首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
Disturbances are processes inherently variable in time and space. This variability comprises a key determinant of ecosystem responses to disturbance. Temporal patterns can, however, vary significantly both among and within individual disturbance events. While recent research has demonstrated an importance of the former, studies on the effects of variability within perturbations have consistently confounded temporal variability with other disturbance attributes (e.g. overall intensity or duration). We established a field experiment to test explicitly the hypothesis that the temporal pattern within perturbations can drive ecosystem responses independently of other disturbance traits. We examined the effects of two disturbance regimes comprising sediment pulses of contrasting temporal pattern (constant and temporally variable intensities) on the benthic invertebrate assemblage of a headwater stream. The overall intensity, duration, timing and frequency of the perturbations were, however, identical. Invertebrates drifting during the temporally variable pulses were more abundant and differed in taxonomic and trophic structure than those exposed to constant perturbations. Moreover, whereas temporal patterns of disturbance events had no immediate effect on benthic invertebrate assemblages in situ, assemblages exposed to the constant perturbations took longer to recover from sediment disturbances than those exposed to temporally variable perturbations. Our results demonstrate that variability in the temporal pattern of intensity within individual perturbations can regulate, independently of other disturbance attributes, the extent and type of ecosystem responses to, and recovery from, disturbances. Effective environmental management and policy therefore necessitate the explicit quantification of temporal patterns of intensity both within and among perturbations.  相似文献   

2.
African floodplains are an excellent example of coupled human–natural systems because they exhibit strong interactions among multiple social, ecological, and hydrological systems. The intra-annual and interannual variations in seasonal flooding have direct and indirect impacts on ecosystems and human lives and livelihoods. Coupled human and natural system (CHANS) is a broad conceptual framework that is used to study systems in which human and natural components interact. While there are other conceptual frameworks to study social-ecological systems, the CHANS framework offers a clear way of studying the interactions, called couplings, between human and natural systems. Core features of the framework are the following: human and natural systems are analytically separated; focus is on processes within and couplings between systems; and the goal is to build an integrative, quantitative model of the coupled system. This paper explains the conceptual framework of coupled systems, using the case study of the Logone floodplain in Cameroon. We compare the CHANS framework with other frameworks that have been used to study the same floodplain, and argue for its usefulness in the study of African floodplains.  相似文献   

3.
Ecologists studying consumer-resource interactions in advection-dominated systems such as streams and rivers frequently seek to link the results of small-scale experiments with larger-scale patterns of distribution and abundance. Accomplishing this goal requires determining the characteristic scale, termed the response length, at which there is a shift from local dynamics dominated by advective dispersal to larger-scale dynamics dominated by births and deaths. Here, we model the dynamics of consumer-resource systems in a spatially variable, advective environment and show how consumer-resource interactions alter the response length relative to its single-species value. For one case involving a grazer that emigrates in response to high predator density, we quantify the changes using published data from small-scale experiments on aquatic invertebrates. Using Fourier analysis, we describe the responses of advection-dominated consumer-resource systems to spatially extended environmental variability in a way that involves explicit consideration of the response length. The patterns we derive for different consumer-resource systems exhibit important similarities in how component populations respond to spatial environmental variability affecting dispersal as opposed to demographic parameters.  相似文献   

4.
Environmental change is as multifaceted as are the species and communities that respond to these changes. Current theoretical approaches to modeling ecosystem response to environmental change often deal only with single environmental drivers or single species traits, simple ecological interactions, and/or steady states, leading to concern about how accurately these approaches will capture future responses to environmental change in real biological systems. To begin addressing this issue, we generalize a previous trait-based framework to incorporate aspects of frequency dependence, functional complementarity, and the dynamics of systems composed of species that are defined by multiple traits that are tied to multiple environmental drivers. The framework is particularly well suited for analyzing the role of temporal environmental fluctuations in maintaining trait variability and the resultant effects on community response to environmental change. Using this framework, we construct simple models to investigate two ecological problems. First, we show how complementary resource use can significantly enhance the nutrient uptake of plant communities through two different mechanisms related to increased productivity (over-yielding) and larger trait variability. Over-yielding is a hallmark of complementarity and increases the total biomass of the community and, thus, the total rate at which nutrients are consumed. Trait variability also increases due to the lower levels of competition associated with complementarity, thus speeding up the rate at which more efficient species emerge as conditions change. Second, we study systems in which multiple environmental drivers act on species defined by multiple, correlated traits. We show that correlations in these systems can increase trait variability within the community and again lead to faster responses to environmental change. The methodological advances provided here will apply to almost any function that relates species traits and environmental drivers to growth, and should prove useful for studying the effects of climate change on the dynamics of biota.  相似文献   

5.
6.
Multiple forces structure natural microbial communities, but the relative roles and interactions of these drivers are poorly understood. Gradients of physical and chemical parameters can be especially influential. In traditional ecological theory, variability in environmental conditions across space and time represents habitat heterogeneity, which may shape communities. Here we used aquatic microbial communities as a model to investigate the relationship between habitat heterogeneity and community composition and dynamics. We defined spatial habitat heterogeneity as vertical temperature and dissolved oxygen (DO) gradients in the water column, and temporal habitat heterogeneity as variation throughout the open-water season in these environmental parameters. Seasonal lake mixing events contribute to temporal habitat heterogeneity by destroying and re-creating these gradients. Because of this, we selected three lakes along a range of annual mixing frequency (polymictic, dimictic, meromictic) for our study. We found that bacterial community composition (BCC) was distinct between the epilimnion and hypolimnion within stratified lakes, and also more variable within the epilimnia through time. We found stark differences in patterns of epilimnion and hypolimnion dynamics over time and across lakes, suggesting that specific drivers have distinct relative importance for each community.  相似文献   

7.
The relationship between community diversity and biomass variability remains a crucial ecological topic, with positive, negative and neutral diversity–stability relationships reported from empirical studies. Theory highlights the relative importance of Species–Species or Species–Environment interactions in driving diversity–stability patterns. Much previous work is based on an assumption of identical (stable) species‐level dynamics. We studied ecosystem models incorporating stable, cyclic and more complex species‐level dynamics, with either linear or non‐linear density dependence, within a locally stable community framework. Species composition varies with increasing diversity, interacting with the correlation of species' environmental responses to drive either positive or negative diversity–stability patterns, which theory based on communities with only stable species‐level dynamics fails to predict. Including different dynamics points to new mechanisms that drive the full range of diversity–biomass stability relationships in empirical systems where a wider range of dynamical behaviours are important.  相似文献   

8.
Models of the dynamics of large herbivore populations represent density feedbacks on the population growth rate either directly or indirectly through interactions with vegetation resources. Neither approach incorporates the spatial heterogeneity that is an essential feature of most natural environments, and modifies the population dynamics generated. This is especially true for large herbivores exploiting food resources that are rooted in space but temporally variable in quantity and quality both seasonally and annually. In this review I explore how environmental variation at different spatiotemporal scales influences the abundance of herbivore populations controlled via resources, predators or social mechanisms. Changes in abundance can be spatially disparate and dependent on different resource components at different stages of the seasonal cycle, including buffer resources restricting population crashes in extremely adverse years. GPS telemetry enables movement responses generating spatial patterns to be documented in fine spatiotemporal detail, including migration and dispersal. Models incorporating spatial heterogeneity either implicitly or explicitly are outlined, exemplifying how herbivores cope with temporal variability by exploiting spatial variability in resources and conditions. Global human dominance is generating widened climatic variation while opportunities for herbivore movements are becoming constricted. Theoretical population ecologists need to shift their focus from the workings of demographic structure towards effects of changing environmental contexts, in order to project the likely trajectories of large herbivore populations through the Anthropocene.  相似文献   

9.
Drylands are one of the most diverse yet highly vulnerable social–ecological systems on Earth. Water scarcity has contributed to high levels of heterogeneity, variability and unpredictability, which together have shaped the long coadaptative process of coupling humans and nature. Land degradation and desertification in drylands are some of the largest and most far-reaching global environmental and social change problems, and thus are a daunting challenge for science and society. In this study, we merged the Drylands Development Paradigm, Holling''s adaptive cycle metaphor and resilience theory to assess the challenges and opportunities for livelihood development in the Amapola dryland social–ecological system (DSES), a small isolated village in the semi-arid region of Mexico. After 450 years of local social–ecological evolution, external drivers (neoliberal policies, change in land reform legislation) have become the most dominant force in livelihood development, at the cost of loss of natural and cultural capital and an increasingly dysfunctional landscape. Local DSESs have become increasingly coupled to dynamic larger-scale drivers. Hence, cross-scale connectedness feeds back on and transforms local self-sustaining subsistence farming conditions, causing loss of livelihood resilience and diversification in a globally changing world. Effective efforts to combat desertification and improve livelihood security in DSESs need to consider their cyclical rhythms. Hence, we advocate novel dryland stewardship strategies, which foster adaptive capacity, and continuous evaluation and social learning at all levels. Finally, we call for an effective, flexible and viable policy framework that enhances local biotic and cultural diversity of drylands to transform global drylands into a resilient biome in the context of global environmental and social change.  相似文献   

10.
Ecologists, economists and other social scientists have much incentive for interaction. First of all, ecological systems and socioeconomic systems are linked in their dynamics, and these linkages are key to coupling environmental protection and economic growth. Beyond this, however, are the obvious similarities in how ecological systems and socioeconomic systems function, and the common theoretical challenges in understanding their dynamics. This should not be surprising. Socioeconomic systems are in fact ecological systems, in which the familiar ecological phenomena of exploitation, cooperation and parasitism all can be identified as key features. Or, viewed from the opposite perspective, ecological systems are economic systems, in which competition for resources is key, and in which an evolutionary process shapes the individual agents to a distribution of specialization of function that leads to the emergence of flows and functionalities at higher levels of organization. Most fundamentally, ecological and socioeconomic systems alike are complex adaptive systems, in which patterns at the macroscopic level emerge from interactions and selection mechanisms mediated at many levels of organization, from individual agents to collectives to whole systems and even above. In such complex adaptive systems, robustness must be understood as emergent from selection processes operating at these many different levels, and the inherent nonlinearities can trigger sudden shifts in regimes that, in the case of the biosphere, can have major consequences for humanity. This lecture will explore the complex adaptive nature of ecosystems, and the implications for the robustness of ecosystem services on which we depend, and in particular examine the conditions under which cooperative behavior emerges. It will then turn attention to the socioeconomic systems in which environmental management is based, and ask what lessons can be learned from our examination of natural systems, and how we can modify social norms to achieve global cooperation in managing our common future. Of special interest will be issues of intragenerational and intergenerational equity, and the importance of various forms of discounting.  相似文献   

11.
Natural populations experience environmental conditions that vary across space and over time. This variation is often correlated between localities depending on the geographical separation between them, and different species can respond to local environmental fluctuations similarly or differently, depending on their adaptation. How this emerging structure in environmental correlation (between-patches and between-species) affects spatial community dynamics is an open question. This paper aims at a general understanding of the interactions between the environmental correlation structure and population dynamics in spatial networks of local communities (metacommunities), by studying simple two-patch, two-species systems. Three different pairs of interspecific interactions are considered: competition, consumer–resource interaction, and host–parasitoid interaction. While the results paint a relatively complex picture of the effect of environmental correlation, the interaction between environmental forcing, dispersal, and local interactions can be understood via two mechanisms. While increasing between-patch environmental correlation couples immigration and local densities (destabilising effect), the coupling between local populations under increased between-species environmental correlation can either amplify or dampen population fluctuations, depending on the patterns in density dependence. This work provides a unifying framework for modelling stochastic metacommunities, and forms a foundation for a better understanding of population responses to environmental fluctuations in natural systems.  相似文献   

12.
13.
Social interactions are ubiquitous across the animal kingdom. A variety of ecological and evolutionary processes are dependent on social interactions, such as movement, disease spread, information transmission, and density-dependent reproduction and survival. Social interactions, like any behaviour, are context dependent, varying with environmental conditions. Currently, environments are changing rapidly across multiple dimensions, becoming warmer and more variable, while habitats are increasingly fragmented and contaminated with pollutants. Social interactions are expected to change in response to these stressors and to continue to change into the future. However, a comprehensive understanding of the form and magnitude of the effects of these environmental changes on social interactions is currently lacking. Focusing on four major forms of rapid environmental change currently occurring, we review how these changing environmental gradients are expected to have immediate effects on social interactions such as communication, agonistic behaviours, and group formation, which will thereby induce changes in social organisation including mating systems, dominance hierarchies, and collective behaviour. Our review covers intraspecific variation in social interactions across environments, including studies in both the wild and in laboratory settings, and across a range of taxa. The expected responses of social behaviour to environmental change are diverse, but we identify several general themes. First, very dry, variable, fragmented, or polluted environments are likely to destabilise existing social systems. This occurs as these conditions limit the energy available for complex social interactions and affect dissimilar phenotypes differently. Second, a given environmental change can lead to opposite responses in social behaviour, and the direction of the response often hinges on the natural history of the organism in question. Third, our review highlights the fact that changes in environmental factors are not occurring in isolation: multiple factors are changing simultaneously, which may have antagonistic or synergistic effects, and more work should be done to understand these combined effects. We close by identifying methodological and analytical techniques that might help to study the response of social interactions to changing environments, highlight consistent patterns among taxa, and predict subsequent evolutionary change. We expect that the changes in social interactions that we document here will have consequences for individuals, groups, and for the ecology and evolution of populations, and therefore warrant a central place in the study of animal populations, particularly in an era of rapid environmental change.  相似文献   

14.
This paper discusses the ecological gradient as an organizing framework to assist understanding the complex interactions between societal and ecological processes underlying land-use change in East Africa. Detailed case studies on the gradients of the slopes of Mt Kilimanjaro, Kenya show how land-use change is responsive to the dynamics of both local and external driving forces. The study has shown that the distinct ecological conditions at the extremities of gradients are associated with specific land uses which may be different within livelihood systems such as for wet and dry season grazing. Access to water for cultivation, domestic use, livestock and wildlife is critical in determining the nature and distribution of livelihood systems. Land-use systems interact across the different ecological zones of the gradients characterized by vigorous spatial, cultural and economic interactions. Sometime conflicts occur between or within land-use/livelihood systems. There is strong evidence that the areas of higher economic potential remain advantaged compared with areas lower on the gradient. The ecological characteristics have been found to influence human activities and distribution. Interactions between societies are important in terms of trade, social relations and access to resources.  相似文献   

15.
Environmental factors are known to affect the strength and the specificity of interactions between hosts and parasites. However, how this shapes patterns of coevolutionary dynamics is not clear. Here, we construct a simple mathematical model to study the effect of environmental change on host-parasite coevolutionary outcome when interactions are of the matching-alleles or the gene-for-gene type. Environmental changes may effectively alter the selective pressure and the level of specialism in the population. Our results suggest that environmental change altering the specificity of selection in antagonistic interactions can produce alternating time windows of cyclical allele-frequency dynamics and cessation thereof. This type of environmental impact can also explain the maintenance of polymorphism in gene-for-gene interactions without costs. Overall, our study points to the potential consequences of environmental variation in coevolution, and thus the importance of characterizing genotype-by-genotype-by-environment interactions in natural host-parasite systems, especially those that change the direction of selection acting between the two species.  相似文献   

16.
17.
Although the food web is one of the most fundamental and oldest concepts in ecology, elucidating the strategies and structures by which natural communities of species persist remains a challenge to empirical and theoretical ecologists. We show that simple regulatory feedbacks between autotrophs and their environment when embedded within complex and realistic food-web models enhance biodiversity. The food webs are generated through the niche-model algorithm and coupled with predator-prey dynamics, with and without environmental feedbacks at the autotroph level. With high probability and especially at lower, more realistic connectance levels, regulatory environmental feedbacks result in fewer species extinctions, that is, in increased species persistence. These same feedback couplings, however, also sensitize food webs to environmental stresses leading to abrupt collapses in biodiversity with increased forcing. Feedback interactions between species and their material environments anchor food-web persistence, adding another dimension to biodiversity conservation. We suggest that the regulatory features of two natural systems, deep-sea tubeworms with their microbial consortia and a soil ecosystem manifesting adaptive homeostatic changes, can be embedded within niche-model food-web dynamics.  相似文献   

18.
Community ecology recognises today that local biological communities are not only affected by local biotic interactions and abiotic environmental conditions, but also by regional processes (e.g. dispersal). While much is known about how metacommunities are organised in space in terrestrial, marine and freshwater ecological systems, their temporal variations remain poorly studied. Here, we address the question of the dynamics of metacommunities in highly variable systems, using intermittent rivers (IRs), those rivers which temporarily stop flowing or dry up, as a model system. We first review how habitat heterogeneity in space and time influences metacommunity organisation. Second, we compare the metacommunities in IRs to those in perennial rivers (PRs) and develop the idea that IRs could undergo highly dynamic shifts due to the temporal variability in local and regional community processes. Third, we develop the idea that in IRs, metacommunities of the wet and dry phases of IRs are closely intertwined, thereby increasing even more their respective temporal dynamics. Last, we provide a roadmap to stimulate further conceptual and empirical developments of metacommunity research and identify possible applications for improving the management of IRs and other highly dynamic ecological systems. Synthesis Extensive research has examined the importance of local biotic interactions, environmental filtering, and regional processes on community assembly. Movement of organisms between sites, i.e. dispersal, is a major set of processes within this framework. However, subsequent metacommunity organisation also varies over time in ecosystems because habitat characteristics such as configuration and composition continuously shift. Intermittent rivers are an ideal set of systems to examine these ideas because these freshwater systems temporarily cease flowing thereby limiting dispersal events. We proposed the hypothesis that metacommunities in dynamic ecosystems will undergo frequent shifts in structure and composition in response to the temporal variability in environmental filtering and dispersal. In addition to providing a roadmap for developing a more dynamic perspective for community ecology, these framework provides direct insights for the management of intermittent rivers.  相似文献   

19.
We examine the dynamics of household vulnerability during the past 30 years within three different social-ecological upland systems in Lijiang, Yunnan. Interviews were conducted to construct coupled human-environmental timelines to facilitate the understanding of livelihood dynamics in the context of more general changes that constitute both constraints and opportunities. The results indicate that significant livelihood changes including specialization, diversification and migration have been primarily driven by socio-political influences. Overall vulnerability of households has decreased differently across villages. Nevertheless, climate change is a concern as households perceive increasing temperature, declining precipitation and unpredictable extreme events. In the future, households’ vulnerability might increase since important components of current livelihoods remain climate sensitive. Moreover, environmentally destructive practices such as illegal logging might reinforce the negative impacts of climate change and thus undermine sustainable adaptation.  相似文献   

20.
Abstract.  1. Life-history differences between herbivorous insects with eruptive and latent population dynamics are potentially useful for predicting population size variability. An association has also been demonstrated between herbivorous insect defence traits and the responses of various natural enemies.
2. Here predictions of population dynamics and natural enemy responses based on life-history and defence traits are tested using Gonometa postica Walker and G. rufobrunnea Aurivillius, two Southern Hemisphere Macrolepidoptera (Lasiocampidae) species. The temporal and spatial variation in pupal abundance and patterns of pupal parasitism and predation for both species are described and quantified for the first time.
3. Eleven sites were sampled over four generations across the region where both species have historically reached high population densities. Although there was evidence suggesting that population synchrony is driven by weather patterns, site-specific environmental differences contributed to the observed population variability. This study is the first to quantify the extent of population size variability of a species with an intermediate position on the eruptive–latent population dynamic gradient, where data on insect population dynamics is scarce.
4. Support for the life-history–population dynamic relationship was found, as intermediate population size variability for these species was observed. Larval and pupal defence traits, however, were poor and inconsistent predictors of mortality rate. Pupal cocoon structure differences, previously documented for these Gonometa species, may in fact explain the interspecific differences in natural enemy responses found.
5. Predicted population dynamics and natural enemy responses may, however, be overridden by ecological conditions. Nevertheless, life-history and defence traits provide a useful basis for predicting population dynamics of poorly studied species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号