoptiles. The specific activity as measured by the incorporation of glucose from uridine diphospho-D-[U-14C]glucose varied between 5 to 15 pmol (mg protein)-1 min-1. Calcium promoted beta-glucan synthase activity and the promotion was observed at free calcium concentrations as low as 1 micromole. Kinetic analysis of substrate-velocity curve showed an apparent Km of 1.92 x 10(-4) M for UDPG. Calcium increased the Vmax from 5.88 x 10(-7) mol liter-1 min-1 in the absence of calcium to 9.52 x 10(-7) mol liter-1 min-1 and 1.66 x 10(-6) mol liter-1 min-1 in the presence of 0.5 mM and 1 mM calcium, respectively. The Km values remained the same under these conditions. Addition of ATP further increased the activity above the calcium-promoted level. Sodium fluoride, a phosphoprotein phosphatase inhibitor, promoted glucan synthase activity indicating that phosphorylation and dephosphorylation are involved in the regulation of the enzyme activity. Increasing the concentration of sodium fluoride from 0.25 mM to 10 mM increased glucan synthase activity five-fold over the + calcium + ATP control. Phosphorylation of membrane proteins also showed a similar increase under these conditions. Calmodulin, in the presence of calcium and ATP stimulated glucan synthase activity substantially, indicating that calmodulin could be involved in the calcium-dependent phosphorylation and promotion of beta-glucan synthase activity. The role of calcium in mediating auxin action is discussed.  相似文献   

2.
Increasing the free calcium concentration from 10(-8) M to 10(-4) M inhibited cardiac sarcolemmal adenylyl cyclase activated by the addition of 5 X 10(-4) M forskolin or 1 X 10(-4) M GTP or Gpp(NH)p. The calcium inhibition curve in the presence of all three activators was shallow and best fit by a two site model of high affinity (less than 1.0 microM) and low affinity (greater than 0.1 mM). Gpp(NH)p appeared to decrease the sensitivity of adenylyl cyclase to inhibition by calcium at the high affinity site. Similar inhibition constants were obtained with each of the activators. Calmodulin content of native freeze-thaw vesicles was 76.2 +/- 14.2 ng/mg. Treatment of the vesicles with 1 mM EGTA to remove calmodulin significantly reduced calmodulin content to 19.7 +/- 1.35 ng/mg. This treatment had no significant effect on the calcium inhibition profile. Increasing free calcium to 3 X 10(-6) M was shown to have no effect on the EC50 estimated for either Gpp(NH)p or forskolin but did slightly increase the EC50 estimated for Mg2+ in the presence of maximal concentrations of either activator. Nevertheless, maximally stimulating concentrations of Mg2+ were unable to overcome calcium inhibition. Pretreatment of sarcolemmal membranes with pertussis toxin was shown to have no significant effect on calcium inhibition of adenylyl cyclase. The results suggest that the overall inhibitory action of calcium was most likely calmodulin independent and involved a direct interaction with the catalytic subunit at two distinct sites of high and low affinity. At the low affinity site calcium most likely competes with Mg2+ for an allosteric divalent cation binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Flow microcalorimetric titrations of calmodulin with seminalplasmin at 25 degrees C revealed that the high affinity one-to-one complex in the presence of Ca2+ (Comte, M., Malnoe, A., and Cox, J. A. (1986) Biochem. J. 240, 567-573) is entirely enthalpy-driven (delta H0 = -50 kJ.mol-1; delta S0 = O J.K-1.mol-1; delta Cp0 = O J.K-1.mol-1) and is not influenced by the proton or Mg2+ concentration. The Sr2+- and Cd2+-promoted high affinity complexes are also exothermic for -49 and -45 kJ.mol-1, respectively. The observed low affinity interaction in the absence of divalent ions displays no enthalpy change. No enthalpy changes are observed when calmodulin and seminalplasmin are mixed in the presence of millimolar concentrations of Mg2+, Zn2+, or Mn2+. Enthalpy titrations of the 1:1 calmodulin-seminalplasmin complex with Ca2+ and of partly Ca2+-saturated calmodulin with seminalplasmin revealed that only the species calmodulin.Can greater than or equal to 2 is fully competent for high affinity interaction with seminalplasmin. Binding of the second Ca2+ is strongly enhanced (K2 greater than or equal to 5 X 10(7) M-1) as compared to that in free calmodulin (K2 = 2.6 X 10(5) M-1). This is essentially due to the concomitant strongly exothermic step of isomerization of the calmodulin-seminalplasmin complex from its low to its high affinity form. Binding of the remaining two Ca2+ to the high affinity seminalplasmin-calmodulin complex displays the same affinity constants and endothermic enthalpy change as in free calmodulin. A microcalorimetric study on the complex formation between Ca2+-saturated calmodulin and turkey gizzard myosin light chain kinase revealed that the interaction is strongly exothermic with an important overall gain of order (delta H0 = -85 kJ.mol-1; delta S0 = -122 J.K-1.mol-1) and occurs with significant proton uptake (0.44 H+ per mol at pH 7.5). The observed low affinity interaction (K = 2.2 X 10(5) M-1) in the absence of Ca2+ (Mamar-Bachi, A., and Cox, J. A. (1987) Cell Calcium 8, 473-482) displays neither a change in enthalpy nor in protonation.  相似文献   

4.
The presence of calmodulin-binding sites on chromaffin granule membranes has been investigated. Saturable, high-affinity 125I-calmodulin-binding sites (KD = 9.8 nM; Bmax = 25 pmol/mg protein) were observed in the presence of 10(-4) M free calcium. A second, nonsaturable, calmodulin-binding activity could also be detected at 10(-7) M free calcium. No binding occurred at lower calcium levels. When chromaffin granule membranes were delipidated by solvent extraction, calmodulin binding was observed at 10(-4) M free calcium. However no binding was detected at lower calcium concentrations. Thus it appears that a calcium concentration of 10(-7) M promotes the binding of calmodulin to some solvent-soluble components of the chromaffin granule membrane. Calmodulin-binding proteins associated with the granule membrane identified by photoaffinity cross-linking. A calmodulin-binding protein complex, of molecular weight 82K, was formed in the presence of 10(-4) M free calcium. This cross-linked product was specific because it was not detected either in the absence of calcium, in the presence of nonlabeled calmodulin, or in the absence of cross-linker activation. When solvent-treated membranes were used, a second, specific, calmodulin-binding protein complex (70K) was formed. Since the apparent molecular weight of calmodulin in our electrophoresis system was 17K, these experiments suggested the presence of two calmodulin-binding proteins, of molecular weights 65K and 53K, in the chromaffin granule membrane. This result was confirmed by the use of calmodulin-affinity chromatography. When detergent-solubilized membranes were applied on the column in the presence of calcium, two polypeptides of apparent molecular weights of 65K and 53K were specifically eluted by EGTA buffers. Since detergent treatments or solvent extractions are necessary to detect the 53K calmodulin-binding protein, it is concluded that only the 65K calmodulin-binding polypeptide may play a role in the interaction between calmodulin and secretory granules in chromaffin cells.  相似文献   

5.
The interaction of calmodulin with calcineurin, a calcium- and calmodulin-stimulated protein phosphatase, was investigated using a solid-phase assay. Binding of 125I-calmodulin by calcineurin immobilized on nitrocellulose membrane filters was of high affinity, reversible, and calcium-dependent. Complex binding kinetics reflected a time- and calcium/calmodulin-dependent conformational change of calcineurin which was shown to be ligand-induced renaturation. After renaturation and removal of calmodulin, immobilized calcineurin exhibited simple 125I-calmodulin binding kinetics with a single class of independent sites. The maximum stoichiometry of 125I-calmodulin binding to immobilized calcineurin was 0.1 mol/mol. The association rate (K1 = 8.9 x 10(3) M-1 S-1) and the dissociation rate (K-1 = 8.5 x 10(-5) s-1) yielded a dissociation constant of Kd = 10 nM. Equilibrium binding analyses gave a Kd value of 16 nM. The affinity of 125I-calmodulin for immobilized calcineurin was half that of unmodified calmodulin. Using equilibrium competition experiments, we determined, for the first time, the dissociation constant for the binding of native calmodulin by calcineurin in solution, Kd less than or equal to 0.1 nM (Kd for 125I-calmodulin = 0.23 +/- 0.09 nM). The effects of ionic strength and pH on 125I-calmodulin binding to immobilized calcineurin were characterized. The dissociation rate was dependent on free calcium concentration, with half-maximal rate at 700 nM calcium. 125I-Calmodulin equilibrium binding by the immobilized A subunit of calcineurin exhibited half the affinity of the holoenzyme, Kd = 30 nM. The described phenomenon, of reversible denaturation associated with immobilization of a protein on nitrocellulose, may be a general one open to exploitation in other systems.  相似文献   

6.
Myosin X is a member of the diverse myosin superfamily that is ubiquitously expressed in various mammalian tissues. Although its association with actin in cells has been shown, little is known about its biochemical and mechanoenzymatic function at the molecular level. We expressed bovine myosin X containing the entire head, neck, and coiled-coil domain and purified bovine myosin X in Sf9 cells. The Mg(2+)-ATPase activity of myosin X was significantly activated by actin with low K(ATP). The actin-activated ATPase activity was reduced at Ca(2+) concentrations above pCa 5 in which 1 mol of calmodulin light chain dissociates from the heavy chain. Myosin X translocates F-actin filaments with the velocity of 0.3 microm/s with the direction toward the barbed end. The actin translocating activity was inhibited at concentrations of Ca(2+) at pCa 6 in which no calmodulin dissociation takes place, suggesting that the calmodulin dissociation is not required for the inhibition of the motility. Unlike class V myosin, which shows a high affinity for F-actin in the presence of ATP, the K(actin) of the myosin X ATPase was much higher than that of myosin V. Consistently nearly all actin dissociated from myosin X in the presence of ATP. ADP did not significantly inhibit the actin-activated ATPase activity of myosin X, suggesting that the ADP release step is not rate-limiting. These results suggest that myosin X is a nonprocessive motor. Consistently myosin X failed to support the actin translocation at low density in an in vitro motility assay where myosin V, a processive motor, supports the actin filament movement.  相似文献   

7.
A membrane fraction enriched in plasma membrane marker enzymes K+-dependent p-nitrophenyl phosphatase, 5'-nucleotidase and alkaline phosphatase was prepared from rat parotid glands using Percoll self-forming gradient. This fraction contained an ATP-dependent CA2+ transport system which was distinct from those located on the endoplasmic reticulum and mitochondria of parotid glands. The Km for ATP was 0.57 +/- 0.07 mM (n = 3). Nucleotides other than ATP such as ADP, AMP, GTP, CTP, UTP or ITP were unable to support significant Ca2+ uptake. ATP-dependent Ca2+ uptake displayed sigmoidal kinetics with respect to free Ca2+ concentration with a Hill coefficient of 2.02. The K0.5 for Ca2+ was 44 +/- 3.1 nM (n = 3) and the average Vmax was 13.5 +/- 1.1 nmol/min per mg of protein. The pH optimum was 7.2. Trifluorperazine inhibited Ca2+ transport with half maximal inhibition observed at 30.8 microM. Complete inhibition was observed at 70 microM trifluorperazine. Exogenous calmodulin however had no effect on the rate of transport. Na+ and K+ ions activated Ca2+ transport at 20 to 30 mM ion concentrations. Higher concentrations of Na+ or K+ were inhibitory.  相似文献   

8.
A Mg-dependent adenosine triphosphatase (ATPase) activated by submicromolar free Ca2+ was identified in detergent-dispersed rat liver plasma membranes after fractionation by concanavalin A-Ultrogel chromatography. Further resolution by DE-52 chromatography resulted in the separation of an activator from the enzyme. The activator, although sensitive to trypsin hydrolysis, was distinct from calmodulin for it was degraded by boiling for 2 min, and its action was not sensitive to trifluoperazine; in addition, calmodulin at concentrations ranging from 0.25 ng-25 micrograms/assay had no effect on enzyme activity. Ca2+ activation followed a cooperative mechanism (nH = 1.4), half-maximal activation occurring at 13 +/- 5 nM free Ca2+. ATP, ITP, GTP, CTP, UPT, and ADP displayed similar affinities for the enzyme; K0.5 for ATP was 21+/- 9 microM. However, the highest hydrolysis rate (20 mumol of Pi/mg of protein/10 min) was observed at 0.25 mM ATP. For all the substrates tested kinetic studies indicated that two interacting catalytic sites were involved. Half-maximal activity of the enzyme required less than 12 microM total Mg2+. This low requirement for Mg2+ of the high affinity (Ca2+-Mg2+)ATPase was probably the major kinetic difference between this activity and the nonspecific (Ca2+ or Mg2+)ATPase. In fact, definition of new assay conditions, i.e. a low ATP concentration (0.25 mM) and the absence of added Mg2+, allowed us to reveal the (Ca2+-Mg2+)ATPase activity in native rat liver plasma membranes. This enzyme belongs to the class of plasma membrane (Ca2+-Mg2+)ATPases dependent on submicromolar free Ca2+ probably responsible for extrusion of intracellular Ca2+.  相似文献   

9.
The basic mechanism by which calmodulin activates bovine-cardiac muscle myosin light-chain kinase was investigated using highly purified preparations of mixed bovine-cardiac myosin light chains or isolated myosin light chain 2. The apparent contamination of these substrate proteins by calmodulin, as detected by activation of calmodulin-sensitive phosphodiesterase, was less than 4 parts/million and was undetectable by antibodies against calmodulin. The apparent KA for calmodulin was 2 nM and 20 nM in the presence of isolated myosin light-chain 2 and mixed myosin light chains, respectively. Purified bovine cardiac troponin C activated myosin light-chain kinase by about 10% at a concentration of 2 microM. Mixed myosin light chains were phosphorylated in the absence and presence of calmodulin and in the presence of calcium with a V of 11.1 and 11.0 mumol phosphate transferred min-1 (mg enzyme)-1, respectively. The apparent Km values for mixed myosin light chains were 8.0 and 0.35 mg/ml in the absence and presence of calmodulin, respectively. Similarly calmodulin lowered the Km value for isolated myosin light-chain 2 over 20-fold and increased the V value only about 1.5-fold. Activity observed in the absence of calmodulin was dependent on the presence of calcium and was suppressed by chelating free calcium either before or during a phosphorylation reaction. The apparent KA for calcium was 1.2 microM and 0.4 microM in the absence and presence of calmodulin. Activity in the absence of calmodulin was inhibited at very high concentrations of the 'specific' calmodulin antagonists W-7, trifluoperazine and R24571 with apparent IC50 values of 0.3 mM, 0.2 mM and 0.02 mM. Antibiotics raised against calmodulin suppressed completely the kinase activity in the presence of calmodulin but had no effect on the activity measured in its absence. These results suggest that calmodulin stimulates the activity of bovine-cardiac myosin light-chain kinase by increasing over 20-fold the affinity for its substrate myosin light-chain 2.  相似文献   

10.
Dephosphorylation of neuromodulin by calcineurin   总被引:8,自引:0,他引:8  
Neuromodulin (p57, GAP-43, F1, B-50) is a major neural-specific, calmodulin binding protein found in brain, spinal cord, and retina that is associated with membranes. Phosphorylation of neuromodulin by protein kinase C causes a significant reduction in its affinity for calmodulin (Alexander, K. A., Cimler, B. M., Meirer, K. E., and Storm, D. R. (1987) J. Biol. Chem. 262, 6108-6113). It has been proposed that neuromodulin may function to bind and concentrate calmodulin at specific sites within neurons and that activation of protein kinase C causes the release of free calmodulin at high concentrations near its target proteins. It was the goal of this study to determine whether bovine brain contains a phosphoprotein phosphatase that will utilize phosphoneuromodulin as a substrate. Phosphatase activity for phosphoneuromodulin was partially purified from a bovine brain extract using DEAE-Sephacel and Sephacryl S-200 gel filtration chromatography. The neuromodulin phosphatase activity was resolved into two peaks by Affi-Gel Blue chromatography. One of these phosphatases, which represented approximately 60% of the total neuromodulin phosphatase activity, was tentatively identified as calcineurin by its requirement for Ca2+ and calmodulin (CaM) and inhibition of its activity by chlorpromazine. Therefore, bovine brain calcineurin was purified to homogeneity and examined for its phosphatase activity against bovine phosphoneuromodulin. Calcineurin rapidly dephosphorylated phosphoneuromodulin in the presence of micromolar Ca2+ and 3 microM CaM. The apparent Km and Vmax for the dephosphorylation of neuromodulin, measured in the presence of micromolar Ca2+ and 2 microM CaM, were 2.5 microM and 70 nmol Pi/mg/min, respectively, compared to a Km and Vmax of 4 microM and 55 nmol Pi/mg/min, respectively, for myosin light chain under the same conditions. Dephosphorylation of neuromodulin by calcineurin was stimulated 50-fold by calmodulin in the presence of micromolar free Ca2+. Half-maximal stimulation was observed at a calmodulin concentration of 0.5 microM. We propose that phosphoneuromodulin may be a physiologically important substrate for calcineurin and that calcineurin and protein kinase C may regulate the levels of free calmodulin available in neurons.  相似文献   

11.
Adenosine triphosphate (ATP) and norepinephrine (NE) interact in the control of blood flow in the kidney. A combined effect of NE and ATP has not been previously investigated at the level of the afferent arteriole (Af). We studied the effects of ATP on the contractile response of the Af to NE. Vascular reactivity to ATP, NE, and their combination was investigated in isolated perfused Af from mice. The roles of alpha-adrenoceptors and P2-ATP-receptors were investigated by use of specific agonists and antagonists. Cytosolic calcium was measured using the fluorescent calcium dye fura-2. ATP in concentrations from 10(-12) to 10(-4) mol/l induced transient contractions. NE constricted the Af in a dose-dependent manner and induced significant contractions at > 10(-7) mol/l. Treatment with ATP (10(-8) and 10(-6) mol/l) increased the NE response. Diameters were reduced by 20% already at 10(-11) mol/l NE during ATP treatment of 10(-6) mol/l. ATP increased the calcium response to NE significantly at 10(-8) and 10(-7)mol/l NE. The P2-type ATP receptor blocker pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) (10(-5) mol/l) abolished the sensitization of the NE response by ATP. The alpha(1)-blocker prazosin (10(-7) mol/l) inhibited the ATP effect, as did the alpha 2-blocker yohimbine (10(-7) mol/l). Neither the phenylephrine- nor clonidine-induced concentration response curves was affected by ATP in the bath solution. Costimulation with ATP enhances the response of the Af to NE. This effect is mediated by increased cytosolic calcium. The enhancing effect involves P2-type ATP receptors and both alpha (1)- and alpha 2-adrenoceptors.  相似文献   

12.
The divalent cation dependence of a calmodulin-stimulated phosphatase from bovine brain has been characterized kinetically using phosphorylated myelin basic protein and casein as substrates. At saturating concentrations of calmodulin, dephosphorylation of both myelin basic protein and casein was catalyzed 8- to 10-fold more rapidly at saturating concentrations of Mn2+ than at saturating concentrations of Ca2+. Half-maximal rates of dephosphorylation of both substrates occurred at either 15 microM Mn2+ or 1 microM Ca2+, and the Kact for each ion was not influenced appreciably by the presence of calmodulin. Half-maximal rates of dephosphorylation were observed at concentrations of calmodulin ranging from 3 X 10(-8) to 10(-6) M at saturating concentrations of divalent cations depending on the substrate used and the particular cation chosen. Trypsin treatment of the phosphatase activated the enzyme several-fold, eliminated its calmodulin dependence, but did not alter the Mn2+ concentration dependence of the activity. Ca2+ (10 microM) increased dephosphorylation rates without altering the Mn2+ concentration dependence of the phosphatase activity regardless of the presence of calmodulin. Mg2+ at millimolar concentrations did not alter the Ca2+ or Mn2+ concentration dependence of the activity. As measured without calmodulin, Ca2+ (90 microM) or Mn2+ (200 microM) produced nearly identical alterations of the far ultraviolet circular dichroic spectrum of the phosphatase.  相似文献   

13.
Fura2 - fluorescence was utilized to test for the effect of extracellular nucleotides on intracellular calcium concentration of subconfluent Madin-Darby Canine Kidney (MDCK)-cells. Extracellular ATP (10 mumol/l) and UTP (10 mumol/l) lead to rapid (within seconds), sustained, and fully reversible enhancement of intracellular calcium concentration from 138 +/- 9 nmol/l (n = 27), to 1561 +/- 260 nmol/l (n = 10) and 3435 +/- 949 nmol/l (n = 5), respectively. Half maximal effects are observed at some 1 mumol/l. In the absence of extracellular calcium the effect of ATP is transient, pointing to release of intracellular calcium. The sustained effect in the presence of extracellular calcium indicates that the nucleotides in addition recruit calcium from extracellular space.  相似文献   

14.
A Ca2(+)-ATPase with a high affinity for free Ca2+ (apparent Km of 0.13 microM) was found and characterized in membrane fractions from porcine aortic and coronary artery smooth muscles in comparison with the plasma membrane Ca2(+)-pump ATPase purified from porcine aorta by calmodulin affinity chromatography. The activity of the high-affinity Ca2(+)-ATPase became enriched in a plasma membrane-enriched fraction, suggesting its localization in the plasma membrane. The enzyme was fully active in the absence of exogenously added Mg2+, but required a minute amount of Mg2+ for its activity as evidenced by the findings that it was fully active in the presence of 0.1 microM free Mg2+ but lost the activity in a reaction mixture containing trans-cyclohexane-1,2-diamine-N,N,N',N'-tetraacetic acid as a divalent cation chelator which has, unlike EGTA, high affinities for both Ca2+ and Mg2+. It was able to utilize a variety of nucleoside di- and triphosphates as substrates, such as ADP, GDP, ATP, GTP, CTP, and UTP, showing a broad substrate specificity. The activity of the enzyme was not modified by calmodulin (5, 10 micrograms/ml). Trifluoperazine, a calmodulin antagonist, had a partial inhibitory effect on the activity at 30 to 240 microM, but this inhibition could not be reproduced by a more specific calmodulin antagonist, W-7, indicating that this inhibition by trifluoperazine was not specific. Furthermore, the high-affinity Ca2(+)-ATPase activity was not modified either by low concentrations (0.5-9 microM) of vanadate or by 1-100 microM p-chloromercuribenzoic acid. Cyclic GMP, nitroglycerin, and nicorandil did not have any effect on the enzyme activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The binding and conformational properties of the divalent cation site required for H+,K(+)-ATPase catalysis have been explored by using Ca2+ as a substitute for Mg2+. 45Ca2+ binding was measured with either a filtration assay or by passage over Dowex cation exchange columns on ice. In the absence of ATP, Ca2+ was bound in a saturating fashion with a stoichiometry of 0.9 mol of Ca2+ per active site and an apparent Kd for free Ca2+ of 332 +/- 39 microM. At ATP concentrations sufficient for maximal phosphorylation (10 microM), 1.2 mol of Ca2+ was bound per active site with an apparent Kd for free Ca2+ of 110 +/- 22 microM. At ATP concentrations greater than or equal to 100 microM, 2.2 mol of Ca2+ were bound per active site, suggesting that an additional mole of Ca2+ bound in association with low affinity nucleotide binding. At concentrations sufficient for maximal phosphorylation by ATP (less than or equal to 10 microM), APD, ADP + Pi, beta,gamma-methylene-ATP, CTP, and GTP were unable to substitute for ATP. Active site ligands such as acetyl phosphate, phosphate, and p-nitrophenyl phosphate were also ineffective at increasing the Ca2+ affinity. However, vanadate, a transition state analog of the phosphoenzyme, gave a binding capacity of 1.0 mol/active site and the apparent Kd for free Ca2+ was less than or equal to 18 microM. Mg2+ displaced bound Ca2+ in the absence and presence of ATP but Ca2+ was bound about 10-20 times more tightly than Mg2+. The free Mg2+ affinity, like Ca2+, increased in the presence of ATP. Monovalent cations had no effect on Ca2+ binding in the absence of ATP but dit reduce Ca2+ binding in the presence of ATP (K+ = Rb+ = NH4 + greater than Na+ greater than Li+ greater than Cs+ greater than TMA+, where TMA is tetramethylammonium chloride) by reducing phosphorylation. These results indicate that the Ca2+ and Mg2+ bound more tightly to the phosphoenzyme conformation. Eosin fluorescence changes showed that both Ca2+ and Mg2+ stabilized E1 conformations (i.e. cytosolic conformations of the monovalent cation site(s)) (Ca.E1 and Mg.E1). Addition of the substrate acetyl phosphate to either Ca.E1 or Mg.E1 produced identical eosin fluorescence showing that Ca2+ and Mg2+ gave similar E2 (extracytosolic) conformations at the eosin (nucleotide) site. In the presence of acetyl phosphate and K+, the conformations with Ca2+ or Mg2+ were also similar. Comparison of the kinetics of the phosphoenzyme and Ca2+ binding showed that Ca2+ bound prior to phosphorylation and dissociated after dephosphorylation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The purified PMCA supplemented with phosphatidylcholine was able to hydrolyze pNPP in a reaction media containing only Mg(2+) and K(+). Micromolar concentrations of Ca(2+) inhibited about 75% of the pNPPase activity while the inhibition of the remainder 25% required higher Ca(2+) concentrations. Acidic lipids increased 5-10 fold the pNPPase activity either in the presence or in the absence of Ca(2+). The activation by acidic lipids took place without a significant change in the apparent affinities for pNPP or K(+) but the apparent affinity of the enzyme for Mg(2+) increased about 10 fold. Thus, the stimulation of the pNPPase activity of the PMCA by acidic lipids was maximal at low concentrations of Mg(2+). Although with differing apparent affinities vanadate, phosphate, ATP and ADP were all inhibitors of the pNPPase activity and their effects were not significantly affected by acidic lipids. These results indicate that (a) the phosphatase function of the PMCA is optimal when the enzyme is in its activated Ca(2+) free conformation (E2) and (b) the PMCA can be activated by acidic lipids in the absence of Ca(2+) and the activation improves the interaction of the enzyme with Mg(2+).  相似文献   

17.
The rate of calcium transport by sarcoplasmic reticulum vesicles from dog heart assayed at 25 degrees C, pH 7.0, in the presence of oxalate and a low free Ca2+ concentration (approx. 0.5 microM) was increased from 0.091 to 0.162 mumol . mg-1 . min-1 with 100 nM calmodulin, when the calcium-, calmodulin-dependent phosphorylation was carried out prior to the determination of calcium uptake in the presence of a higher concentration of free Ca2+ (preincubation with magnesium, ATP and 100 microM CaCl2; approx. 75 microM free Ca2+). Half-maximal activation of calcium uptake occurs under these conditions at 10-20 nM calmodulin. The rate of calcium-activated ATP hydrolysis by the Ca2+-, Mg2+-dependent transport ATPase of sarcoplasmic reticulum was increased by 100 nM calmodulin in parallel with the increase in calcium transport; calcium-independent ATP splitting was unaffected. The calcium-, calmodulin-dependent phosphorylation of sarcoplasmic reticulum, preincubated with approx. 75 microM Ca2+ and assayed at approx. 10 microM Ca2+ approaches maximally 3 nmol/mg protein, with a half-maximal activation at about 8 nM calmodulin; it is abolished by 0.5 mM trifluperazine. More than 90% of the incorporated [32P]phosphate is confined to a 9-11 kDa protein, which is also phosphorylated by the catalytic subunit of the cAMP-dependent protein kinase and most probably represents a subunit of phospholamban. The stimulatory effect of 100 nM calmodulin on the rate of calcium uptake assayed at 0.5 microM Ca2+ was smaller following preincubation of sarcoplasmic reticulum vesicles with calmodulin in the presence of approx. 75 microM Ca2+, but in the absence of ATP, and was associated with a significant degree of calmodulin-dependent phosphorylation. However, the stimulatory effect on calcium uptake and that on calmodulin-dependent phosphorylation were both absent after preincubation with calmodulin, without calcium and ATP, suggestive of a causal relationship between these processes.  相似文献   

18.
The (Ca2+ + Mg2+)-ATPase from red cell membranes, purified by means of a calmodulin-containing affinity column according to the method of Gietzen et al. (Gietzen, K., Tejcka, M. and Wolf, H.U. (1980) Biochem. J. 189, 81-88) with either phosphatidylcholine or phosphatidylserine as phospholipid is characterized. The phosphatidylcholine preparation can be activated by calmodulin, while the phosphatidylserine preparation is fully activated without calmodulin. The enzyme shows a biphasic ATP dependence with two Km values of 3.5 and 120 microM. The enzyme is phosphorylated by ATP in the presence of Ca2+ only.  相似文献   

19.
Microsomes isolated from cat pancreas were incubated with [gamma-32P]ATP in the presence or absence of Ca2+. Following fractionation of phosphoproteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis a single microsomal protein with an apparent molecular mass of 77,000 dalton (77K) was found to be phosphorylated in a Ca2+-dependent mechanism. Maximal phosphate incorporation into the 77K protein was observed at 10(-6) mol/l [Ca2+] and was 4-fold higher than in the absence of Ca2+. The 77K phosphoprotein showed characteristic of a stable phosphoester rather than an acyl phosphate. Measurable phosphate incorporation into the 77K protein was noted 5 s following addition of [gamma-32P]ATP and reached maximum at 9-10th min. The lack of effect of exogenous cyclic AMP, cyclic AMP-dependent protein kinase, calmodulin, the calmodulin antagonist trifluoperazine, leupeptin and the suppression of phosphorylation by some phospholipid-interacting drugs suggested that the 77K protein is a substrate for cyclic AMP- and calmodulin-independent, Ca2+-activated phospholipid-sensitive kinase activity. Centrifugation of the pancreatic homogenate in a ficoll-sucrose density gradient indicated that both the 77K protein and enzyme were associated in a fraction enriched in rough endoplasmic reticulum.  相似文献   

20.
In order to determine the role of divalent cations in the reaction mechanism of the H+,K+-ATPase, we have substituted calcium for magnesium, which is required by the H+,K+-ATPase for phosphorylation from ATP and from PO4. Calcium was chosen over other divalent cations assayed (barium and manganese) because in the absence of magnesium, calcium activated ATP hydrolysis, generated sufficiently high levels of phosphoenzyme (573 +/- 51 pmol.mg-1) from [gamma-32P]ATP to study dephosphorylation, and inhibited K+-stimulated ATP hydrolysis. The Ca2+-ATPase activity of the H+,K+-ATPase was 40% of the basal Mg2+-ATPase activity. However, the Ca2+,K+-ATPase activity (minus the Ca2+ basal activity) was only 0.7% of the Mg2+,K+-ATPase, indicating that calcium could partially substitute for Mg2+ in activating ATP hydrolysis but not in K+ stimulation of ATP hydrolysis. Approximately 0.1 mM calcium inhibited 50% of the Mg2+-ATPase or Mg2+,K+-ATPase activities. Inhibition of Mg2+,K+-ATPase activity was not competitive with respect to K+. Inhibition by calcium of Mg2+,K+ activity p-nitrophenyl phosphatase activity was competitive with respect to Mg2+ with an apparent Ki of 0.27 mM. Proton transport measured by acridine orange uptake was not detected in the presence of Ca2+ and K+. In the presence of Mg2+ and K+, Ca2+ inhibited proton transport with an apparent affinity similar to the inhibition of the Mg2+, K+-ATPase activity. The site of calcium inhibition was on the exterior of the vesicle. These results suggest that calcium activates basal turnover and inhibits K+ stimulation of the H+,K+-ATPase by binding at a cytosolic divalent cation site. The pseudo-first order rate constant for phosphoenzyme formation from 5 microM [gamma-32P]ATP was at least 22 times slower in the presence of calcium (0.015 s-1) than magnesium (greater than 0.310 s-1). The Ca.EP (phosphoenzyme formed in the presence of Ca2+) formed dephosphorylated four to five times more slowly that the Mg.EP (phosphoenzyme formed in the presence of Mg2+) in the presence of 8 mm trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA) or 250 microM ATP. Approximately 10% of the Ca.EP formed was sensitive to a 100 mM KCl chase compared with greater than 85% of the Mg.EP. By comparing the transient kinetics of the phosphoenzyme formed in the presence of magnesium (Mg.EP) and calcium (Ca.EP), we found two actions of divalent cations on dephosphorylation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号