首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
Heterotrimeric G-proteins localized in the plasma membrane convey the signals from G-protein-coupled receptors (GPCRs) to different effectors. At least some types of G-protein α subunits have been shown to be partly released from plasma membranes and to move into the cytosol after receptor activation by the agonists. However, the mechanism underlying subcellular redistribution of trimeric G-proteins is not well understood and no definitive conclusions have been reached regarding the translocation of Gα subunits between membranes and cytosol. Here we used subcellular fractionation and clear-native polyacrylamide gel electrophoresis to identify molecular complexes of G(q/11)α protein and to determine their localization in isolated fractions and stability in na?ve and thyrotropin-releasing hormone (TRH)-treated HEK293 cells expressing high levels of TRH receptor and G(11)α protein. We identified two high-molecular-weight complexes of 300 and 140 kDa in size comprising the G(q/11) protein, which were found to be membrane-bound. Both of these complexes dissociated after prolonged treatment with TRH. Still other G(q/11)α protein complexes of lower molecular weight were determined in the cytosol. These 70 kDa protein complexes were barely detectable under control conditions but their levels markedly increased after prolonged (4-16 h) hormone treatment. These results support the notion that a portion of G(q/11)α can undergo translocation from the membrane fraction into soluble fraction after a long-term activation of TRH receptor. At the same time, these findings indicate that the redistribution of G(q/11)α is brought about by the dissociation of high-molecular-weight complexes and concomitant formation of low-molecular-weight complexes containing the G(q/11)α protein.  相似文献   

8.
9.
10.
Characterized for the first time in erythrocytes, phosphatidylinositol phosphate kinases (PIP kinases) belong to a family of enzymes that generate various lipid messengers and participate in several cellular processes, including gene expression regulation. Recently, the PIPKIIα gene was found to be differentially expressed in reticulocytes from two siblings with hemoglobin H disease, suggesting a possible relationship between PIPKIIα and the production of globins. Here, we investigated PIPKIIα gene and protein expression and protein localization in hematopoietic-derived cells during their differentiation, and the effects of PIPKIIα silencing on K562 cells. PIPKIIα silencing resulted in an increase in α and γ globins and a decrease in the proliferation of K562 cells without affecting cell cycle progression and apoptosis. In conclusion, using a cell line model, we showed that PIPKIIα is widely expressed in hematopoietic-derived cells, is localized in their cytoplasm and nucleus, and is upregulated during erythroid differentiation. We also showed that PIPKIIα silencing can induce α and γ globin expression and decrease cell proliferation in K562 cells.  相似文献   

11.
12.
13.
14.
The interaction between human S100 calcium-binding protein B (S100B) and the tumor suppressor protein p53 is considered to be a possible therapeutic target for malignant melanoma. To identify potent inhibitors of this interaction, we screened a fragment library of compounds by means of a fluorescence-based competition assay involving the S100B-binding C-terminal peptide of p53. Using active compounds from the fragment library as query compounds, we constructed a focused library by means of two-dimensional similarity searching of a large database. This simple, unbiased method allowed us to identify several inhibitors of the S100B-p53 interaction, and we elucidated preliminary structure–activity relationships. One of the identified compounds had the potential to inhibit the S100B–p53 interaction in melanoma cells.  相似文献   

15.
Changes in glycolytic flux have been observed in liver under conditions where effects of cAMP seem unlikely. We have, therefore, studied the phosphorylation of four enzymes involved in the regulation of glycolysis and gluconeogenesis (6-phosphofructo-1-kinase from rat liver and rabbit muscle; pyruvate kinase, 6-phosphofructo-2-kinase and fructose-1,6-bisphosphatase from rat liver) by defined concentrations of two cAMP-independent protein kinases: Ca2+/calmodulin-dependent protein kinase and Ca2+/phospholipid-dependent protein kinase (protein kinase C). The results were compared with those obtained with the catalytic subunit of cAMP-dependent protein kinase. The following results were obtained. 1. Ca2+/calmodulin-dependent protein kinase phosphorylates 6-phosphofructo-1-kinase and L-type pyruvate kinase at a slightly lower rate as compared to cAMP-dependent protein kinase. 2. 6-Phosphofructo-1-kinase is phosphorylated by the two kinases at a single identical position. There is no additive phosphorylation. The final stoichiometry is 2 mol phosphate/mol tetramer. The same holds for L-type pyruvate kinase except that the stoichiometry with either kinase or both kinases together is 4 mol phosphate/mol tetramer. 3. Rabbit muscle 6-phosphofructo-1-kinase is phosphorylated by cAMP-dependent protein kinase but not by Ca2+/calmodulin-dependent protein kinase. 4. Fructose-1,6-bisphosphatase from rat but not from rabbit liver is phosphorylated at the same position but at a markedly lower rate by Ca2+/calmodulin-dependent protein kinase when compared to the phosphorylation by cAMP-dependent protein kinase. 5. 6-Phosphofructo-2-kinase is phosphorylated by Ca2+/calmodulin-dependent protein kinase only at a negligible rate. 6. Protein kinase C does not seem to be involved in the regulation of the enzymes examined: only 6-phosphofructo-2-kinase became phosphorylated to a significant degree. In contrast to the phosphorylation by cAMP-dependent protein kinase, this phosphorylation is not associated with a change of enzyme activity. This agrees with our observation that the sites of phosphorylation by the two kinases are different. The results indicate that Ca2+/calmodulin-dependent protein kinase but not protein kinase C could be involved in the regulation of hepatic glycolytic flux under conditions where changes in the activity of cAMP-dependent protein kinase seem unlikely.  相似文献   

16.
We investigated the role of the major isoforms of CCAAT enhancer binding protein β (C/EBPβ), C/EBPβ-LAP and C/EBPβ-LIP, in adipogenesis of human white adipose-derived stromal/progenitor cells (ASC). C/EBPβ gene expression was transiently induced early in adipogenesis. At later stages, in immature adipocytes, the C/EBPβ mRNA and protein levels declined. The C/EBPβ-LIP protein steady-state level decreased considerably stronger than the C/EBPβ-LAP level and the C/EBPβ-LIP half-life was significantly shorter than the C/EBPβ-LAP half-life. The turn-over of both C/EBPβ-isoforms was regulated by ubiquitin/proteasome-dependent degradation. These data suggest that the protein stability of the C/EBPβ-isoforms is differentially regulated in the course of adipogenesis and in immature adipocytes. Constitutive overexpression of C/EBPβ-LIP had antiadipogenic activity in human ASC. C/EBPβ-LAP, which promotes adipogenesis in mouse 3T3-L1 preadipocytes by directly activating expression of the adipogenic keyregulator PPARγ2, induced the expression of PPARγ2 and of the adipocyte differentiation gene product FABP4 in confluent ASC in the absence of adipogenic hormones. At later stages after hormone cocktail-induced adipogenesis, in immature adipocytes, constitutive overexpression of C/EBPβ-LAP led to reduced expression of PPARγ2 and FABP4, C/EBPα expression was downregulated and the expression of the adipocyte differentiation gene products adiponectin and leptin was impaired. These findings suggest that constitutive overexpression of C/EBPβ-LAP induces adipogenesis in human ASC and negatively regulates the expression of adipogenic regulators and certain adipocyte differentiation gene products in immature adipocytes. We conclude the regulation of both C/EBPβ gene expression and C/EBPβ-LIP and C/EBPβ-LAP protein turn-over plays an important role for the expression of adipogenic regulators and/or adipocyte differentiation genes in early adipogenic differentiation of human ASC and at later stages in human immature adipocytes.  相似文献   

17.
The hypothetical involvement of H2O2 in dexamethasone-mediated regulation of muscle cell differentiation and elimination was studied. Rat L6 myoblasts and mouse C2C12 satellite cells were chosen for acute (24 h) and chronic (5 or 10 day) experiments. Mitogenicity and anabolism were both affected by H2O2. Micromolar concentrations of H2O2 inhibited DNA while stimulating protein synthesis. At the millimolar level, H2O2 led to cell death by apoptosis.Synthetic glucocorticoi - dexamethasone (Dex) was shown to effect muscle cell fate similarly to H2O2. Chronic treatment with H2O2 or Dex dose-dependently accelerated either the formation of myotubes or cell elimination. Dex-induced cell death slightly differed from classical apoptosis and was featured by the symptoms of cell senescence such as extensive cytoplasm vacuolisation, accumulation of inclusion-bodies and lack of low molecular weight oligonucleosomal DNA fragmentation but chromatin condensation. Antioxidants (sodium ascorbate, N-acetyl-L-cysteine, catalase) abrogated Dex-dependent cell death. We conclude that H2O2 directly influences myogenesis and muscle cell elimination. Moreover, H2O2 can be considered as the potent mediator of glucocorticoid-dependent effects on muscle cells.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号