首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Studies in organisms belonging to different eukaryotic kingdoms have revealed that the structural state of chromatin is controlled by interactions of DNA, small RNAs and specific proteins, linked to a self-reinforcing complex network of biochemical activities involving histone and DNA modifications and ATP-dependent nucleosome remodeling. However, these findings must now be reinterpreted in light of the recent discovery of the highly dynamic character of interphase chromosomes exemplified by the constant flux of enzymatic and structural proteins through both eu- and heterochromatin and by short- and long-range chromosome movements in the nucleus. The available data on chromosome organization in Arabidopsis thaliana and links between proteins influencing chromatin structure and DNA and histone modifications documented in this model plant provide strong supportive evidence for the dynamic nature of chromosomes.  相似文献   

2.
Holocarboxylase synthetase (HCS) mediates the binding of biotin to lysine (K) residues in histones H2A, H3 and H4; HCS knockdown disturbs gene regulation and decreases stress resistance and lifespan in eukaryotes. We tested the hypothesis that HCS interacts physically with histone H3 for subsequent biotinylation. Co-immunoprecipitation experiments were conducted and provided evidence that HCS co-localizes with histone H3 in human cells; physical interactions between HCS and H3 were confirmed using limited proteolysis assays. Yeast two-hybrid (Y2H) studies revealed that the N-terminal and C-terminal domains in HCS participate in H3 binding. Recombinant human HCS was produced and exhibited biological activity, as evidenced by biotinylation of its known substrate, recombinant p67. Recombinant histone H3.2 and synthetic H3-based peptides were also good targets for biotinylation by recombinant HCS (rHCS) in vitro, based on tracing histone-bound biotin with [3H]biotin, streptavidin and anti-biotin antibody. Biotinylation site-specific antibodies were generated and revealed that both K9 and K18 in H3 were biotinylated by HCS. Collectively, these studies provide conclusive evidence that HCS interacts directly with histone H3, causing biotinylation of K9 and K18. We speculate that the targeting of HCS to distinct regions in human chromatin is mediated by DNA sequence, biotin, RNA, epigenetic marks or chromatin proteins.  相似文献   

3.
4.
5.
Eissenberg JC 《Gene》2012,496(2):69-78
The chromodomain motif is found among certain chromosomal proteins of all eukaryotes. The chromodomain fold - three beta strands packed against a C-terminal alpha helix - mediates protein-protein and/or protein-nucleic acid interactions. In some cases, the affinity of chromodomain binding is regulated by lysine methylation, which appears to target chromodomain proteins and associated complexes to specific sites in chromatin. In this review, our current knowledge of chromodomain structure and function is summarized.  相似文献   

6.
Heterozygous point mutations at Y641 and A677 in the EZH2 SET domain are prevalent in about 10-24% of Non-Hodgkin lymphomas (NHL). Previous studies indicate that these are gain-of-function mutations leading to the hypertrimethylation of H3K27. These EZH2 mutations may drive the proliferation of lymphoma and make EZH2 a molecular target for patients harboring these mutations. Here, another EZH2 SET domain point mutation, A687V, occurring in about 1-2% of lymphoma patients, is also shown to be a gain-of-function mutation that greatly enhances its ability to perform dimethylation relative to wild-type EZH2 and is equally proficient at catalyzing trimethylation. We propose that A687V EZH2 also leads to hypertrimethylation of H3K27 and may thus be a driver mutation in NHL.  相似文献   

7.
8.
9.
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and is associated with various clinico-pathological characteristics such as genetic mutations and viral infections. Therefore, numerous laboratories look out for identifying always new putative markers for the improvement of HCC diagnosis/prognosis. Many molecular profiling studies investigated gene expression changes related to HCC. HepG2 represents a pure cell line of human liver carcinoma, often used as HCC model due to the absence of viral infection. In this study we compare gene expression profiles associated with HepG2 (as HCC model) and normal hepatocyte cells by microarray technology. Hierarchical cluster analysis of genes evidenced that 2646 genes significantly down-regulated in HepG2 cells compared to hepatocytes whereas a further 3586 genes significantly up-regulated. By using the Ingenuity Pathway Analysis (IPA) program, we have classified the genes that were differently expressed and studied the functional networks correlating these genes in the complete human interactome. Moreover, to confirm the differentially expressed genes as well as the reliability of our microarray data, we performed a quantitative Real time RT-PCR analysis on 9 up-regulated and 11 down-regulated genes, respectively. In conclusion this work i) provides a gene signature of human hepatoma cells showing genes that change their expression as a consequence of liver cancer in the absence of any genetic mutations or viral infection, ii) evidences new differently expressed genes found in our signature compared to previous published studies and iii) suggests some genes on which to focus future studies to understand if they can be used to improve the HCC prognosis/diagnosis.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号