首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
DNA-damaging agents can induce clustered lesions or multiply damaged sites (MDSs) on the same or opposing DNA strands. In the latter, attempts to repair MDS can generate closely opposed single-strand break intermediates that may convert non-lethal or mutagenic base damage into double-strand breaks (DSBs). We constructed a diploid S. cerevisiae yeast strain with a chromosomal context targeted by integrative DNA fragments carrying different damages to determine whether closely opposed base damages are converted to DSBs following the outcomes of the homologous recombination repair pathway. As a model of MDS, we studied clustered uracil DNA damages with a known location and a defined distance separating the lesions. The system we describe might well be extended to assessing the repair of MDSs with different compositions, and to most of the complex DNA lesions induced by physical and chemical agents.  相似文献   

2.
Summary Recombinational repair is the means by which DNA double-strand breaks (DSBs) are repaired in yeast. DNA divergence between chromosomes was shown previously to inhibit repair in diploid G1 cells, resulting in chromosome loss at low nonlethal doses of ionizing radiation. Furthermore, 15–20% divergence prevents meiotic recombination between individual pairs of Saccharomyces cerevisiae and S. carlsbergensis chromosomes in an otherwise S. cerevisiae background. Based on analysis of the efficiency of DSB-induced chromosome loss and direct genetic detection of intragenic recombination, we conclude that limited DSB recombinational repair can occur between homoeologous chromosomes. There is no difference in loss between a repair-proficient Pms+ strain and a mismatch repair mutant, pms1. Since DSB recombinational repair is tolerant of diverged DNAs, this type of repair could lead to novel genes and altered chromosomes. The sensitivity to DSB-induced loss of 11 individual yeast artificial chromosomes (YACs) containing mouse or human (chromosome 21 or HeLa) DNA was determined. Recombinational repair between a pair of homologous HeLa YACs appears as efficient as that between homologous yeast chromosomes in that there is no loss at low radiation doses. Single YACs exhibited considerable variation in response, although the response for individual YACs was highly reproducible. Based on the results with the yeast homoeologous chromosomes, we propose that the potential exists for intra- YAC recombinational repair between diverged repeat DNA and that the extent of repair is dependent upon the amount of repeat DNA and the degree of divergence. The sensitivity of YACs containing mammalian DNA to ionizing radiation-induced loss may thus be an indicator of the extent of repeat DNA.  相似文献   

3.
Most mechanistic studies of repair of DNA double-strand breaks (DSBs) produced by in vivo expression of endonucleases have utilized enzymes that produce cohesive-ended DSBs such as HO, I-SceI and EcoRI. We have developed systems for expression of PvuII and EcoRV, nucleases that produce DSBs containing blunt ends, using a modified GAL1 promoter that has reduced basal activity. Expression of PvuII and EcoRV caused growth inhibition and strong cell killing in both haploid and diploid yeast cells. Surprisingly, there was little difference in sensitivities of wildtype cells and mutants defective in homologous recombination, nonhomologous end-joining (NHEJ), or both pathways. Physical analysis using standard and pulsed field gel electrophoresis demonstrated time-dependent breakage of chromosomal DNA within cells. Although ionizing radiation-induced DSBs were largely repaired within 4 h, no repair of PvuII-induced breaks could be detected in diploid cells, even after arrest in G2/M. Rare survivors of PvuII expression had an increased frequency of chromosome XII deletions, an indication that a fraction of the induced DSBs could be repaired by an error-prone process. These results indicate that, unlike DSBs with complementary single-stranded DNA overhangs, blunt-ended DSBs in yeast chromosomes are poor substrates for repair by either NHEJ or recombination.  相似文献   

4.
Viscoelastometric measurements of DNA from gamma-irradiated bacteria were used to identify the induction of double-strand breaks ( DSBs ) in the chromosome of Escherichia coli. It is shown by means of inhibitors of repair endonucleases and different repair mutants that most DSBs in DNA of E. coli, gamma-irradiated in buffer, arise from enzymatic incision of primary gamma-damages; therefore, previous conclusions regarding DSB repair must be reconsidered. Based on these results, much of the reparable damage is single-strand breaks, and this damage can initiate formation of gaps and ultimately, when repair is insufficient, generation of enzymatically caused DSBs . After extensive repair, the first residual DSB in the E. coli chromosome is generated at approximately 160 Gray (Gy), which corresponds to the D37 dose. We propose that DSBs induced directly by gamma-irradiation are not repaired in wild-type strains. In a recently isolated gamma-resistant strain, E. coli Gamr444 , the dose required for observation of DSB after postirradiation incubation is 1,000 Gy, which corresponds to the D37 of the strain. The resistance is proposed to be due to an ability to repair genuine DSBs .  相似文献   

5.
6.
7.
Double-stranded DNA breaks (DSBs) are a particularly dangerous form of DNA damage because they can lead to chromosome loss, translocations or truncations. When DSBs occur, many proteins are recruited to the break site; these proteins serve to both initiate DNA repair and to activate a checkpoint response. Repair occurs via one of two pathways: non-homologous end-joining (NHEJ), in which broken DNA ends are directly ligated; or homologous recombination (HR), in which a homologous chromosome is used as a template in a replicative repair process. The checkpoint response is mediated by the phosphatidyl inositol 3-kinase-like kinases, Mec1 and Tel1 (ATR and ATM in humans, respectively). Two recent studies in yeast have significantly increased our understanding of when each of the proteins involved in these processes is localized to a break and, in addition, how their sequential localization is achieved. Specifically, these studies support and expand upon a model in which Tel1 and the NHEJ proteins are the first proteins to localize to the break to initiate signaling and attempt repair, but are subsequently replaced by Mec1 and the HR proteins. This transition is mediated by a cyclin-dependent kinase-dependent initiation of 5'-->3' processing (resection) of the DSB. Thus, the cell-cycle stage at which DSBs occur affects the way in which the DSBs are processed and recognized.  相似文献   

8.
Regulation of DNA double-strand break repair pathway choice   总被引:31,自引:0,他引:31  
DNA double-strand breaks (DSBs) are critical lesions that can result in cell death or a wide variety of genetic alterations including largeor small-scale deletions, loss of heterozygosity, translocations, and chromosome loss. DSBs are repaired by non-homologous end-joining (NHEJ) and homologous recombination (HR), and defects in these pathways cause genome instability and promote tumorigenesis. DSBs arise from endogenous sources including reactive oxygen species generated during cellular metabolism, collapsed replication forks, and nucleases, and from exogenous sources including ionizing radiation and chemicals that directly or indirectly damage DNA and are commonly used in cancer therapy. The DSB repair pathways appear to compete for DSBs, but the balance between them differs widely among species, between different cell types of a single species, and during different cell cycle phases of a single cell type. Here we review the regulatory factors that regulate DSB repair by NHEJ and HR in yeast and higher eukaryotes. These factors include regulated expression and phosphorylation of repair proteins, chromatin modulation of repair factor accessibility, and the availability of homologous repair templates. While most DSB repair proteins appear to function exclusively in NHEJ or HR, a number of proteins influence both pathways, including the MRE11/RAD50/NBS1(XRS2) complex, BRCA1, histone H2AX, PARP-1, RAD18, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and ATM. DNA-PKcs plays a role in mammalian NHEJ, but it also influences HR through a complex regulatory network that may involve crosstalk with ATM, and the regulation of at least 12 proteins involved in HR that are phosphorylated by DNA-PKcs and/or ATM.  相似文献   

9.
10.
K D Mills  D A Sinclair  L Guarente 《Cell》1999,97(5):609-620
The yeast Sir2/3/4p complex is found in abundance at telomeres, where it participates in the formation of silent heterochromatin and telomere maintenance. Here, we show that Sir3p is released from telomeres in response to DNA double-strand breaks (DSBs), binds to DSBs, and mediates their repair, independent of cell mating type. Sir3p relocalization is S phase specific and, importantly, requires the DNA damage checkpoint genes MEC1 and RAD9. MEC1 is a homolog of ATM, mutations in which cause ataxia telangiectasia (A-T), a disease characterized by various neurologic and immunologic abnormalities, a predisposition for cancer, and a cellular defect in repair of DSBs. This novel mode by which preformed DNA repair machinery is mobilized by DNA damage sensors may have implications for human diseases resulting from defective DSB repair.  相似文献   

11.
Meiotic cells generate physiological programmed DNA double-strand breaks (DSBs) to initiate meiotic recombination. Interhomolog repair of the programmed DSBs by meiotic recombination is vital to ensure accurate chromosome segregation at meiosis I to produce normal gametes. In budding yeast, the DNA damage checkpoint kinase Rad53 is activated by DSBs which accidentally occur as DNA lesions in mitosis and meiosis; however, meiotic programmed DSBs which occur at ∼160 loci per genome fail to activate the kinase. Thus, Rad53 activation appears to be silenced in response to meiotic programmed DSBs. In this study, to address the biological significance of Rad53’s insensitivity to meiotic DSBs, we examined the effects of Rad53 overexpression on meiotic processes. The overexpression led to partial activation of Rad53, uncovering that the negative impacts of Rad53 kinase activation on meiotic progression, and formation and interhomolog repair of meiotic programmed DSBs.  相似文献   

12.
Studies in the yeast Saccharomyces cerevisiae have validated the major features of the double-strand break repair (DSBR) model as an accurate representation of the pathway through which meiotic crossovers (COs) are produced. This success has led to this model being invoked to explain double-strand break (DSB) repair in other contexts. However, most non-crossover (NCO) recombinants generated during S. cerevisiae meiosis do not arise via a DSBR pathway. Furthermore, it is becoming increasingly clear that DSBR is a minor pathway for recombinational repair of DSBs that occur in mitotically-proliferating cells and that the synthesis-dependent strand annealing (SDSA) model appears to describe mitotic DSB repair more accurately. Fundamental dissimilarities between meiotic and mitotic recombination are not unexpected, since meiotic recombination serves a very different purpose (accurate chromosome segregation, which requires COs) than mitotic recombination (repair of DNA damage, which typically generates NCOs).  相似文献   

13.
Smirnova M  Klein HL 《Mutation research》2003,532(1-2):117-135
The postreplication repair pathway (PRR) is composed of error-free and error-prone sub-pathways that allow bypass of DNA damage-induced replication-blocking lesions. The error-free sub-pathway is also used for bypass of spontaneous DNA damage and functions in cooperation with recombination pathways. In diploid yeast cells, error-free PRR is needed to prevent genomic instability, which is manifest as loss of heterozygosity (LOH) events of increased chromosome loss and recombination. Homologous recombination acts synergistically with the error-free damage avoidance branch of PRR to prevent chromosome loss. The DNA damage checkpoint gene MEC1 acts synergistically with the PRR pathway in maintaining genomic stability. Integration of the PRR pathway with other cellular pathways for preventing genomic instability is discussed. In diploid strains, the most dramatic increase is in the abnormality of chromosome loss when a repair or damage detection pathway is defective.  相似文献   

14.
One fundamental function of telomeres is to prevent the ends of chromosomes from being sensed and treated as DNA damage. Here we present evidence for additional roles of telomeres in promoting proper chromosome segregation and DNA repair. We find that the fission yeast telomere protein Taz1p is required for cell cycle progression at 20 degrees C, a temperature at which taz1Delta cells exhibit a G(2)/M DNA damage checkpoint delay, chromosome missegregation, and DNA double-strand breaks (DSBs). Spindle assembly checkpoint components and a checkpoint-independent function of Rad3p are required for taz1Delta cells to survive at 20 degrees C. Disruption of topoisomerase II activity suppresses the cold sensitivity of taz1Delta cells, suggesting a scenario in which telomeric entanglement is the primary defect. Furthermore, hypersensitivity to treatments that induce DSBs suggests that Taz1p is involved in DSB repair. Our observations imply roles for Taz1p-containing telomeres in preventing and repairing DNA breaks throughout the genome.  相似文献   

15.
Cells are under constant assault by endogenous and environmental DNA damaging agents. DNA double strand breaks (DSBs) sever entire chromosomes and pose a major threat to genome integrity as a result of chromosomal fragment loss or chromosomal rearrangements. Exogenous factors such as ionizing radiation, crosslinking agents, and topoisomerase poisons, contribute to break formation. DSBs are associated with oxidative metabolism, form during the normal S phase, when replication forks collapse and are generated during physiological processes such as V(D)J recombination, yeast mating type switching and meiosis. It is estimated that in mammalian cells ∼10 DSBs per cell are formed daily. If left unrepaired DSBs can lead to cell death or deregulated growth, and cancer development. Cellular response to DSB damage includes mechanisms to halt the progression of the cell cycle and to restore the structure of the broken chromosome. Changes in chromatin adjacent to DNA break sites are instrumental to the DNA damage response (DDR) with two apparent ends: to control compaction and to bind repair and signaling molecules to the lesion. Here, we review the key findings related to each of these functions and examine their cross-talk.  相似文献   

16.
Various types of DNA damage, induced by endo- and exogenous genotoxic impacts, may become processed into structural chromosome changes such as sister chromatid exchanges (SCEs) and chromosomal aberrations. Chromosomal aberrations occur preferentially within heterochromatic regions composed mainly of repetitive sequences. Most of the preclastogenic damage is correctly repaired by different repair mechanisms. For instance, after N-methyl-N-nitrosourea treatment one SCE is formed per >40,000 and one chromatid-type aberration per approximately 25 million primarily induced O6-methylguanine residues in Vicia faba. Double-strand breaks (DSBs) apparently represent the critical lesions for the generation of chromosome structural changes by erroneous reciprocal recombination repair. Usually two DSBs have to interact in cis or trans to form a chromosomal aberration. Indirect evidence is at hand for plants indicating that chromatid-type aberrations mediated by S phase-dependent mutagens are generated by post-replication (mis)repair of DSBs resulting from (rare) interference of repair and replication processes at the sites of lesions, mainly within repetitive sequences of heterochromatic regions. The proportion of DSBs yielding structural changes via misrepair has still to be established when DSBs, induced at predetermined positions, can be quantified and related to the number of SCEs and chromosomal aberrations that appear at these loci after DSB induction. Recording the degree of association of homologous chromosome territories (by chromosome painting) and of punctual homologous pairing frequency along these territories during and after mutagen treatment of wild-type versus hyperrecombination mutants of Arabidopsis thaliana, it will be elucidated as to what extent the interphase arrangement of chromosome territories becomes modified by critical lesions and contributes to homologous reciprocal recombination. This paper reviews the state of the art with respect to DNA damage processing in the course of aberration formation and the interphase arrangement of homologous chromosome territories as a structural prerequisite for homologous rearrangements in plants.  相似文献   

17.
Homologous recombination (HR) is one of the key mechanisms responsible for the repair of DNA double-strand breaks (DSBs), including those that occur during DNA replication. Recent studies in yeast and mammals have uncovered that the SMC complexes cohesins and Smc5-Smc6 are recruited to induced DSBs, and play a role in the maintenance of genome stability by favouring SCR as the main recombinational DSB repair mechanism. These new results raise intriguing questions such as whether SMC proteins might play a functional role at collapsed replication forks, which may represent the main source of spontaneous recombinogenic damage. A deeper knowledge of the role of SMC proteins in DSB repair should contribute to a better understanding of chromosome dynamics and stability.  相似文献   

18.
Homologous recombination (HR) deficient cells are sensitive to methyl methanesulfonate (MMS). HR is usually involved in the repair of DNA double-strand breaks (DSBs) in Saccharomyces cerevisiae implying that MMS somehow induces DSBs in vivo. Indeed there is evidence, based on pulsed-field gel electrophoresis (PFGE), that MMS causes DNA fragmentation. However, the mechanism through which MMS induces DSBs has not been demonstrated. Here, we show that DNA fragmentation following MMS treatment, and detected by PFGE is not the consequence of production of cellular DSBs. Instead, DSBs seen following MMS treatment are produced during sample preparation where heat-labile methylated DNA is converted into DSBs. Furthermore, we show that the repair of MMS-induced heat-labile damage requires the base excision repair protein XRCC1, and is independent of HR in both S.cerevisiae and mammalian cells. We speculate that the reason for recombination-deficient cells being sensitive to MMS is due to the role of HR in repair of MMS-induced stalled replication forks, rather than for repair of cellular DSBs or heat-labile damage.  相似文献   

19.
Chromatin remodeling is essential for effective repair of a DNA double-strand break (DSB). KAT5 (Schizosaccharomyces pombe Mst1, human TIP60) is a MYST family histone acetyltransferase conserved from yeast to humans that coordinates various DNA damage response activities at a DNA DSB, including histone remodeling and activation of the DNA damage checkpoint. In S. pombe, mutations in mst1+ causes sensitivity to DNA damaging drugs. Here we show that Mst1 is recruited to DSBs. Mutation of mst1+ disrupts recruitment of repair proteins and delays resection. These defects are partially rescued by deletion of pku70, which has been previously shown to antagonize repair by homologous recombination (HR). These phenotypes of mst1 are similar to pht1-4KR, a nonacetylatable form of histone variant H2A.Z, which has been proposed to affect resection. Our data suggest that Mst1 functions to direct repair of DSBs toward HR pathways by modulating resection at the DSB.  相似文献   

20.
Using the in vitro human diploid fibroblast model, we tested theories of aging which hypothesize that either accumulation of DNA damage or decreased DNA repair capacity is causally related to cellular senescence. Between population doubling level (PDL) 32 and 71, fetal lung-derived normal diploid human fibroblasts (IMR 90) were assayed for both DNA single-strand breaks (SSBs, spontaneous and induced by 6 Gy) and DNA double-strand breaks (DSBs, spontaneous and induced by 100 Gy). After gamma-irradiation cells were kept on ice unless undergoing repair incubation at 37 degrees C for 7.5-120 min or 18-24 h. To assay DNA strand breaks we used the filter elution technique in conjunction with a fluorometric determination of DNA which is not biased in favor of proliferating aging cells as are radioactive labelling methods. We found no change with in vitro age in the accumulation of spontaneous SSBs or DSBs, nor in the kinetics or completeness of DNA strand rejoining after gamma-irradiation. Cells at varying PDLs rejoined approx. 90% of SSBs and DSBs after 60 min repair incubation and 100% after 18-24 h repair incubation. We conclude that aging and senescence as measured by proliferative lifespan in IMR 90 cells are neither accompanied nor caused by accumulation of DNA strand breaks or by diminished capacity to rejoin gamma-radiation-induced SSBs or DSBs in DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号