首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 224 毫秒
1.
Night shift work is associated with a myriad of health and safety risks. Phase‐shifting the circadian clock such that it is more aligned with night work and day sleep is one way to attenuate these risks. However, workers will not be satisfied with complete adaptation to night work if it leaves them misaligned during days off. Therefore, the goal of this set of studies is to produce a compromise phase position in which individuals working night shifts delay their circadian clocks to a position that is more compatible with nighttime work and daytime sleep yet is not incompatible with late nighttime sleep on days off. This is the first in the set of studies describing the magnitude of circadian phase delays that occurs on progressively later days within a series of night shifts interspersed with days off. The series will be ended on various days in order to take a “snapshot” of circadian phase. In this set of studies, subjects sleep from 23:00 to 7:00 h for three weeks. Following this baseline period, there is a series of night shifts (23:00 to 07:00 h) and days off. Experimental subjects receive five 15 min intermittent bright light pulses (~3500 lux; ~1100 µW/cm2) once per hour during the night shifts, wear sunglasses that attenuate all visible wavelengths—especially short wavelengths (“blue‐blockers”)—while traveling home after the shifts, and sleep in the dark (08:30–15:30 h) after each night shift. Control subjects remain in typical dim room light (<50 lux) throughout the night shift, wear sunglasses that do not attenuate as much light, and sleep whenever they want after the night shifts. Circadian phase is determined from the circadian rhythm of melatonin collected during a dim light phase assessment at the beginning and end of each study. The sleepiest time of day, approximated by the body temperature minimum (Tmin), is estimated by adding 7 h to the dim light melatonin onset. In this first study, circadian phase was measured after two night shifts and day sleep periods. The Tmin of the experimental subjects (n=11) was 04:24±0.8 h (mean±SD) at baseline and 7:36±1.4 h after the night shifts. Thus, after two night shifts, the Tmin had not yet delayed into the daytime sleep period, which began at 08:30 h. The Tmin of the control subjects (n=12) was 04:00±1.2 h at baseline and drifted to 4:36±1.4 h after the night shifts. Thus, two night shifts with a practical pattern of intermittent bright light, the wearing of sunglasses on the way home from night shifts, and a regular sleep period early in the daytime, phase delayed the circadian clock toward the desired compromise phase position for permanent night shift workers. Additional night shifts with bright light pulses and daytime sleep in the dark are expected to displace the sleepiest time of day into the daytime sleep period, improving both nighttime alertness and daytime sleep but not precluding adequate sleep on days off.  相似文献   

2.
Tetrapolar rheography according to Kubicek has been used to estimate the adaptive capacity of the cardiovascular system in 150 five- to seven-year-old children at rest and during mental load. Mental load evokes two variants of stroke volume (SV) responses, one of them characterized by an increase in the SV, and the other, by a decrease in the SV and an increase in the diastolic blood pressure (BPd). Irrespective of the direction of the change in the SV, short-term adaptation to mental load in most five- to seven-year-old children does not stress the mechanisms of the cardiovascular system control and is generally favorable. In 13–15% of the children examined, short-term adaptation to mental load considerably stressed the cardiovascular system control. This is expressed in increased systolic blood pressure (BPs), BPd, and heart rate (HR); decreased CV and cardiac output (Q); and a prolonged restoration period for most central hemodynamic parameters.  相似文献   

3.
Circadian phase resetting is sensitive to visual short wavelengths (450–480?nm). Selectively filtering this range of wavelengths may reduce circadian misalignment and sleep impairment during irregular light-dark schedules associated with shiftwork. We examined the effects of filtering short wavelengths (<480?nm) during night shifts on sleep and performance in nine nurses (five females and four males; mean age?±?SD: 31.3?±?4.6 yrs). Participants were randomized to receive filtered light (intervention) or standard indoor light (baseline) on night shifts. Nighttime sleep after two night shifts and daytime sleep in between two night shifts was assessed by polysomnography (PSG). In addition, salivary melatonin levels and alertness were assessed every 2?h on the first night shift of each study period and on the middle night of a run of three night shifts in each study period. Sleep and performance under baseline and intervention conditions were compared with daytime performance on the seventh day shift, and nighttime sleep following the seventh daytime shift (comparator). On the baseline night PSG, total sleep time (TST) (p?<?0.01) and sleep efficiency (p?=?0.01) were significantly decreased and intervening wake times (wake after sleep onset [WASO]) (p?=?0.04) were significantly increased in relation to the comparator night sleep. In contrast, under intervention, TST was increased by a mean of 40?min compared with baseline, WASO was reduced and sleep efficiency was increased to levels similar to the comparator night. Daytime sleep was significantly impaired under both baseline and intervention conditions. Salivary melatonin levels were significantly higher on the first (p?<?0.05) and middle (p?<?0.01) night shifts under intervention compared with baseline. Subjective sleepiness increased throughout the night under both conditions (p?<?0.01). However, reaction time and throughput on vigilance tests were similar to daytime performance under intervention but impaired under baseline on the first night shift. By the middle night shift, the difference in performance was no longer significant between day shift and either of the two night shift conditions, suggesting some adaptation to the night shift had occurred under baseline conditions. These results suggest that both daytime and nighttime sleep are adversely affected in rotating-shift workers and that filtering short wavelengths may be an approach to reduce sleep disruption and improve performance in rotating-shift workers. (Author correspondence: casper@lunenfeld.ca)  相似文献   

4.
Night shift work is associated with a myriad of health and safety risks. Phase-shifting the circadian clock such that it is more aligned with night work and day sleep is one way to attenuate these risks. However, workers will not be satisfied with complete adaptation to night work if it leaves them misaligned during days off. Therefore, the goal of this set of studies is to produce a compromise phase position in which individuals working night shifts delay their circadian clocks to a position that is more compatible with nighttime work and daytime sleep yet is not incompatible with late nighttime sleep on days off. This is the first in the set of studies describing the magnitude of circadian phase delays that occurs on progressively later days within a series of night shifts interspersed with days off. The series will be ended on various days in order to take a "snapshot" of circadian phase. In this set of studies, subjects sleep from 23:00 to 7:00 h for three weeks. Following this baseline period, there is a series of night shifts (23:00 to 07:00 h) and days off. Experimental subjects receive five 15 min intermittent bright light pulses (approximately 3500 lux; approximately 1100 microW/cm2) once per hour during the night shifts, wear sunglasses that attenuate all visible wavelengths--especially short wavelengths ("blue-blockers")--while traveling home after the shifts, and sleep in the dark (08:30-15:30 h) after each night shift. Control subjects remain in typical dim room light (<50 lux) throughout the night shift, wear sunglasses that do not attenuate as much light, and sleep whenever they want after the night shifts. Circadian phase is determined from the circadian rhythm of melatonin collected during a dim light phase assessment at the beginning and end of each study. The sleepiest time of day, approximated by the body temperature minimum (Tmin), is estimated by adding 7 h to the dim light melatonin onset. In this first study, circadian phase was measured after two night shifts and day sleep periods. The Tmin of the experimental subjects (n=11) was 04:24+/-0.8 h (mean+/-SD) at baseline and 7:36+/-1.4 h after the night shifts. Thus, after two night shifts, the Tmin had not yet delayed into the daytime sleep period, which began at 08:30 h. The Tmin of the control subjects (n=12) was 04:00+/-1.2 h at baseline and drifted to 4:36+/-1.4 h after the night shifts. Thus, two night shifts with a practical pattern of intermittent bright light, the wearing of sunglasses on the way home from night shifts, and a regular sleep period early in the daytime, phase delayed the circadian clock toward the desired compromise phase position for permanent night shift workers. Additional night shifts with bright light pulses and daytime sleep in the dark are expected to displace the sleepiest time of day into the daytime sleep period, improving both nighttime alertness and daytime sleep but not precluding adequate sleep on days off.  相似文献   

5.
Our aim was to investigate how circadian adaptation to night shift work affects psychomotor performance, sleep, subjective alertness and mood, melatonin levels, and heart rate variability (HRV). Fifteen healthy police officers on patrol working rotating shifts participated to a bright light intervention study with 2 participants studied under two conditions. The participants entered the laboratory for 48 h before and after a series of 7 consecutive night shifts in the field. The nighttime and daytime sleep periods were scheduled during the first and second laboratory visit, respectively. The subjects were considered “adapted” to night shifts if their peak salivary melatonin occurred during their daytime sleep period during the second visit. The sleep duration and quality were comparable between laboratory visits in the adapted group, whereas they were reduced during visit 2 in the non-adapted group. Reaction speed was higher at the end of the waking period during the second laboratory visit in the adapted compared to the non-adapted group. Sleep onset latency (SOL) and subjective mood levels were significantly reduced and the LF∶HF ratio during daytime sleep was significantly increased in the non-adapted group compared to the adapted group. Circadian adaptation to night shift work led to better performance, alertness and mood levels, longer daytime sleep, and lower sympathetic dominance during daytime sleep. These results suggest that the degree of circadian adaptation to night shift work is associated to different health indices. Longitudinal studies are required to investigate long-term clinical implications of circadian misalignment to atypical work schedules.  相似文献   

6.
To evaluate daytime and nighttime carbon balance and assimilate export in soybean (Glycine max [L.] Merrill) leaves at different photon flux densities, rates of CO2 exchange, specific leaf weights, and concentrations of sucrose and starch were measured at intervals in leaves of pod-bearing `Amsoy 71' and `Wells II' plants grown in a controlled environment room. Assimilate export was estimated from CO2 exchange and change in specific leaf weight. Total diurnal assimilate export was similar for both cultivars. Large cultivar differences existed, however, in the partitioning of carbon into starch reserves and the relative amounts of assimilate exported during the day and the night. Total amounts of both daytime and nighttime export increased with increasing photon flux density, as did sucrose and starch concentrations, specific leaf weight, and rate of respiratory carbohydrate loss at night. Cultivar differences in nighttime rate of export were more closely related to the differences in amount of assimilate available at the end of the day than to differences in daytime rate of net CO2 assimilation. Daytime rates of export, however, were closely related to daytime rates of net CO2 assimilation within each cultivar. The total amount of starch depleted during the 10-hour night increased as starch concentration at the beginning of the night increased.  相似文献   

7.
Extensive research has found that nighttime transpiration (E n) is positively correlated to the vapour pressure deficit (VPD), that suggested E n was highest during the night under high temperatures and low humidity along with high soil water availability, typically for the riparian forest in the extreme arid region of China. This study used the heat ratio method to measure sap velocity (V s) for mature and saplings Populus euphratica Oliv., and then E n was conservatively calculated as total nocturnal sap flow (F s, the product of V s and sapwood area A s) between 01:00 to 06:00. A gas exchange system was used to measure the leaf transpiration rate (T r) and stomatal conductance (g s) of saplings. For mature trees, nighttime V s was extensive and logarithmic correlated to VPD (similar to daytime). For saplings, g s and T r was extensive in different months, and also a strong logarithmic relationship was found between V s and VPD for both daytime and nighttime periods. Both of stem sap flow and leaf gas exchange suggusted the occurrence of E n, whether mature or sapling trees. E n contribution to daily transpiration (E d) was high just as expected for P. euphratica, which was confirmed by proportional E n to E d (E n/E d) means taken in 2012 (24.99%) and 2013 (34.08%). Compared to mature trees, E n/E d of saplings in 2013 was lower with means of 12.06%, that supported further by the shorter duration times and less T r,n (16.64%) and g s,n (26.45%) of leaf, suggesting that E n magnitude is associated to individual the tree size, that effect to stored water of individual trees, although this hypothesis requires further research.  相似文献   

8.
An Ameriflux site was established in mid 1996 to study the exchange of CO2 in a native tallgrass prairie of north‐central Oklahoma, USA. Approximately the first 20 months of measurements (using eddy covariance) are described here. This prairie, dominated by warm season C4 grasses, is typical of the central Kansas/northern Oklahoma region. During the first three weeks of the measurement period (mid‐July–early August 1996), moisture‐stress conditions prevailed. For the remainder of the period (until March 1998), however, soil moisture was nonlimiting. Mid‐day net ecosystem CO2 exchange (NEE), under well‐watered conditions, reached a maximum magnitude of 1.4 mg CO2 m?2 s?1 (flux toward the surface is positive) during peak growth (mid‐July 1997), with green leaf area index of 2.8. In contrast, under moisture‐stress conditions in the same growth stage in 1996, mid‐day NEE was reduced to near‐zero. Average night NEE ranged from near‐zero, during winter dormancy, to ? 0.50 mg CO2 m?2 s?1, during peak growth. Most of the variance in average night NEE was explained by changes in soil temperature (0.1 m depth) and green leaf area. The daytime NEE measurements were examined in terms of a rectangular hyperbolic relationship with incident photosynthetically active radiation. The analysis showed that the quantum yield during peak growth was similar to those measured in other prairies and the y‐intercept, so obtained, can be potentially used as an estimate of night‐time CO2 emissions when eddy covariance data are unavailable. Daily integrated NEE reached its peak magnitude of 30.8 g CO2 m?2 d?1 (8.4 g C m?2 d?1) in mid‐July when the green LAI was the largest (about 2.8). In general, the seasonal trend of daily NEE (on relatively clear days) followed that of green LAI. Annually integrated carbon exchange, between prescribed burns in 1997 and 1998, was 268 g C m?2 y?1. After incorporating carbon loss during the prescribed burn , the net annual carbon exchange in this prairie was near‐zero in 1998.  相似文献   

9.

Background

Overnight operations pose a challenge because our circadian biology promotes sleepiness and dissipates wakefulness at night. Since the circadian effect on cognitive functions magnifies with increasing sleep pressure, cognitive deficits associated with night work are likely to be most acute with extended wakefulness, such as during the transition from a day shift to night shift.

Methodology/Principal Findings

To test this hypothesis we measured selective attention (with visual search), vigilance (with Psychomotor Vigilance Task [PVT]) and alertness (with a visual analog scale) in a shift work simulation protocol, which included four day shifts followed by three night shifts. There was a nocturnal decline in cognitive processes, some of which were most pronounced on the first night shift. The nighttime decrease in visual search sensitivity was most pronounced on the first night compared with subsequent nights (p = .04), and this was accompanied by a trend towards selective attention becoming ‘fast and sloppy’. The nighttime increase in attentional lapses on the PVT was significantly greater on the first night compared to subsequent nights (p<.05) indicating an impaired ability to sustain focus. The nighttime decrease in subjective alertness was also greatest on the first night compared with subsequent nights (p<.05).

Conclusions/Significance

These nocturnal deficits in attention and alertness offer some insight into why occupational errors, accidents, and injuries are pronounced during night work compared to day work. Examination of the nighttime vulnerabilities underlying the deployment of attention can be informative for the design of optimal work schedules and the implementation of effective countermeasures for performance deficits during night work.  相似文献   

10.
The purpose was to reveal the effects of stress on the parameters of cognitive performance and cardiovascular system activities in controllers working 12-hour shifts. Sixteen controllers were studied, and altogether 384 subject observations were acquired. A 5-point scale was used to estimate the perceived level of stress experienced by the controllers. Increased heart rate and heart activity-related haemodynamic parameters were found with an increase in perceived stress. Decreases found in heart rate, circulatory minute volume, and Kerdo's vegetative index over the shift became less pronounced with increased stress. Better attention was found under the average level of stress that was found on the first day shift. An effect of stress on short-term memory was not revealed. As a whole, the most pronounced changes were found during the first day shift and less pronounced changes appeared during the first night shift. Effects of stress were not found in changes of the studied parameters during the second consecutive day or night shift. Thus, increased stress causes the activation of some psychophysiological functions (attention and cardiac activity) that are indispensable for high work efficiency under increased production demands. However, the necessary activation could not be maintained during the second consecutive 12-hour shifts, probably because of accumulated fatigue, and also night work. On the other hand, too high stress may lead to the excessive activation of cardiac activity and deterioration of attention.  相似文献   

11.
This study aimed to examine prospectively whether individual nighttime sleep characteristics at baseline (prior to shift-work exposure) are related to parameters of daytime sleep after commencing shift work. A longitudinal field study was carried out with novice police officers of the Dutch Police Force. A total of 26 subjects were examined at baseline before they entered shift work and re-examined during follow-up sessions after four and twelve months of shift-work exposure. Wrist actigraphy and sleep diaries were used to study nocturnal sleep at baseline and daytime sleep after night shifts during follow-up sessions. As outcome variables, estimated total sleep time, sleep efficiency, and subjective sleep quality were analyzed. Daytime total sleep time showed a 66 min decline during the first year of shift-work exposure. Systematic inter-individual differences were observed for daytime total sleep time and subjective sleep quality (explaining 53% and 38% of the variance, respectively), suggesting potential predictability of these sleep parameters. Although no predictors were found for daytime total sleep time, the subjective quality of nighttime sleep before the onset of shift work predicted 40% of the variance in the subjective quality of daytime sleep after commencing shift work. Follow-up studies may reveal whether the subjective quality of baseline nighttime sleep also predicts long-term overall tolerance for shift work.  相似文献   

12.
太湖流域典型稻麦轮作农田生态系统碳交换及影响因素   总被引:4,自引:0,他引:4  
徐昔保  杨桂山  孙小祥 《生态学报》2015,35(20):6655-6665
利用涡度相关技术观测太湖流域典型稻麦轮作农田生态系统2a净生态系统碳交换(NEE)变化过程,分析其碳交换特征及影响机理,结果表明:太湖流域典型稻麦轮作农田年NEE为-749.49—-785.38 g C m-2a-1,考虑作物籽粒碳和秸秆还田后净吸收88.12 g C m-2a-1,为弱碳汇;稻/麦季日均NEE和白天NEE季节变化直接受作物植被生长影响;麦季夜间NEE与10 cm土壤温度呈显著指数关系,2012/2013年温度敏感系数(Q10)分别为3.03和2.67;当土壤水分低于田间持水量时,麦季夜间NEE主要受土壤温度影响,反之,夜间NEE受土壤温度和水分双重影响;降水对麦季夜间NEE有短时的激发效应;稻季淹水对土壤呼吸产生较明显的阻滞效应,降低了夜间NEE对土壤温度的敏感性,2012和2013年分别为1.88和1.39,稻季淹水与烤田交替变化对土壤呼吸产生明显的抑制或激发的短时效应。  相似文献   

13.
The aim of this study was to evaluate daytime and nighttime sleep, as well as daytime and nighttime sleepiness of professional shift-working bus drivers. Thirty-two licensed bus drivers were assessed by nocturnal and diurnal polysomnography (PSG) recording and multiple sleep latency testing (MSLT) sessions. Sleep length was shorter and sleep efficiency reduced during daytime sleep compared with nighttime sleep. Thirty-eight percent of the drivers had indices of obstructive apnea and hypopnea syndrome (>5/h sleep) during nighttime and daytime sleep; more drivers snored during daytime than nighttime sleep (50% vs. 35%, p < 0.05), and 38% of the drivers evidenced periodic leg movements. The MSLT revealed that 42 and 38% of the bus drivers met the criteria for sleepiness when the test was conducted during the day and night, respectively. The daytime as compared to nighttime sleep of shift-working bus drivers was shorter and more fragmented and was associated in many with evidence of excessive sleepiness. Respiratory disorder was a common finding among the professional shift-working bus drivers. All these sleep deficiencies may adversely affect on the job driving performance.  相似文献   

14.
北京山区元宝枫夜间液流活动特征及影响因素   总被引:3,自引:0,他引:3  
树木夜间会维持部分气孔开放,从而能够在一定环境驱动因子的情况下进行夜间蒸腾。夜间液流作为储存水的重要来源,能够补充植物白天的水分亏缺,使其恢复水分储备,对植物生长发育有重要意义。采用TDP热探针法测定了位于八达岭林场的元宝枫树干液流密度,同步监测了主要环境因子,以深入揭示树木夜间蒸腾耗水规律和植被应对环境胁迫的调控机制,为山区植被建设、森林健康经营和挑选节水树种提供理论依据。结果表明:以0:00为界区分前半夜和后半夜,元宝枫夜间液流速率前半夜较后半夜活跃,且前半夜夜间累积液流量占夜间累积液流量的53.85%—64.10%,而后半夜夜间累积液流量占夜间累积液流量的35.9%—46.15%。5月的夜间累积液流量最大,平均夜间液流通量为5月6月8月9月7月。存在水分胁迫的条件下降雨之后夜间液流会增大,而当土壤水分条件较好,土壤水分不再是夜间液流的限制因子时,夜间液流通量并不高。不同树木形态的夜间液流通量有显著差异,在一定范围内,胸径树高冠幅越大的样木,夜间液流通量越大。用于夜间蒸腾的夜间液流通量与饱和水汽压差、温度、空气相对湿度、风速相关,其中夜间蒸腾存在于前半夜,表现为前半夜夜间液流通量与环境因子的相关性相较后半夜相关性较为显著,后半夜则以补水为主,补水量取决于土壤含水量和日蒸腾强度。存在干旱胁迫的条件下,夜间液流既用于夜间蒸腾,又有一部分用来补水;而土壤水分条件好时夜间液流则主要用于补水,此时夜间树干液流与环境因子相关性不高。元宝枫夜间液流通量的日蒸腾贡献率5、6月份大于7、8月份,即干季比湿季贡献率更高。夜间液流通量的日蒸腾贡献率与白天总蒸腾量相关性较高,并与累积太阳辐射成负相关。  相似文献   

15.
The study investigated the relationship between the circadian variation of salivary melatonin and the amount of light received during the day and night. Forty one females served as subjects. An illuminance meter worn on the wrist of the non-dominant arm measured the amount of light which subjects leading a diurnal lifestyle received during two consecutive days. Light received from the time of rising to 18:00h was defined as ‘daytime light’, and that from 18:00h to the time of retiring as ‘nighttime light’. The average amount of light over the two days was 48 × 10 4 lx during the daytime and 11 × 10 4 lx during the nighttime. Saliva was collected every 4h in order to measure melatonin secretion. Peaks of melatonin secretion were observed at 14:00h and 18:00h in the subjects who had received lesser amounts of light during the daytime and nighttime. Melatonin secretion was high around 22:00h and peaked around 02:00h in the subjects who had received greater amounts of light during the daytime and lesser amounts of light during the nighttime. Nocturnal melatonin secretion was suppressed in the subjects who received greater amounts of light during the nighttime. Thus, the amount of light received during the daytime and the nighttime during the course of a diurnal lifestyle could have a profound influence on the circadian pattern of melatonin secretion.  相似文献   

16.
ABSTRACT

Neurobehavioural impairment on the first night shift is often greater than on subsequent night shifts due to extended wakefulness. The aim of the study was to determine whether a 1-h afternoon nap prior to the first night shift is sufficient to produce neurobehavioural performance at levels comparable to the second night shift. Twelve male volunteers (mean age 22.9 years) participated in a laboratory protocol that simulated two 12-h night shifts. A nap preceded the first shift and a 7-h daytime sleep was scheduled between shifts. Neurobehavioural performance and subjective sleepiness measured across each night did not significantly differ between first and second shifts.  相似文献   

17.
This study aimed to examine prospectively whether individual nighttime sleep characteristics at baseline (prior to shift‐work exposure) are related to parameters of daytime sleep after commencing shift work. A longitudinal field study was carried out with novice police officers of the Dutch Police Force. A total of 26 subjects were examined at baseline before they entered shift work and re‐examined during follow‐up sessions after four and twelve months of shift‐work exposure. Wrist actigraphy and sleep diaries were used to study nocturnal sleep at baseline and daytime sleep after night shifts during follow‐up sessions. As outcome variables, estimated total sleep time, sleep efficiency, and subjective sleep quality were analyzed. Daytime total sleep time showed a 66 min decline during the first year of shift‐work exposure. Systematic inter‐individual differences were observed for daytime total sleep time and subjective sleep quality (explaining 53% and 38% of the variance, respectively), suggesting potential predictability of these sleep parameters. Although no predictors were found for daytime total sleep time, the subjective quality of nighttime sleep before the onset of shift work predicted 40% of the variance in the subjective quality of daytime sleep after commencing shift work. Follow‐up studies may reveal whether the subjective quality of baseline nighttime sleep also predicts long‐term overall tolerance for shift work.  相似文献   

18.
The aim of this study was to evaluate daytime and nighttime sleep, as well as daytime and nighttime sleepiness of professional shift-working bus drivers. Thirty-two licensed bus drivers were assessed by nocturnal and diurnal polysomnography (PSG) recording and multiple sleep latency testing (MSLT) sessions. Sleep length was shorter and sleep efficiency reduced during daytime sleep compared with nighttime sleep. Thirty-eight percent of the drivers had indices of obstructive apnea and hypopnea syndrome (>5/h sleep) during nighttime and daytime sleep; more drivers snored during daytime than nighttime sleep (50% vs. 35%, p < 0.05), and 38% of the drivers evidenced periodic leg movements. The MSLT revealed that 42 and 38% of the bus drivers met the criteria for sleepiness when the test was conducted during the day and night, respectively. The daytime as compared to nighttime sleep of shift-working bus drivers was shorter and more fragmented and was associated in many with evidence of excessive sleepiness. Respiratory disorder was a common finding among the professional shift-working bus drivers. All these sleep deficiencies may adversely affect on the job driving performance.  相似文献   

19.
The purpose of this study was to test for direct inhibition of rice canopy apparent respiration by elevated atmospheric carbon dioxide concentration ([CO2]) across a range of short‐term air temperature treatments. Rice (cv. IR‐72) was grown in eight naturally sunlit, semiclosed, plant growth chambers at daytime [CO2] treatments of 350 and 700 μmol mol?1. Short‐term night‐time air temperature treatments ranged from 21 to 40 °C. Whole canopy respiration, expressed on a ground area basis (Rd), was measured at night by periodically venting the chambers with ambient air. This night‐time chamber venting and resealing procedure produced a range of increasing chamber [CO2] which we used to test for potential inhibitory effects of rising [CO2] on Rd. A nitrous oxide leak detection system was used to correct Rd measurements for chamber leakage rate (L) and also to determine if apparent reductions in night‐time Rd with rising [CO2] could be completely accounted for by L. The L was affected by both CO2 concentration gradient between the chamber and ambient air and the inherent leakiness of each individual chamber. Nevertheless, after correcting Rd for L, we detected a rapid and reversible, direct inhibition of Rd with rising chamber [CO2] for air temperatures above 21 °C. This effect was larger for the 350 compared with the 700 μmol mol?1 daytime [CO2] treatment and was also increased with increasing short‐term air temperature treatments. However, little difference in Rd was found between the two daytime [CO2] treatments when night‐time [CO2] was at the respective daytime [CO2]. These results suggest that naturally occurring diurnal changes in both ambient [CO2] and air temperature can affect Rd. Because naturally occurring diurnal changes in both [CO2] and air temperature can be expected in a future higher CO2 world, short‐term direct effects of these environmental variables on rice Rd can also be expected.  相似文献   

20.
The study investigated the relationship between the circadian variation of salivary melatonin and the amount of light received during the day and night. Forty one females served as subjects. An illuminance meter worn on the wrist of the non-dominant arm measured the amount of light which subjects leading a diurnal lifestyle received during two consecutive days. Light received from the time of rising to 18:00h was defined as 'daytime light', and that from 18:00h to the time of retiring as 'nighttime light'. The average amount of light over the two days was 48 × 10 4 lx during the daytime and 11 × 10 4 lx during the nighttime. Saliva was collected every 4h in order to measure melatonin secretion. Peaks of melatonin secretion were observed at 14:00h and 18:00h in the subjects who had received lesser amounts of light during the daytime and nighttime. Melatonin secretion was high around 22:00h and peaked around 02:00h in the subjects who had received greater amounts of light during the daytime and lesser amounts of light during the nighttime. Nocturnal melatonin secretion was suppressed in the subjects who received greater amounts of light during the nighttime. Thus, the amount of light received during the daytime and the nighttime during the course of a diurnal lifestyle could have a profound influence on the circadian pattern of melatonin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号