首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 396 毫秒
1.
The activities of several enzymes of the citric acid and poly-β-hydroxybutyrate cycles were measured in Rhizobium japonicum 3I1B-143 bacteroids which had been isolated from soybean nodules by sucrose gradient centrifugation. During the period of developing nitrogenase activity, the specific activity of fumarase, hydroxybutyrate dehydrogenase, β-ketothiolase, and pyruvate dehydrogenase complex increased whereas acetoacetate-succinyl-CoA transferase and isocitrate dehydrogenase decreased. Malate dehydrogenase activity remained constant. The amount of available acetyl-CoA, based on pyruvate dehydrogenase activity, should be sufficient to support both metabolic cycles concurrently. The temporal relationship between nitrogenase activity and poly-β-hydroxybutyrate accumulation has been reexamined.  相似文献   

2.
Summary A series of investigations were conducted with the objective of elucidating natural pathways of electron transport from respiratory processes to the site of N2 fixation in nodule bacteroids. A survey of dehydrogenase activities in a crude extract of soybean nodule bacteroids revealed relatively high activities of NAD-specific β-hydroxybutyrate and glyceraldehyde-3-phosphate dehydrogenases. Moderate activities of NADP-specific isocitrate and glucose-6-phosphate dehydrogenases were observed. By use of the ATP-dependent acetylene reduction reaction catalyzed by soybean bacteroid nitrogenase, and enzymes and cofactors from bacteroids and other sources, the following sequences of electron transport to bacteroid nitrogenase were demonstrated: (1) H2 to bacteroid nitrogenase in presence of a nitrogenase-free extract ofC. pasteurianum; (2) β-hydroxybutyrate to bacteroid nitrogenase in a reaction containing β-hydroxybutyrate dehydrogenase, NADH dehydrogenase, NAD and benzyl viologen; (3) β-hydroxybutyrate dehydrogenase, to nitrogenase in reaction containing NADH dehydrogenase, NAD and either FMN or FAD; (4) light-dependent transfer of electrons from ascorbate to bacteroid nitrogenase in a reaction containing photosystem I from spinach chloroplasts, 2,6-dichlorophenolindophenol, and either azotoflavin from Azotobacter or non-heme iron protein from bacteroids; (5) glucose-6-phosphate to bacteroid nitrogenase in a system that included glucose-6-phosphate dehydrogenase, NADP, NADP-ferredoxin reductase from spinach, azotoflavin from Azotobacter and bacteroid non-heme iron protein. The electron transport factors, azotoflavin and bacteroid non-heme iron protein, failed to function in the transfer of electrons from an NADH-generating system to bacteroid nitrogenase. When FMN or FAD were added to systems containing azotoflavin and bacteroid non-heme iron protein, electrons apparently were transferred to the flavin-nucleotides and then nitrogenase without involvement of azotoflavin and bacteroid non-heme iron protein. Evidence is available indicating that nodule bacteroids contain flavoproteins analogous to Azotobacter, azotoflavin, and spinach ferredoxin-NADP reductase. It is concluded that physiologically important systems involved in transport of electrons from dehydrogenases to nitrogenase in bacteroids very likely will include relatively specific electron transport proteins such as bacteroid non-heme iron protein and a flavoprotein from bacteroids that is analogous to azotoflavin.  相似文献   

3.
Studies on soybean nodule senescence   总被引:2,自引:7,他引:2       下载免费PDF全文
Klucas RV 《Plant physiology》1974,54(4):612-616
Soybean Glycine max. L. Merr. nodule senescence was studied using the loss of acetylene reduction by intact tap root nodules as its indication. Tap root nodules from two varieties (Calland and Beeson) of field-grown soybeans were used. The specific activities of nitrogenase (micromoles/minute gram fresh weight of nodules) as measured by the acetylene reduction assay decreased abruptly between 58 to 65 and 68 to 75 days after planting the Beeson and Calland soybeans, respectively. Major changes were not detected in dry weight, total nitrogen, and leghemoglobin levels during the period when in vivo nitrogenase activity declined. Ammonium levels in the cytosol of nodules and poly-β-hydroxybutyrate increased moderately just prior to or coincidental with the loss of nitrogenase activity. Neither enzymes that have been postulated to be involved in ammonium assimilation nor NADP+-specific isocitrate dehydrogenase exhibited any large changes in specific activities during the initial period when nitrogenase activity declined.  相似文献   

4.
The transformation of Azotobacter vinelandii UW with A. vinelandii 113 DNA resulted in the formation of rifampin-resistant colonies, 13% of which also inherited a previously unrecognized mutation in the respiratory NADH oxidase. These transformants produced colonies with a white-sectored phenotype after prolonged incubation. Cells from these sectors were separated and purified by streaking and were named UWD. The dense white phenotype was due to the production of a large amount of poly-β-hydroxybutyrate during the exponential growth of strain UWD. The polymer accounted for 65 or 75% of the cell dry weight after 24 h of incubation of cultures containing glucose and either ammonium acetate or N2, respectively, as the nitrogen source. Under the same conditions, strain UW cells contained 22 to 25% poly-β-hydroxybutyrate, but O2-limited growth was required for these optimal production values. Polymer production was not dependent on O2 limitation in strain UWD, but the efficiency of conversion of glucose to poly-β-hydroxybutyrate was enhanced in O2-limited cultures. Conversion efficiencies were >0.25 and 0.33 mg of poly-β-hydroxybutyrate per mg of glucose consumed under vigorous- and low-aeration conditions, respectively, compared with an efficiency of 0.05 achieved by strain UW. Strain UWD, therefore, appeared to from poly-β-hydroxybutyrate under novel conditions, which may be useful in designing new methods for the industrial production of biodegradable plastics.  相似文献   

5.
Azospirillum lipoferum RG6xx was grown under conditions similar to those resulting in encystment of Azotobacter spp. A. lipoferum produced cells of uniform shape when grown on nitrogen-free β-hydroxybutyrate agar. Cells accumulated poly-β-hydroxybutyrate and often grew as chains or filaments that eventually lost motility and formed capsules. Within 1 week, vegetative A. lipoferum inocula were converted into microflocs arising from filaments or chains. Cells within microflocs were pleomorphic, contained much poly-β-hydroxybutyrate, and were encapsulated. Some cells had a cystlike morphology. Up to 57% of the dry weight of encapsulated flocs was poly-β-hydroxybutyrate, whereas vegetative cells grown in broth with combined nitrogen had only 3% of their dry weight as poly-β-hydroxybutyrate. Neither encapsulated cells in flocs nor nonencapsulated vegetative cells were significantly desiccation resistant. Under starvation conditions (9 days) only 25% of encapsulated cells remained viable, whereas vegetative cells multiplied severalfold. In short-term germination experiments with encapsulated flocs, nitrate, ammonium, and soil extract promoted formation of motile vegetative cells. Most cells in treatments lacking combined nitrogen eventually depleted their visible poly-β-hydroxybutyrate reserves without germinating. The remaining cells retained the reserve polymer and underwent size reduction.  相似文献   

6.
Exposure of Galega orientalis plants to diamines putrescine (Put) and cadaverine (Cad) at concentrations from 0.01 to 2.0 m M significantly altered carbon and nitrogen metabolism in their root nodules. Correlative studies of bacteroid poly- β -hydroxybutyrate (PHB) content and acetylene-reduction capacity of the nodules revealed a negative relationship between these parameters. Utilisation of PHB deposits by bacteroids and high acetylene reduction activity was observed when applying low diamine concentrations. The increase in PHB accumulation in response to high diamine levels was accompanied by a considerable decline in nodule nitrogenase activity. Supplying isolated Galega bacteroids with various diamine concentrations significantly modified bacteroid oxygen consumption, which might be associated with alterations in carbon flux to the bacteroids. Finally, modulation of the bacteroid content upon Put and Cad treatment was examined. The results are discussed in terms of possible causes of the diamine-induced changes in nodule metabolism.  相似文献   

7.
Ion-exclusion high-pressure liquid chromatography (HPLC) was used to measure poly-β-hydroxybutyrate (PHB) in Rhizobium japonicum bacteroids. The products in the acid digest of PHB-containing material were fractionated by HPLC on Aminex HPX-87H ion-exclusion resin for organic acid analysis. Crotonic acid formed from PHB during acid digestion was detected by its intense absorbance at 210 nm. The Aminex-HPLC method provides a rapid and simple chromatographic technique for routine analysis of organic acids. Results of PHB analysis by Aminex-HPLC were confirmed by gas chromatography and spectrophotometric analysis.  相似文献   

8.
The metabolism of translocated photosynthate by soybean (Glycine max L. Merr.) nodules was investigated by 14CO2-labeling studies and analysis of nodule enzymes. Plants were exposed to 14CO2 for 30 minutes, followed by 12CO2 for up to 5 hours. The largest amount of radioactivity in nodules was recovered in neutral sugars at all sampling times. The organic acid fraction of the cytosol was labeled rapidly. Although cyclitols and malonate were found in high concentrations in the nodules, they accumulated less than 10% of the radioactivity in the neutral and acidic fractions, respectively. Phosphate esters were found to contain very low levels of total label, which prohibited analysis of the radioactivity in individual compounds. The whole nodule-labeling patterns suggested the utilization of photosynthate for the generation of organic acids (principally malate) and amino acids (principally glutamate).

The radioactivity in bacteroids as a percentage of total nodule label increased slightly with time, while the percentage in the cytosol fraction declined. The labeling patterns for the cytosol were essentially the same as whole nodule-labeling patterns, and they suggest a degradation of carbohydrates for the production of organic acids and amino acids. When it was found that most of the radioactivity in bacteroids was in sugars, the enzymes of glucose metabolism were surveyed. Bacteroids from nodules formed by Rhizobium japonicum strain 110 or strain 138 lacked activity for phosphofructokinase and NADP-dependent 6-phosphogluconate dehydrogenase, key enzymes of glycolysis and the oxidative pentose-phosphate pathways. Enzymes of the glycolytic and pentose phosphate pathways were found in the cytosol fraction.

In three experiments, bacteroids contained about 10 to 30% of the total radioactivity in nodules 2 to 5 hours after pulse-labeling of plants, and 60 to 65% of the radioactivity in bacteroids was in the neutral sugar fraction at all sampling times. This strongly suggests some absorption and metabolism of sugars by bacteroids in spite of the lack of key enzymes. Bacteroids did possess enzymes for the formation of hexose phosphates from glucose or fructose. Radioactivity in α,α-trehalose in bacteroids increased until, after 5 hours, trehalose was a major labeled compound in bacteroids. Thus, trehalose synthesis may be a major fate of sugars entering bacteroids.

  相似文献   

9.
A convenient gas-liquid chromatography procedure to quantify poly-β-hydroxybutyrate and poly-β-hydroxyvalerate in activated sludge was developed by combining lyophilization of the samples, purification of the chloroform phase by water reextraction, and the use of capillary columns. With a flame ionization detector the sensitivity was estimated at 10−5 g/liter.  相似文献   

10.
Root nodules were harvested from chamber-grown soybean (Glycine max L. Merrill cv Woodworth) plants throughout development. Apparent nitrogenase activity (acetylene reduction) peaked before seeds began to develop, but a significant amount of activity remained as the seeds matured. Nodule senescence was defined as the period in which residual nitrogenase activity was lost. During this time, soluble protein and leghemoglobin levels in the host cell cytosol decreased, and proteolytic activity against azocasein increased. Degradative changes were not detected in bacteroids during nodule senescence. Total soluble bacteroid protein per gram of nodule remained constant, and an increase in proteolytic activity in bacteroid extracts was not observed. These results are consistent with the view that soybean nodule bacteroids are capable of redifferentiation into free-living bacteria upon deterioration of the legume-rhizobia symbiosis.  相似文献   

11.
Mutagenesis provoked by exposure to increased concentration of antibiotics of five indigenous Rhizobium galegae strains resulted in the generation of several antibiotic-resistant mutants. The mutants differed from the wild type and one from another in respect to the nodulation capacity, the nitrogenase activity, the nodule ultrastructure, and the plant growth response. Galega plants inoculated with mutants resistant to streptomycin and rifampicin formed nodules with higher nitrogenase activity and accumulated more shoot dry biomass than plants inoculated with the parent strains. Resistance to kanamycin and nalidixic acid was associated with significant decrease of nitrogenase activity. A correlation between nitrogen-fixing efficiency and nodule infected cell ultrastructure was found. When the bacteroids occupied about 10 times higher area in infected cells of nodule than peribacteroid spaces and host cytosol had electron dense and homogenous structure, the nitrogenase activity was the highest. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
The microsymbiont population in soybean root nodules (Glycine max L. cv Williams 82 inoculated with Bradyrhizobium japonicum 2143) was characterized during symbiotic development to determine the extent of heterogeneity in this population. The microsymbiont population was isolated by centrifugation through a continuous sucrose gradient (44 to 57% weight to weight ratio) and appeared homogeneous at each age examined up to 26 days after planting based on the symmetrical distribution of the population, enzyme activities, poly-β-hydroxybutyrate contents, protein contents, and viabilities. Some differences in viability, protein content, and acetylene reduction activity were observed at later ages. The population migrated to progressively lighter buoyant densities with increasing age until a density equivalent to 48% sucrose was reached. The changing density correlated directly with the increasing poly-β-hydroxybutyrate to protein ratio. The acetylene reduction activity, based on microsymbiont concentration, followed the same developmental pattern as whole nodules. On a protein basis, the decline of acetylene reduction activity was later and reflected the decrease in protein content per cell. These results suggested that the microsymbiont population, which resulted from inoculation of B. japonicum 2143 onto Williams 82 cultivar of soybeans, developed as a homogeneous population.  相似文献   

13.
The symbiotic interaction between legumes and soil bacteria (e.g., soybean [Glycine max L.] and Bradyrhizobium japonicum]) leads to the development of a new root organ, the nodule, where bacteria differentiate into bacteroids that fix atmospheric nitrogen for assimilation by the plant host. In exchange, the host plant provides a steady carbon supply to the bacteroids. This carbon can be stored within the bacteroids in the form of poly-3-hydroxybutyrate granules. The formation of this symbiosis requires communication between both partners to regulate the balance between nitrogen fixation and carbon utilization. In the present study, we describe the soybean gene GmNMNa that is specifically expressed during the infection of soybean cells by B. japonicum. GmNMNa encodes a protein of unknown function. The GmNMNa protein was localized to the nucleolus and also to the mitochondria. Silencing of GmNMNa expression resulted in reduced nodulation, a reduction in the number of bacteroids per infected cell in the nodule, and a clear reduction in the accumulation of poly-3-hydroxybutyrate in the bacteroids. Our results highlight the role of the soybean GmNMNa gene in regulating symbiotic bacterial infection, potentially through the regulation of the accumulation of carbon reserves.  相似文献   

14.
The role of the storage lipid poly-β-hydroxybutyrate (PHB) in trichloroethylene transformation by methanotrophic mixed cultures was investigated. Naphthalene oxidation rates were used to assay for soluble methane monooxygenase activity. The PHB content of methanotrophic cells grown in reactors varied diurnally as well as from day to day. A positive correlation between the amount of PHB in the cells and the naphthalene oxidation rate as well as between PHB and the trichloroethylene transformation rate and capacity was found. Addition of β-hydroxybutyrate increased the naphthalene oxidation rates significantly. PHB content in cells could be manipulated by incubation at different methane-to-nitrogen ratios. A positive correlation between the naphthalene oxidation rate and the PHB content after these incubations could be seen. Both the PHB content and the naphthalene oxidation rates decreased with time in resting methanotrophic cells exposed to oxygen. However, this decrease in the naphthalene oxidation rate cannot be explained by the decrease in the PHB content alone. Probably a deactivation of the methane monooxygenase itself is also involved.  相似文献   

15.
Plants of Glycine max var. Caloria, infected as 14 d old seedlings with a defined titre of Rhizobium japonicum 3Il b85 in a 10 min inoculation test, develop a sharp maximum of nitrogenase activity between 17 and 25 d after infection. This maximum (14±3 nmol C2H4 h-1 mg nodule fresh weight-1), expressed as per mg nodule or per plant is followed by a 15 d period of reduced nitrogen fixation (20–30% of peak activity). 11 d after infection the first bacteroids develop as single cells inside infection vacuoles in the plant cells, close to the cell wall and infection threads. As a cytological marker for peak multiplication of bacteroids and for peak N2-fixation a few days later the association of a special type of nodule mitochondria with amyloplasts is described. 20 d after inoculation, more than 80% of the volume of infected plant cells is occupied by infection vacuoles, mostly containing only one bacteroid. The storage of poly--hydroxybutyrate starts to accumulate at both ends of the bacteroids. Non infected plant cells are squeezed between infected cells (25d), with infection vacuoles containing now more than two (up to five) bacteroids per section. Bacteroid development including a membrane envelope is also observed in the intercellular space between plant cells. 35 d after infection, more than 50% of the bacteroid volume is occupied by poly--hydroxybutyrate. The ultrastructural differentiation is discussed in relation to some enzymatic data in bacteroids and plant cell cytoplasm during nodule development.  相似文献   

16.
Nitrate supplied to legume plants inhibits the activity of nitrogenase in Rhizobium bacteroids in root nodules. The accumulation of amino N which is known to occur in Glycine max (L.) Merr. nodules as nitrogenase activity declines was studied in more detail by analysis of changes in free amino acid composition in response to high nitrate supply. A 6-fold increase in asparagine concentration in Bradyrhizobium japonicum bacteroids was found about the time of maximum nitrogenase inhibition. However, the accumulation of amino acids in soybean nodules lagged behind the inhibition of nitrogenase. Furthermore, in studies of a second legume, Phaseolus vulgaris (L.) inoculated with two different strains of Rhizobium phaseoli, a high nitrate treatment inhibited nitrogenase but had no significant effect on amino acid composition of nodules. The possibility that nitrate may interfere with the supply of carbon substrates to bacteroids was examined by the analysis of organic acids in legume nodules supplied with nitrate. Nitrate had a small (10-20%) negative effect on the concentration of tricarboxylic acid cycle acids in P. vulgaris nodules. However, in G. max nodules, high nitrate treatment resulted in significant increases in the concentration of malate, succinate, fumarate, and citrate. Thus, carbon deprivation of bacteroids also seems unlikely as a cause of the inhibition of nitrogenase by nitrate. There was a transient increase in ammonium concentration in P. vulgaris nodules in response to high nitrate treatment. This effect was rapid relative to other effects of nitrate on nodule composition and was roughly coincident with the rapid decline in acetylene reduction activity.  相似文献   

17.
Valverde  Claudio  Wall  Luis Gabriel 《Plant and Soil》2003,250(1):155-165
N2-fixation is sensitive to limitation in the availability of newly synthesised carbohydrates for the nodules. We decided to explore the response of the D. trinervis - Frankia symbiosis to a transient decrease in carbohydrate supply to nodules. Feedback inhibition of nodulation as well as nodule growth was not released by a 6-day dark stress in D. trinervis nodulated plants. However, nitrogen fixation and assimilation were affected by the imposed stress. Nitrogenase activity was totally inhibited after 4 days of darkness although high levels of nitrogenase components were still detected at this time. Degradation of FeMo and Fe nitrogenase subunits – both at similar rates – was observed after 6 days of dark stress, revealing the need for inactivation to precede enhancement of protein turnover. Glutamine synthetase (GS), malate dehydrogenase (MDH) and asparagine synthetase (AS) polypeptides were also degraded during the dark stress, although at a lower rate than nitrogenase. ARA and nitrogenase were totally recovered 8 days after resuming normal illumination. It seems that current nitrogenase activity and ammonium assimilation are not, or are only weakly linked with the feedback control of nodulation in D. trinervis. These observations give support to the persistence of an autoregulatory signal in mature nodules that is not sensitive to transient shortages of carbon supply and sustains the inhibition of nodulation in the transient absence of N2 fixation.  相似文献   

18.
Soybean (Glycine max L. Merr) plants grown under control (360 µmol mol?1) or elevated CO2 concentration (800 µmol mol?1) from 33 to 42 d after sowing were assayed for various components of in vivo nitrogenase activity to test the hypothesis that increasing carbohydrate supply to nodules would increase the potential (i.e. O2 saturated) nitrogenase activity and impose a more severe O2 limitation on both nodule metabolism and total nitrogenase activity. Within 51 h of elevated CO2 treatment, significant increases relative to control plants were seen in total nitrogenase activity expressed per plant. After 6 d of elevated CO2, the total nitrogenase activity per plant was 18% higher than that in control. This was attributed to an initial increase in nodule size, and a subsequent increase in nodule number following plant exposure to elevated CO2. However, after 9 d of elevated CO2, the potential and total nitrogenase activities per gram nodule dry weight were lower, not higher than corresponding values in plants in the control treatment. These results did not support the hypothesis. It was concluded that the metabolic capacity of the control nodules were not limited by carbohydrate supply, at least at the assay temperatures employed here.  相似文献   

19.
Fractionation of fully sporulated cultures of Bacillus thuringiensis by density gradient centrifugation in NaBr produced two bands which were identified as poly-β-hydroxybutyrate. This technique generated high yields of membrane-bound and unbound granules of exceptional purity and degree of polymerization.  相似文献   

20.
More ethanol soluble material (carbohydrate and amino nitrogen) was found in both host cell and bacteroid components of Phaseolus vulgaris nodules from plants grown at 28 W/m2 than from plants grown at 7 W/m2. The range of compounds identified was similar at the two irradiances. On feeding 14CO2 to the plant tops at either irradiance the labelling patterns of carbohydrates and organic acids in the nodule host cells and bacteroids suggested that any or all of the following substances could be donated by the host to the bacteroids for general metabolism: sucrose, fructose, glucose, an unidentified carbohydrate, malic acid and an organic acid co-chromatographing with 6-phosphogluconate. Distribution and labelling patterns of nodule amino compounds were consistent with the hypothesis that ammonia is the primary product of nitrogen fixation within bacteroids, and that this ammonia is transported to host cells for assimilation, initially into glutamine and glutamate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号