首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
BackgroundGlycosylation is one of the most complex post-translational modifications of proteins and lipids, notably requiring many glycosyltransferases, glycosidases and sugar transporters encoded by about 1–2% of all human genes. Deleterious variants in any of them may result in improper protein or lipid glycosylation, thus yielding the so-called ‘congenital disorders of glycosylation’ or CDG.Scope of reviewWe first review the current state of knowledge on the common blood and cellular glycoproteins used in the biochemical screening of CDG, as well as the emerging ones for an improved diagnosis. We then provide an overview of the current state-of-the-art methodologies ranging from gel electrophoresis to mass spectrometry to measure improper glycosylation. Finally, we discuss how additional tools such as metabolomics and microfluidics can be added to the current toolbox to better diagnose and delineate CDG.Major ConclusionsCombining several biochemical indicators and related methods is often required to cope with the large clinical heterogeneity of CDG and establish a definitive diagnosis.General significanceThis review aims to critically present current available CDG biochemical biomarkers and dedicated methods in the context of highly diverse glycosylation pathways and related inherited diseases.  相似文献   

2.
Over the past decade, multiple genetic and histological approaches have accelerated development of new breast cancer diagnostics and treatment paradigms. Multiple distinct genetic subtypes of breast cancers have been defined, and this has progressively led toward more personalized medicine in regard to treatment options. There still remains a deficiency in the development of molecular diagnostic assays that can be used for breast cancer detection and pretherapy clinical decisions. In particular, the type of cancer-specific biomarker typified by a serum or tissue-derived protein. Progress in this regard has been minimal, especially in comparison to the rapid advancements in genetic and histological assays for breast cancers. In this review, some potential reasons for this large gap in developing protein biomarkers will be discussed, as well as new strategies for improving these approaches. Improvements in the study design of protein biomarker discovery strategies in relation to the genetic subtypes and histology of breast cancers is also emphasized. The current successes in use of genetic and histological assays for breast cancer diagnostics are summarized, and in that context, the current limitations of the types of breast cancer-related clinical samples available for protein biomarker assay development are discussed. Based on these limitations, research strategies emphasizing identification of glycoprotein biomarkers in blood and MALDI mass spectrometry imaging of tissues are described.  相似文献   

3.
Congenital disorders of glycosylation (CDG) are being recognized as a rapidly growing and complex group of disorders. The pathophysiology results from depressed synthesis or remodeling of oligosaccharide moieties of glycoproteins. The ultimate result is the formation of abnormal glycoproteins affecting their structure and metabolic functions. The most thoroughly studied subset of CDG are the type I defects affecting N-glycosylation. Causal mutations occur in at least 12 different genes which encode primarily monosaccharide transferases necessary for N-glycosylation in the endoplasmic reticulum. The broad clinical presentation of these glycosylation defects challenge clinicians to test for these defects in a variety of clinical settings. The first described CDG was a phosphomannomutase deficiency (CDG-Ia). The original method used to define the glycosylation defect was isoelectric focusing (IEF) of transferrin. More recently, the use of other charge separation methods and electrospray-mass spectrometry (ESI-MS) has proven valuable in detecting type I CDG defects. By mass resolution, the under-glycosylation of transferrin is characterized as the total absence of one or both N-linked oligosaccharide. Beyond providing a new understanding of the structure of transferrin in type I CDG patients, it is adaptable to high throughput serum analysis. The use of transferrin under-glycosylation to detect the type I CDG provides limited insight into the specific site of the defect in oligosaccharide assembly since its value is constrained to observation of the final product of glycoprotein synthesis. New analytical targets and tools are converging with the clinical need for diagnosis of CDG. Defining the biosynthetic sites responsible for specific CDG phenotypes is in progress, and ten more type I defects have been putatively identified. This review discusses current methods, such as IEF and targeted proteomics using mass spectrometry, that are used routinely to test for type I CDG disorders, along with some newer approaches to define the defective synthetic sites responsible for the type I CDG defects. All diagnostic endeavors are followed by the quest for a reliable treatment. The isolated success of CDG-Ib treatment will be described with the hope that this may expand to other type I CDG disorders.  相似文献   

4.
Abnormal glycosylation of proteins is known to be either resultant or causative of a variety of diseases. This makes glycoproteins appealing targets as potential biomarkers and focal points of molecular studies on the development and progression of human ailment. To date, a majority of efforts in disease glycoproteomics have tended to center on either determining the concentration of a given glycoprotein, or on profiling the total population of glycans released from a mixture of glycoproteins. While these approaches have demonstrated some diagnostic potential, they are inherently insensitive to the fine molecular detail which distinguishes unique and possibly disease relevant glycoforms of specific proteins. As a consequence, such analyses can be of limited sensitivity, specificity, and accuracy because they do not comprehensively consider the glycosylation status of any particular glycoprotein, or of any particular glycosylation site. Therefore, significant opportunities exist to improve glycoproteomic inquiry into disease by engaging in these studies at the level of individual glycoproteins and their exact loci of glycosylation. In this concise review, the rationale for glycoprotein and glycosylation site specificity is developed in the context of human disease glycoproteomics with an emphasis on N-glycosylation. Recent examples highlighting disease-related perturbations in glycosylation will be presented, including those involving alterations in the overall glycosylation of a specific protein, alterations in the occupancy of a given glycosylation site, and alterations in the compositional heterogeneity of glycans occurring at a given glycosylation site. Each will be discussed with particular emphasis on how protein-specific and site-specific approaches can contribute to improved discrimination between glycoproteomes and glycoproteins associated with healthy and unhealthy states.  相似文献   

5.
This study applied yolk immunoglobulins immunoaffinity separation and MALDI-TOF MS for clinical proteomics of congenital disorders of glycosylation (CDG) and secondary glycosylation disorders [galactosemia and hereditary fructose intolerance (HFI)]. Serum transferrin (Tf) and alpha1-antitrypsin (AAT) that are markers for CDG, were purified sequentially to obtain high-quality MALDI mass spectra to differentiate single glycoforms of the native intact glycoproteins. The procedure was found feasible for the investigation of protein macroheterogeneity due to glycosylation site underoccupancy then ensuing the characterization of patients with CDG group I (N-glycan assembly disorders). Following PNGase F digestion of the purified glycoprotein, the characterization of protein microheterogeneity by N-glycan MS analysis was performed in a patient with CDG group II (processing disorders). CDG-Ia patients showed a typical profile of underglycosylation where the fully glycosylated glycoforms are always the most abundant present in plasma with lesser amounts of partially and unglycosylated glycoforms in this order. Galactosemia and HFI are potentially fatal diseases, which benefit from early diagnosis and prompt therapeutic intervention. In symptomatic patients with galactosemia and in those with HFI, MALDI MS of Tf and AAT depicts a hypoglycosylation profile with a significant increase of underglycosylated glycoforms that reverses by dietary treatment, representing a clue for diagnosis and treatment monitoring.  相似文献   

6.
Single proteins, when analyzed with 2-D-PAGE, often show multiple spots due to PTMs. In gels of human body fluids, the spot patterns facilitate the assignment and identification of the proteins. We analyzed serums from patients with congenital disorders of glycosylation (CDG) in which glycoproteins are strongly impacted and exhibit highly distinguishable spot patterns compared to healthy controls. We detected a typical protein pattern for alpha1-acid glycoprotein (AGP) and transferrin (Trf) that are markers for CDG. AGP contains five glycosylation sites which results in a complex microheterogeneity of the glycoprotein. On the other hand, in Trf, a glycoprotein with only two glycosylation sites, mainly biantennary complex-type-N-linked glycans are bound. We used 2-D-PAGE, MALDI-TOF-MS, and ESI-MS for the analysis of these glycoproteins and their corresponding glycans. In AGP, the heterogenic glycosylation of the different glycosylation sites is responsible for the complex spot pattern. In contrast to AGP, the protein spots of Trf cannot be explained by glycosylation. We found strong evidence that oxidation of cysteine is responsible for the spot pattern. This study contradicts the commonly accepted assumption that the multiple protein spots of Trf observed in 2-D-PAGE are due, as in AGP, to the glycosylation of the protein.  相似文献   

7.
Congenital disorders of glycosylation (CDG) are inherited autosomal-recessive diseases that impair N-glycosylation. Approximately 20% of patients do not survive beyond the age of 5 years old as a result of widespread organ dysfunction. Although most patients receive a CDG diagnosis based on abnormal glycosylation of transferrin, this test cannot provide a genetic diagnosis; indeed, many patients with abnormal transferrin do not have mutations in any known CDG genes. Here, we combined biochemical analysis with whole-exome sequencing (WES) to identify the genetic defect in an untyped CDG patient, and we found a 22 bp deletion and a missense mutation in DDOST, whose product is a component of the oligosaccharyltransferase complex that transfers the glycan chain from a lipid carrier to nascent proteins in the endoplasmic reticulum lumen. Biochemical analysis with three biomarkers revealed that N-glycosylation was decreased in the patient's fibroblasts. Complementation with wild-type-DDOST cDNA in patient fibroblasts restored glycosylation, indicating that the mutations were pathological. Our results highlight the power of combining WES and biochemical studies, including a glyco-complementation system, for identifying and confirming the defective gene in an untyped CDG patient. This approach will be very useful for uncovering other types of CDG as well.  相似文献   

8.
Congenital disorders of glycosylation (CDG) are a group of diseases that affect glycoprotein biogenesis. Eighteen different types of CDG have been defined genetically. They result from deficiencies in either the biosynthesis of oligosaccharide precursors or specific steps of N-glycan assembly, resulting in the absence or structural alteration of N-glycan chains. These diseases have a broad range of clinical phenotypes and affect nearly every organ system, with special emphasis on normal brain development and the multiple functions of the nervous, hepatic, gastrointestinal and immune systems. Although most of the deficiencies observed in CDG patients are only partial, the severity of the clinical manifestations signifies the relevance of protein N-glycosylation and shows the importance of defined glycan structures.  相似文献   

9.
Congenital disorders of glycosylation (CDG) comprise a family of inherited multisystemic disorders resulting from the deficiency of glycosylation pathways. N-glycosylation defects are classified as two biochemical and genetic established types, of which CDG-Ia is the most frequent. We performed 2-DE proteomic analysis on serum from two functional hemizygous CDG-Ia patients bearing T237M and D65Y missense changes. Comparative analysis of control/patient serum proteome allowed us to identify differential expression of 14 proteins. The most remarkable groups included proteins involved in immune response, coagulation mechanism and tissue protection against oxidative stress. The patient bearing D65Y mutation had less favourable clinical outcome and showed more abnormalities in the spot patterns, suggesting that the proteomic results might also be correlated with the phenotype of CDG patients. This study describes for the first time the differential expression of α2-macroglobulin, afamin, fibrin and fibrinogen in CDG disorder and shows how the proteomic approach might be useful for understanding its physiopathology.  相似文献   

10.
Multi-allelic origin of congenital disorder of glycosylation (CDG)-Ic   总被引:4,自引:0,他引:4  
Congenital disorders of glycosylation (CDG), formerly known as carbohydrate-deficient glycoprotein syndrome, represent a family of genetic diseases with variable clinical presentations. Common to all types of CDG characterized to date is a defective Asn-linked glycosylation caused by enzymatic defects of N-glycan synthesis. Previously, we have identified a mutation in the ALG6 alpha1,3 glucosyltransferase gene as the cause of CDG-Ic in four related patients. Here, we present the identification of seven additional cases of CDG-Ic among a group of 35 untyped CDG patients. Analysis of lipid-linked oligosaccharides in fibroblasts confirmed the accumulation of dolichyl pyrophosphate-Man9GlcNAc2 in the CDG-Ic patients. The genomic organization of the human ALG6 gene was determined, revealing 14 exons spread over 55 kb. By polymerase chain reaction amplification and sequencing of ALG6 exons, three mutations, in addition to the previously described A333 V substitution, were detected in CDG-Ic patients. The detrimental effect of these mutations on ALG6 activity was confirmed by complementation of alg6 yeast mutants. Haplotype analysis of CDG-Ic patients revealed a founder effect for the ALG6 allele bearing the A333 V mutation. Although more than 80% of CDG are type Ia, CDG-Ic may be the second most common form of the disease.  相似文献   

11.
Congenital Disorders of Glycosylation (CDG) are an expanding and complex group of rare genetic disorders caused by defects in the glycosylation of proteins and lipids. The genetic spectrum of CDG is extremely broad with mutations in over 140 genes leading to a wide variety of symptoms ranging from mild to severe and life-threatening. There has been an expansion in the genetic complexity of CDG in recent years. More specifically several examples of alternate phenotypes in recessive forms of CDG and new types of CDG following an autosomal dominant inheritance pattern have been identified. In addition, novel genetic mechanisms such as expansion repeats have been reported and several already known disorders have been classified as CDG as their pathophysiology was better elucidated. Furthermore, we consider the future and outlook of CDG genetics, with a focus on exploration of the non-coding genome using whole genome sequencing, RNA-seq and multi-omics technology.  相似文献   

12.
Glycosylation consists in the covalent linkage of a carbohydrate structure to membrane bound and secreted glycoconjugates. It is a common post-translational modification that serves multiple functions in cell differentiation, signaling and intercellular communication. Unlike DNA/RNA/protein, the addition of complex carbohydrates is not-template driven and it is conceivable that both genetics and environmental factors might interact to influence glycosylation machinery in several pathological processes. Over the last few decades, the recognition of Congenital Disorders of Glycosylation (CDG) as an increasing number of genetic diseases of glycosylation with almost constant nervous system involvement, dramatically illustrated the consequences of abnormal glycosylation as improper CNS development and function. In addition, CDG recognition contributed to postulate that aberrant glycosylation processes might play a role in multifactorial, complex CNS diseases. On this context, CNS glycomics explores the effects of possible aberrant glycosylation to identify potential glyco-biomarkers useful for the diagnosis and ultimately for potential intervention strategies in neurological diseases. Up to date, CNS glycomics is an emerging, still uncharted area because of the specificity of CNS glycosylation, the complexity of the neurological disorders and for the inaccessibility and invasiveness of disease relevant samples. Here we review current knowledge on clinical glycomics of nervous system diseases, starting with CDG to include those pediatric and adulthood neuropsychiatric diseases where some evidences suggest that multifactor determinants converge to dysregulate glycosylation. Conventional and mass spectrometry-based high throughput technology for glyco-biomarker detection in CNS diseases is reported.  相似文献   

13.
Alpha-dystroglycanopathies such as Walker Warburg syndrome represent an important subgroup of the muscular dystrophies that have been related to defective O-mannosylation of alpha-dystroglycan. In many patients, the underlying genetic etiology remains unsolved. Isolated muscular dystrophy has not been described in the congenital disorders of glycosylation (CDG) caused by N-linked protein glycosylation defects. Here, we present a genetic N-glycosylation disorder with muscular dystrophy in the group of CDG type I. Extensive biochemical investigations revealed a strongly reduced dolichol-phosphate-mannose (Dol-P-Man) synthase activity. Sequencing of the three DPM subunits and complementation of DPM3-deficient CHO2.38 cells showed a pathogenic p.L85S missense mutation in the strongly conserved coiled-coil domain of DPM3 that tethers catalytic DPM1 to the ER membrane. Cotransfection experiments in CHO cells showed a reduced binding capacity of DPM3(L85S) for DPM1. Investigation of the four Dol-P-Man-dependent glycosylation pathways in the ER revealed strongly reduced O-mannosylation of alpha-dystroglycan in a muscle biopsy, thereby explaining the clinical phenotype of muscular dystrophy. This mild Dol-P-Man biosynthesis defect due to DPM3 mutations is a cause for alpha-dystroglycanopathy, thereby bridging the congenital disorders of glycosylation with the dystroglycanopathies.  相似文献   

14.
Protein glycosylation is a critical subject attracting increasing attention in the field of proteomics as it is expected to play a key role in the investigation of histological and diagnostic biomarkers. In this context, an enormous number of glycoproteins have now been nominated as disease-related biomarkers. However, there is no appropriate strategy in the current proteome platform to qualify such marker candidate molecules, which relates their specific expression to particular diseases. Here, we present a new practical system for focused differential glycan analysis in terms of antibody-assisted lectin profiling (ALP). In the developed procedure, (i) a target protein is enriched from clinic samples (e.g. tissue extracts, cell supernatants, or sera) by immunoprecipitation with a specific antibody recognizing a core protein moiety; (ii) the target glycoprotein is quantified by immunoblotting using the same antibody used in (i); and (iii) glycosylation difference is analyzed by means of antibody-overlay lectin microarray, an application technique of an emerging glycan profiling microarray. As model glycoproteins having either N-linked or O-linked glycans, prostate-specific antigen or podoplanin, respectively, were subjected to systematic ALP analysis. As a result, specific signals corresponding to the target glycoprotein glycans were obtained at a sub-picomole level with the aid of specific antibodies, whereby disease-specific or tissue-specific glycosylation changes could be observed in a rapid, reproducible, and high-throughput manner. Thus, the established system should provide a powerful pipeline in support of on-going efforts in glyco-biomarker discovery.  相似文献   

15.
The congenital disorders of glycosylation (CDGs) are recent additions to the repertoire of inherited human genetic diseases. Frequency of CDGs is unknown since most cases are believed to be misdiagnosed or unrecognized. With few patients identified and heterogeneity in disease signs noted, studies of animal models may provide increased understanding of pathogenic mechanisms. However, features of mammalian glycan biosynthesis and species-specific variations in glycan repertoires have cast doubt on whether animal models of human genetic defects in protein glycosylation will reproduce pathogenic events and disease signs. We have introduced a mutation into the mouse germline that recapitulates the glycan biosynthetic defect responsible for human CDG type IIa (CDG-IIa). Mice lacking the Mgat2 gene were deficient in GlcNAcT-II glycosyltransferase activity and complex N-glycans, resulting in severe gastrointestinal, hematologic, and osteogenic abnormalities. With use of a lectin-based diagnostic screen for CDG-IIa, we found that all Mgat2-null mice died in early postnatal development. However, crossing the Mgat2 mutation into a distinct genetic background resulted in a low frequency of survivors. Mice deficient in complex N-glycans exhibited most CDG-IIa disease signs; however, some signs were unique to the aged mouse or are prognostic in human CDG-IIa. Unexpectedly, analyses of N-glycan structures in Mgat2-null mice revealed a novel oligosaccharide branch on the "bisecting" N-acetylglucosamine. These genetic, biochemical, and physiologic studies indicate conserved functions for N-glycan branches produced in the Golgi apparatus among two mammalian species and suggest possible therapeutic approaches to GlcNAcT-II deficiency. Our findings indicate that human genetic disease due to aberrant protein glycosylation can be modeled in the mouse to gain insights into N-glycan-dependent physiology and the pathogenesis of CDG-IIa.  相似文献   

16.
Congenital disorders of glycosylation (CDGs) are a family of N-linked glycosylation defects associated with severe clinical manifestations. In CDG type-I, deficiency of lipid-linked oligosaccharide assembly leads to the underoccupancy of N-glycosylation sites on glycoproteins. Although the level of residual glycosylation activity is known to correlate with the clinical phenotype linked to individual CDG mutations, it is not known whether the degree of N-glycosylation site occupancy by itself correlates with the severity of the disease. To quantify the extent of underglycosylation in healthy control and in CDG samples, we developed a quantitative method of N-glycosylation site occupancy based on multiple reaction monitoring LC-MS/MS. Using isotopically labeled standard peptides, we directly quantified the level of N-glycosylation site occupancy on selected serum proteins. In healthy control samples, we determined 98-100% occupancy for all N-glycosylation sites of transferrin and alpha(1)-antitrypsin. In CDG type-I samples, we observed a reduction in N-glycosylation site occupancy that correlated with the severity of the disease. In addition, we noticed a selective underglycosylation of N-glycosylation sites, indicating preferential glycosylation of acceptor sequons of a given glycoprotein. In transferrin, a preferred occupancy for the first N-glycosylation site was observed, and a decreasing preference for the first, third, and second N-glycosylation sites was observed in alpha(1)-antitrypsin. This multiple reaction monitoring LC-MS/MS method can be extended to multiple glycoproteins, thereby enabling a glycoproteomics survey of N-glycosylation site occupancies in biological samples.  相似文献   

17.
Recently, we reported that two siblings presenting with the clinical syndrome congenital disorders of glycosylation (CDG) have mutations in the gene encoding Cog7p, a member of the conserved oligomeric Golgi (COG) complex. In this study, we analyzed the localization and trafficking of multiple Golgi proteins in patient fibroblasts under a variety of conditions. Although the immunofluorescent staining pattern of several Golgi proteins was indistinguishable from normal, the staining of endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC)-53 and the vesicular-soluble N-ethylmaleimide-sensitive factor attachment protein receptors GS15 and GS28 was abnormal, and the steady-state level of GS15 was greatly decreased. Retrograde transport of multiple Golgi proteins to the ER in patient fibroblasts via brefeldin A-induced tubules was significantly slower than occurs in normal fibroblasts, whereas anterograde protein trafficking was much less affected. After prolonged treatment with brefeldin A, several Golgi proteins were detected in clusters that colocalize with the microtubule-organizing center in patient cells. All of these abnormalities were normalized in COG7-corrected patient fibroblasts. These results serve to better define the role of the COG complex in facilitating protein trafficking between the Golgi and ER and provide a diagnostic framework for the identification of CDG defects involving trafficking proteins.  相似文献   

18.
The congenital disorders of glycosylation (CDG) are characterized by defects in N-linked glycan biosynthesis that result from mutations in genes encoding proteins directly involved in the glycosylation pathway. Here we describe two siblings with a fatal form of CDG caused by a mutation in the gene encoding COG-7, a subunit of the conserved oligomeric Golgi (COG) complex. The mutation impairs integrity of the COG complex and alters Golgi trafficking, resulting in disruption of multiple glycosylation pathways. These cases represent a new type of CDG in which the molecular defect lies in a protein that affects the trafficking and function of the glycosylation machinery.  相似文献   

19.
Inborn errors in glycoconjugate biosynthesis termed ‘Congenital Disorders of Glycosylation’ (CDG) comprise a rapidly expanding group of metabolic diseases in man. Up till now more than 60 different inherited disorders in N- and O-glycosylation pathways have been identified. They affect the biosynthesis of glycan moieties linked to proteins as well as lipids. Due to failures in protein glycosylation, CDG patients suffer from multi systemic disorders, which mostly present with severe psychomotor and mental retardations, muscular impairment, ataxia, failure to thrive and developmental delay. Although improved biochemical and genetic investigations led to identification of a variety of new molecular defects in glycoconjugate biosynthesis, effective therapies for most types of the CDG are so far not available. Therefore, intensive investigations on treatment options for this group of diseases have been carried out in recent years.  相似文献   

20.
Congenital disorders of glycosylation (CDG) constitute a group of diseases affecting N-linked glycosylation pathways. The classical type of CDG, now called CDG-I, results from deficiencies in the early glycosylation pathway for biosynthesis of lipid-linked oligosaccharide and its transfer to proteins in endoplasmic reticulum, while the CDG-II diseases are caused by defects in the subsequent processing steps. Mass spectrometry (MS) produced a milestone in CDG research, by localizing the CDG-I defect to the early glycosylation pathway in 1992. Currently, MS of transferrin, either by electrospray ionization or matrix-assisted laser desorption/ionization, plays the central role in laboratory screening of CDG-I. On the other hand, the glycopeptide analysis recently developed for site-specific glycans of glycoproteins allows detailed glycan analysis in a high throughput manner and will solve problems in CDG-II diagnosis. These techniques will facilitate studying CDG, a field now expanding to O-linked glycosylation and to acquired as well as inherited conditions that can affect protein glycosylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号