首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enhancement of salt (NaCl) tolerance by pretreatment with sublethal dose (50 mM) of NaCl was investigated in V. radiata seedlings. NaCl stress caused drastic effects on roots compared to shoots. Accompanying reductions in length, number of root hairs and branches, roots became stout, brittle and brown in color. Salt stress caused gradual reduction in chlorophyll, carotenoid pigment contents and chlorophyll fluorescence intensity also. Superoxide dismutase and catechol peroxidase activities increased under stress in both roots and leaves. But catalase activity showed an increase in roots and decrease in leaves. In these seedlings, the oxidative stress has been observed under salinity stress and the level of proline, H2O2 and malondialdehyde content were increased. But pretreatment with sublethal dose of NaCl was able to overcome the adverse effects of stress imposed by NaCl to variable extents by increasing growth and photosynthetic pigments of the seedlings, modifying the activities of antioxidant enzymes, reducing malondialdehyde and H2O2 content and increasing accumulation of osmolytes like proline. Thus, mungbean plants can acclimate to lethal level of salinity by pretreatment with sublethal level of NaCl, improving their health and production under saline condition.  相似文献   

2.
Brachiaria brizantha is considered one of the preferred fodders among farmers for having high forage yield and large production of root mass. The association of beneficial bacteria with these grasses can be very valuable in the recovery of the pasture areas with nutritional deficiency. With the aim of studying this possibility, we carried out the sampling of soil and roots of B. brizantha in three areas (Nova Odessa-SP, S?o Carlos-SP and Campo Verde-MT, Brazil). Seventy-two bacterial strains were isolated and used in tests to evaluate their biotechnological potential. Almost all isolates presented at least one positive feature. Sixty-eight isolates produced analogues of indole-3-acetic acid, ten showed nitrogenase activity when subjected to the method of increasing the concentration of total nitrogen (total N) in the culture medium and sixty-five isolates showed nitrogenase activity when subjected to acetylene reduction technique. The partial sequencing of 16S rRNA of these isolates allowed the identification of seven main groups, with the prevalence of those affiliated to the genus Stenotrophomonas (69?%). At the end, this work elected the strains C4 (Pseudomonadaceae) and C7 (Rhodospirillaceae) as promising organisms for the development of inoculants due to their higher nitrogenase activity.  相似文献   

3.
  • Salt stress negatively affects growth and development of plants. However, it is hypothesized that plant growth‐promoting endophytic bacteria can greatly alleviate the adverse effects of salinity and can promote growth and development of plants. In the present research, we aimed to isolate endophytic bacteria from halotolerant plants and evaluate their capacity for promoting crop plant growth.
  • The bacterial endophytes were isolated from selected plants inhabiting sand dunes at Pohang beach, screened for plant growth‐promoting traits and applied to rice seedlings under salt stress (NaCl; 150 mm ).
  • Out of 59 endophytic bacterial isolates, only six isolates, i.e. Curtobacterium oceanosedimentum SAK1, Curtobacterium luteum SAK2, Enterobacter ludwigii SAK5, Bacillus cereus SA1, Micrococcus yunnanensis SA2, Enterobacter tabaci SA3, resulted in a significant increase in the growth of Waito‐C rice. The cultural filtrates of bacterial endophytes were tested for phytohormones, including indole‐3‐acetic acid, gibberellins and organic acids. Inoculation of the selected strains considerably reduced the amount of endogenous ABA in rice plants under NaCl stress, however, they increased GSH and sugar content. Similarly, these strains augmented the expression of flavin monooxygenase (OsYUCCA1) and auxin efflux carrier (OsPIN1) genes under salt stress.
  • In conclusion, the pragmatic application of the above selected bacterial strains alleviated the adverse effects of NaCl stress and enhanced rice growth attributes by producing various phytohormones.
  相似文献   

4.
The object of the work is to evaluate whether rhizobacteria populating dry salty environments can increase resistance in tomato to salt stress. Seven strains of plant growth-promoting bacteria that have 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity were isolated from soil samples taken from the Arava region of southern Israel. Following growth of these seedlings in the presence of 43 mM NaCl for 7 weeks, the bacterium that promoted growth to the greatest extent was selected for further study. DNA analysis of the 16S RNA indicated that the selected bacterium was Achromobacter piechaudii. This bacterium significantly increased the fresh and dry weights of tomato seedlings grown in the presence of up to 172 mM NaCl salt. The bacterium reduced the production of ethylene by tomato seedlings, which was otherwise stimulated when seedlings were challenged with increasing salt concentrations, but did not reduce the content of sodium. However, it slightly increased the uptake of phosphorous and potassium, which may contribute in part to activation of processes involved in the alleviation of the effect of salt. In the presence of salt the bacterium increased the water use efficiency (WUE). This may suggest that the bacterium act to alleviate the salt suppression of photosynthesis. However, the detailed mechanism was not elucidated. The work described in this report is a first step in the development of productive agricultural systems in saline environments.  相似文献   

5.
Elevated sodium (Na(+)) decreases plant growth and, thereby, agricultural productivity. The ion transporter high-affinity K(+) transporter (HKT)1 controls Na(+) import in roots, yet dysfunction or overexpression of HKT1 fails to increase salt tolerance, raising questions as to HKT1's role in regulating Na(+) homeostasis. Here, we report that tissue-specific regulation of HKT1 by the soil bacterium Bacillus subtilis GB03 confers salt tolerance in Arabidopsis thaliana. Under salt stress (100 mM NaCl), GB03 concurrently down- and upregulates HKT1 expression in roots and shoots, respectively, resulting in lower Na(+) accumulation throughout the plant compared with controls. Consistent with HKT1 participation in GB03-induced salt tolerance, GB03 fails to rescue salt-stressed athkt1 mutants from stunted foliar growth and elevated total Na(+) whereas salt-stressed Na(+) export mutants sos3 show GB03-induced salt tolerance with enhanced shoot and root growth as well as reduced total Na(+). These results demonstrate that tissue-specific regulation of HKT1 is critical for managing Na(+) homeostasis in salt-stressed plants, as well as underscore the breadth and sophistication of plant-microbe interactions.  相似文献   

6.
The present study was investigated for soil bioremediation through sababul plant biomass (Leucaena leucocephala). The soil contaminated with textile effluent was collected from Erode (chithode) area. Various physico-chemical characterizations like N, P, and K and electrical conductivity were assessed on both control and dye contaminated soils before and after remediation. Sababul (L. leucocephala) powder used as plant biomass for remediation was a tool for textile dye removal using basic synthetic dyes by column packing and eluting. The concentration of the dye eluted was compared with its original concentration of dye and were analyzed by using UV–vis spectrophotometer. Sababul plant biomass was analyzed for its physico-chemical properties and active compounds were detected by GC–MS, HPTLC and FTIR. Plant growth was assessed with green gram on the textile contaminated soil and sababul had the potential of adsorbing the dye as the contaminated soil and also check the growth of green gram.  相似文献   

7.
Rhizobium phaseoli strains were isolated from the mung bean nodules, and, the most salt tolerant and high auxin producing rhizobial isolate N20 was evaluated in the presence and absence of L-tryptophan (L-TRP) for improving growth and yield of mung bean under saline conditions in a pot experiment. Mung bean seeds were inoculated with peat-based inoculum and NP fertilizers were applied at 30-60 kg ha-1, respectively. Results revealed that imposition of salinity reduced the growth and yield of mung bean. On the contrary, separate application of L-TRP and rhizobium appeared to mitigate the adverse effects of salt stress. However, their combined application produced more pronounced effects and increased the plant height (28.2%), number of nodules plant-1 (71.4%), plant biomass (61.2%), grain yield (65.3%) and grain nitrogen concentration (22.4%) compared with untreated control. The growth promotion effect might be due to higher auxin production in the rhizosphere and improved mineral uptake that reduced adverse effects of salinity. The results imply that supplementing rhizobium inoculation with L-TRP could be a useful approach for improving growth and yield of mung bean under salt stressed conditions.  相似文献   

8.
In order to discriminate between the ionic and osmotic components of salt stress, sugarcane (Saccharum officinarum L. cv. Co 86032) plants were treated with salt-NaCl or polyethylene glycol-PEG 8000 solutions (?0.7 MPa) for 15 days. Both the salt and PEG treatments significantly reduced leaf width, number of green leaves, and chlorophyll stability index. Osmotic adjustment (OA) indicated that both the stresses led to significant accumulation of osmolytes and sugars. Salt stressed plants appeared to use salt as an osmoticum while the PEG stressed plants showed an accumulation of sugars. Oxidative damage to membranes was not severe in plants subjected to salt or PEG stress. The salt stressed plants showed an increase in the activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX), while PEG stress led to an increase in SOD but not APX activity as compared to the control. Thus, results indicate that the iso-osmotic salt or PEG stress led to differential responses in plants especially with respect to growth, OA, and antioxidant enzyme activities.  相似文献   

9.
The H+- and IAA-induced growth responses of isolated Vigna radiata (L.) Wilczek hypocotyl segments were investigated concurrently with IAA-induced H+ excretion. The effects of external pH on these reactions were also studied. Experiments were performed with intact, peeled and abraded segments. Only abraded segments reacted to H+ and to IAA. In short-term experiments, the cuticle prevented proton efflux and influx; however, it allowed gradual ion movements which become measurable after 1 h. Both phases of the IAA growth response reacted to external pH. The interactions between these two phases and their pH dependencies are discussed.  相似文献   

10.
Abiotic stresses, including nitrogen stress (NS), can hamper photosynthesis and cause oxidative damage to plants. Upregulation of the antioxidative defense system and photosynthesis induced by exogenous glycinebetaine (GB) and humic acid (HA) can mitigate the inhibitory effects of NS on plants. In the present investigation, the beneficial effects of exogenously applied GB and HA were examined on growth, leaf N status, photosynthesis, lipid peroxidation, and activities of some key antioxidant enzymes in the seedlings of maize cv. Zhengdan 958 (ZD958) exposed to NS. NS caused a significant reduction in total dry matter of seedlings of ZD958, but both GB and HA proved effective in mitigating this inhibition, hence, the beneficial effects of GB being more pronounced than those of HA. NS led to a considerable decrease in leaf total N and endogenous GB contents, stomatal conductance (g s), net photosynthetic rate (P n), intercellular CO2 concentration (C i), and activities of two key C4 photosynthesis enzymes phosphoenolpyruvate carboxylase (PEPCase) and ribulose-1,5-bisphosphate carboxylase (RuBPCase) as well as of superoxide dismutase (SOD) and peroxidase (POD). This treatment caused an increase in lipid peroxidation, but showed no effect on POD activity. Exogenous application of varying doses of GB resulted in a decrease in lipid peroxidation and C i, and an increase in leaf total N and endogenous glycinebetaine (EGB) content, P n, and activities of RuBPCase, PEPCase, SOD, and catalase (CAT) under NS. In contrast, application of different doses of HA resulted in a decrease in lipid peroxidation, an increase in P n, g s, and C i as well as SOD, CAT, and POD activities without increasing leaf total N and EGB content, and enhanced RuBPCase and PEPCase activities. The present study suggests that exogenous application of GB and HA can induce tolerance in maize plants to NS, but through the regulation of different mechanisms.  相似文献   

11.
To identify biochemical markers for salt tolerance, two contrasting cultivars of rice (Oryza sativa L.) differing in salt tolerance were analyzed for various parameters. Pokkali, a salt-tolerant cultivar, showed considerably lower level of H2O2 as compared to IR64, a sensitive cultivar, and such a physiology may be ascribed to the higher activity of enzymes in Pokkali, which either directly or indirectly are involved in the detoxification of H2O2. Enzyme activities and the isoenzyme pattern of antioxidant enzymes also showed higher activity of different types and forms in Pokkali as compared to IR64, suggesting that Pokkali possesses a more efficient antioxidant defense system to cope up with salt-induced oxidative stress. Further, Pokkali exhibited a higher GSH/GSSG ratio along with a higher ratio of reduced ascorbate/oxidized ascorbate as compared to IR64 under NaCl stress. In addition, the activity of methylglyoxal detoxification system (glyoxalase I and II) was significantly higher in Pokkali as compared to IR64. As reduced glutathione is involved in the ascorbate–glutathione pathway as well as in the methylglyoxal detoxification pathway, it may be a point of interaction between these two. Our results suggest that both ascorbate and glutathione homeostasis, modulated also via glyoxalase enzymes, can be considered as biomarkers for salt tolerance in Pokkali rice. In addition, status of reactive oxygen species and oxidative DNA damage can serve as a quick and sensitive biomarker for screening against salt and other abiotic stresses in crop plants.  相似文献   

12.
Microorganisms and their hosts communicate through an array of signals. Many physiological processes regulated in quorum sensing (QS) are dependent on auto-inducers, like N-acyl-homoserine lactones (AHLs) as in numerous groups of both gram-positive and gram-negative bacteria. In vitro grown seven-day old chickpea seedlings treated with plant growth promoting bacteria (PGPRs) were used to screen the AHL mimicking and for phytochemical substances like phytohormones and secondary metabolites such as phenolics and flavonoids. Potential anti-quorum sensing (anti-QS) activity surrounding the roots on semi-solid agar lawn of Chromobacterium violaceum (ATCC12742) was observed. Crude protein (4.46–8.30 μg/mL) and methanolic extracts (100 μg/mL) of seedling gave moderate anti-QS activity against CV12742 anti QS bioassay, respectively. Crude protein and methanolic extract of Bacillus amyloliquefaciens (34.00 ± 2.23; 34.00 ± 4.33 mm) and B. subtilis A (27.00 ± 2.10; 3.29 ± 2.16 mm) treated samples showed higher zone of inhibition due to anti-QS activity. Phytohormone analysis using LC–MS for zeatin, auxin and methyl jasmonate (MeJA) indicated that phytohormones were significantly upregulated by 1909.80 ng/g FW, 669.67 ng/g FW and 244.55 ng/g FW, respectively in Pseudomonas brassicacearum treated seedlings compared to control. UHPLC of PGPR treated seedlings showed overly expressed gallic acid, protocatechuic acid, catechin, p-hydroxybenzoic acid, caffeic acid, catechol, vanillin, and ferulic acid in B. amyloliquefaciens treated seedlings compared to others. Enrichment analysis identified significant pathways related to metabolism, biosynthesis of secondary metabolites. The present study indicates that chickpea neutralizes an extensive range of functional responses to AHLs that may play important role in legume host-microbe interactions.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-01034-x.  相似文献   

13.
Plant growth promoting bacterial (PGPB) strains Pseudomonas fluorescens Pf1 and endophytic Bacillus subtilis EPB5, EPB22, EPB 31 were tested for their capacity to induce water stress related proteins and enzymes in green gram (Vigna radiata) plants. Among the different bacteria used, P. fluorescens Pf1 increased the vigour index, fresh weight and dry weight of green gram seedlings in vitro. Quantitative and qualitative analyses of stress-related enzymes indicated the greater activity of catalase and peroxidase in green gram plants bacterized with P. fluorescens Pf1 against water stress when compared to untreated plants. The greater accumulation of proline was recorded in Pf1 treated plants compared to untreated plants. The pot culture study revealed the greater resistance to water stress by green gram plants treated with P. fluorescens Pf1 compared to untreated plants. The greater activity of stress-related enzymes in green gram plants mediated by PGPB could pave the way for developing drought management strategies.  相似文献   

14.
15.
Hydroponically grown 12-day-old rice (Oryza sativa L. cv. BRRI dhan47) seedlings were exposed to 150 mM NaCl alone and combined with 0.5 mM MnSO4. Salt stress resulted in disruption of ion homeostasis by Na+ influx and K+ efflux. Higher accumulation of Na+ and water imbalance under salinity caused osmotic stress, chlorosis, and growth inhibition. Salt-induced ionic toxicity and osmotic stress consequently resulted in oxidative stress by disrupting the antioxidant defense and glyoxalase systems through overproduction of reactive oxygen species (ROS) and methylglyoxal (MG), respectively. The salt-induced damage increased with the increasing duration of stress. However, exogenous application of manganese (Mn) helped the plants to partially recover from the inhibited growth and chlorosis by improving ionic and osmotic homeostasis through decreasing Na+ influx and increasing water status, respectively. Exogenous application of Mn increased ROS detoxification by increasing the content of the phenolic compounds, flavonoids, and ascorbate (AsA), and increasing the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), superoxide dismutase (SOD), and catalase (CAT) in the salt-treated seedlings. Supplemental Mn also reinforced MG detoxification by increasing the activities of glyoxalase I (Gly I) and glyoxalase II (Gly II) in the salt-affected seedlings. Thus, exogenous application of Mn conferred salt-stress tolerance through the coordinated action of ion homeostasis and the antioxidant defense and glyoxalase systems in the salt-affected seedlings.  相似文献   

16.
17.
This study was designed to explore beneficial plant-associated rhizobacteria exhibiting substantial tolerance against fungicide tebuconazole vis-à-vis synthesizing plant growth regulators under fungicide stressed soils and to evaluate further these multifaceted rhizobacteria for protection and growth promotion of greengram [Vigna radiata (L.) Wilczek] plants against phytotoxicity of tebuconazole. Tebuconazole-tolerant and plant growth promoting bacterial strain PS1 was isolated from mustard (Brassica compestris) rhizosphere and identified as Pseudomonas aeruginosa following 16S rRNA gene sequencing. The P. aeruginosa strain PS1 solubilized phosphate significantly and produced indole acetic acid, siderophores, exo-polysaccharides, hydrogen cyanide and ammonia even under tebuconazole stress. Generally, tebuconazole at the recommended, two and three times the recommended field rate adversely affected the growth, symbiosis, grain yield and nutrient uptake in greengram in a concentration dependent manner. In contrast, the P. aeruginosa strain PS1 along with tebuconazole significantly, increased the growth parameters of the greengram plants. The inoculant strain PS1 increased appreciably root nitrogen, shoot nitrogen, root phosphorus, shoot phosphorus, and seed yield of greengram plants at all tested concentrations of tebuconazole when compared to the uninoculated plants treated with tebuconazole. The results suggested that the P. aeruginosa strain PS1, exhibiting novel plant growth regulating physiological features, can be applied as an eco-friendly and plant growth catalyzing bio-inoculant to ameliorate the performance of greengram in fungicide stressed soils.  相似文献   

18.
Summary The nitrogen fixation ability ofRhodopseudomonas capsulatus (a member of the photosynthetic bacteria) has been investigated. This organism can fix N2 most effectively under illuminated anaerobic conditions. However, in mixed culture in symbiotic association with heterotrophic bacteria, this microorganism using pyruvic acid excreted by the heterotrophs is capable of fixing nitrogen even under an apparent aerobic environment. It has been demonstrated that some correlation exists between the growth of photosynthetic bacteria and the reproduction of the rice plant. Compared to the mineral fertilizer, application of photosynthetic bacteria at the reproductive stage of rice plants increased the yield of grain. This was confirmed by the fact that the root system of rice is capable of absorbing amino acids and nucleic acids excreted by photosynthetic bacteria. Uracil and proline have the most influence on rice reproduction. This is also true for tomato plants. Many toxic molecules such as hydrogen sulfide, amines, etc. are found in soil. They are metabolized by photosynthetic bacteria, which contributes to the detoxication of soil. Such findings were extended to the purification of polluted waste waters from industry and domestic sources,etc. It can be concluded that photosynthetic bacteria contribute very significantly to soil fertility and improvement of the plant growth condition.  相似文献   

19.

Key message

Cowpea cultivars differing in salt tolerance reveal differences in protein profiles and adopt different strategies to overcome salt stress. Salt-tolerant cultivar shows induction of proteins related to photosynthesis and energy metabolism.

Abstract

Salinity is a major abiotic stress affecting plant cultivation and productivity. The objective of this study was to examine differential proteomic responses to salt stress in leaves of the cowpea cultivars Pitiúba (salt tolerant) and TVu 2331 (salt sensitive). Plants of both cultivars were subjected to salt stress (75 mM NaCl) followed by a recovery period of 5 days. Proteins extracted from leaves of both cultivars were analyzed by two-dimensional electrophoresis (2-DE) under salt stress and after recovery. In total, 22 proteins differentially regulated by both salt and recovery were identified by LC–ESI–MS/MS. Our current proteome data revealed that cowpea cultivars adopted different strategies to overcome salt stress. For the salt-tolerant cultivar (Pitiúba), increase in abundance of proteins involved in photosynthesis and energy metabolism, such as rubisco activase, ribulose-5-phosphate kinase (Ru5PK) (EC 2.7.1.19), glycine decarboxylase (EC 1.4.4.2) and oxygen-evolving enhancer (OEE) protein 2, was observed. However, these vital metabolic processes were more profoundly affected in salt-sensitive cultivar (TVu), as indicated by the down-regulation of OEE protein 1, Mn-stabilizing protein-II, carbonic anhydrase (EC 4.2.1.1) and Rubisco (EC 4.1.1.39), leading to energy reduction and a decline in plant growth. Other proteins differentially regulated in both cultivars corresponded to different physiological responses. Overall, our results provide information that could lead to a better understanding of the molecular basis of salt tolerance and sensitivity in cowpea plants.  相似文献   

20.
Liu  Chunjuan  Feng  Baili  Zhou  Yufei  Liu  Chang  Gong  Xiangwei 《Photosynthesis research》2022,151(3):279-294
Photosynthesis Research - Plant steroidal hormones, brassinosteroids, play a key role in various developmental processes of plants and the adaptation to various environmental stresses. The purpose...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号