首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
    
The DEAD-box RNA helicase DDX3X promotes translation initiation and associates with stress granules. A range of diverse viruses produce proteins that target DDX3X, including hepatitis C, dengue, vaccinia, and influenza A. The interaction of some of these viral proteins with DDX3X has been shown to affect antiviral intracellular signaling, but it is unknown whether and how viral proteins impact the biochemical activities of DDX3X and its physical roles in cells. Here we show that the protein K7 from vaccinia virus, which binds to an intrinsically disordered region in the N-terminus of DDX3X, inhibits RNA helicase and RNA-stimulated ATPase activities, as well as liquid–liquid phase separation of DDX3X in vitro. We demonstrate in HCT 116 cells that K7 inhibits association of DDX3X with stress granules, as well as the formation of aberrant granules induced by expression of DDX3X with a point mutation linked to medulloblastoma and DDX3X syndrome. The results show that targeting of the intrinsically disordered N-terminus is an effective viral strategy to modulate the biochemical functions and subcellular localization of DDX3X. Our findings also have potential therapeutic implications for diseases linked to aberrant DDX3X granule formation.  相似文献   

3.
4.
5.
Host RNA helicase has been involved in human immunodeficiency virus type 1 (HIV-1) replication, since HIV-1 does not encode an RNA helicase. Indeed, DDX1 and DDX3 DEAD-box RNA helicases are known to be required for efficient HIV-1 Rev-dependent RNA export. However, it remains unclear whether DDX RNA helicases modulate the HIV-1 Tat function. In this study, we demonstrate, for the first time, that DDX3 is required for the HIV-1 Tat function. Notably, DDX3 colocalized and interacted with HIV-1 Tat in cytoplasmic foci. Indeed, DDX3 localized in the cytoplasmic foci P-bodies or stress granules under stress condition after the treatment with arsenite. Importantly, only DDX3 enhanced the Tat function, while various distinct DEAD-box RNA helicases including DDX1, DDX3, DDX5, DDX17, DDX21, and DDX56, stimulated the HIV-1 Rev-dependent RNA export function, indicating a specific role of DDX3 in Tat function. Indeed, the ATPase-dependent RNA helicase activity of DDX3 seemed to be required for the Tat function as well as the colocalization with Tat. Furthermore, the combination of DDX3 with other distinct DDX RNA helicases cooperated to stimulate the Rev but not Tat function. Thus, DDX3 seems to interact with the HIV-1 Tat and facilitate the Tat function.  相似文献   

6.
Translational control is a vital aspect of gene expression. Message specific translational repressors have been known for decades. Recent evidence, however, suggests that a general machinery exists that dampens the translational capacity of the majority of mRNAs. This activity has been best ascribed to a conserved family of RNA helicases called the DHH1/RCKp54 family. The function of these helicases is to promote translational silencing. By transitioning mRNA into quiescence, DHH1/RCKp54 helicases promote either mRNA destruction or storage. In this review we describe the known roles of these helicases and propose a mechanistic model to explain their mode of action. This article is part of a Special Issue entitled: The Biology of RNA helicases — Modulation for life.  相似文献   

7.

Background

When cells become stressed, they form stress granules (SGs) and show an increase of the molecular chaperone HSP70. The translational regulator YB-1 is a component of SGs, but it is unclear whether it contributes to the translational induction of HSP70 mRNA. Here we examined the roles of YB-1 in SG assembly and translational regulation of HSP70 mRNA under arsenite-induced stress.

Method

Using arsenite-treated NG108-15 cells, we examined whether YB-1 was included in SGs with GluR2 mRNA, a target of YB-1, and investigated the interaction of YB-1 with HSP70 mRNA and its effect on translation of the mRNA. We also investigated the distribution of these mRNAs to SGs or polysomes, and evaluated the role of YB-1 in SG assembly.

Results

Arsenite treatment reduced the translation level of GluR2 mRNA; concomitantly, YB-1-bound HSP70 mRNA was increased and its translation was induced. Sucrose gradient analysis revealed that the distribution of GluR2 mRNA was shifted from heavy-sedimenting to much lighter fractions, and also to SG-containing non-polysomal fractions. Conversely, HSP70 mRNA was shifted from the non-polysomal to polysome fractions. YB-1 depletion abrogated the arsenite-responsive activation of HSP70 synthesis, but SGs harboring both mRNAs were still assembled. The number of SGs was increased by YB-1 depletion and decreased by its overexpression.

Conclusion

In arsenite-treated cells, YB-1 mediates the translational activation of HSP70 mRNA and also controls the number of SGs through inhibition of their assembly.

General significance

Under stress conditions, YB-1 exerts simultaneous but opposing actions on the regulation of translation via SGs and polysomes.  相似文献   

8.
Bin3 was first identified as a Bicoid-interacting protein in a yeast two-hybrid screen. In human cells, a Bin3 ortholog (BCDIN3) methylates the 5′ end of 7SK RNA, but its role in vivo is unknown. Here, we show that in Drosophila, Bin3 is important for dorso-ventral patterning in oogenesis and for anterior–posterior pattern formation during embryogenesis. Embryos that lack Bin3 fail to repress the translation of caudal mRNA and exhibit head involution defects. bin3 mutants also show (1) a severe reduction in the level of 7SK RNA, (2) reduced binding of Bicoid to the caudal 3′ UTR, and (3) genetic interactions with bicoid, and with genes encoding eIF4E, Larp1, polyA binding protein (PABP), and Ago2. 7SK RNA coimmunoprecipitated with Bin3 and is present in Bicoid complexes. These data suggest a model in which Bicoid recruits Bin3 to the caudal 3′ UTR. Bin3's role is to bind and stabilize 7SK RNA, thereby promoting formation of a repressive RNA–protein complex that includes the RNA-binding proteins Larp1, PABP, and Ago2. This complex would prevent translation by blocking eIF4E interactions required for initiation. Our results, together with prior network analysis in human cells, suggest that Bin3 interacts with multiple partner proteins, methylates small non-coding RNAs, and plays diverse roles in development.  相似文献   

9.
10.
11.
DEAD-box proteins are RNA-dependent ATPases that are widespread in all three kingdoms of life. They are thought to rearrange the structures of RNA or ribonucleoprotein complexes but their exact mechanism of action is rarely known. Whereas in yeast most DEAD-box proteins are essential, no example of an essential bacterial DEAD-box protein has been reported so far; at most, their absence results in cold-sensitive growth. Moreover, whereas yeast DEAD-box proteins are implicated in virtually all reactions involving RNA, in E. coli (the bacterium where DEAD-box proteins have been mostly studied) their role is limited to ribosome biogenesis, mRNA degradation, and possibly translation initiation. Plausible reasons for these differences are discussed here.  相似文献   

12.
前体mRNA(precursor messager RNA,pre-mRNA)剪接是去除内含子和将外显子彼此连接形成成熟mRNA的过程。剪接过程在一个呈动态变化的大核糖核蛋白(ribonucleoprotein, RNP)复合体,即剪接体催化作用下完成。DExD/H-box RNA解旋酶在剪接体组装、激活及解聚过程中都发挥着重要作用。Brr2(bad response to refrigeration 2)这种DExD/H-box RNA解旋酶是构成U5稳定的亚单位。Brr2含有两个串联解旋酶盒结构,在剪接体激活中负责U4/U6的解旋,还参与剪接体催化及解聚过程,因此Brr2在剪接过程中必需具备严格的调控机制。在剪接过程中,Prp8的C端包含两个连续的RNase H域和Jab1/MPN域,能够正负调控Brr2活性。Snu114在调节Brr2活性中具有非常重要的作用。此外,Brr2通过C端解旋酶盒(C-terminal cassette, CC)与N末端域(N-terminal region)进行分子内的自我活性调节。本文综述了近年来在Brr2的分子间和分子内活性调节机制的研究进展,这些不同的调节机制协同作用才确保真核生物pre-mRNA可变剪接的保真性。  相似文献   

13.
14.
    
MOV10 is an RNA helicase that associates with the RNA-induced silencing complex component Argonaute (AGO), likely resolving RNA secondary structures. MOV10 also binds the Fragile X mental retardation protein to block AGO2 binding at some sites and associates with UPF1, a principal component of the nonsense-mediated RNA decay pathway. MOV10 is widely expressed and has a key role in the cellular response to viral infection and in suppressing retrotransposition. Posttranslational modifications of MOV10 include ubiquitination, which leads to stimulation-dependent degradation, and phosphorylation, which has an unknown function. MOV10 localizes to the nucleus and/or cytoplasm in a cell type-specific and developmental stage-specific manner. Knockout of Mov10 leads to embryonic lethality, underscoring an important role in development where it is required for the completion of gastrulation. MOV10 is expressed throughout the organism; however, most studies have focused on germline cells and neurons. In the testes, the knockdown of Mov10 disrupts proliferation of spermatogonial progenitor cells. In brain, MOV10 is significantly elevated postnatally and binds mRNAs encoding cytoskeleton and neuron projection proteins, suggesting an important role in neuronal architecture. Heterozygous Mov10 mutant mice are hyperactive and anxious and their cultured hippocampal neurons have reduced dendritic arborization. Zygotic knockdown of Mov10 in Xenopus laevis causes abnormal head and eye development and mislocalization of neuronal precursors in the brain. Thus, MOV10 plays a vital role during development, defense against viral infection and in neuronal development and function: its many roles and regulation are only beginning to be unraveled. This article is categorized under:
  • RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes
  • RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications
  相似文献   

15.
16.
    
Brr2 is an essential Ski2-like RNA helicase that exhibits a unique structure among the spliceosomal helicases. Brr2 harbors a catalytically active N-terminal helicase cassette and a structurally similar but enzymatically inactive C-terminal helicase cassette connected by a linker region. Both cassettes contain a nucleotide-binding pocket, but it is unclear whether nucleotide binding in these two pockets is related. Here we use biophysical and computational methods to delineate the functional connectivity between the cassettes and determine whether occupancy of one nucleotide-binding site may influence nucleotide binding at the other cassette. Our results show that Brr2 exhibits high specificity for adenine nucleotides, with both cassettes binding ADP tighter than ATP. Adenine nucleotide affinity for the inactive C-terminal cassette is more than two orders of magnitude higher than that of the active N-terminal cassette, as determined by slow nucleotide release. Mutations at the intercassette surfaces and in the connecting linker diminish the affinity of adenine nucleotides for both cassettes. Moreover, we found that abrogation of nucleotide binding at the C-terminal cassette reduces nucleotide binding at the N-terminal cassette 70 Å away. Molecular dynamics simulations identified structural communication lines that likely mediate these long-range allosteric effects, predominantly across the intercassette interface. Together, our results reveal intricate networks of intramolecular interactions in the complex Brr2 RNA helicase, which fine-tune its nucleotide affinities and which could be exploited to regulate enzymatic activity during splicing.  相似文献   

17.
We have shown previously that poliovirus infection disrupts cytoplasmic P-bodies in infected mammalian cells. During the infectious cycle, poliovirus causes the directed cleavage of Dcp1a and Pan3, coincident with the dispersion of P-bodies. We now show that expression of Dcp1a prior to infection, surprisingly, restricts poliovirus infection. This inhibition of infection was independent of P-body formation because expression of GFP-Dcp1a mutants that cannot enter P-bodies restricted poliovirus infection similar to wild-type GFP-Dcp1a. Expression of wild-type or mutant GFP-Dcp1a induced phosphorylation of eIF2α through the eIF2α kinase protein kinase R (PKR). Activation of PKR required the amino-terminal EVH1 domain of Dcp1a. This PKR-induced translational inhibition appears to be specific to Dcp1a because the expression of other P-body components, Pan2, Pan3, Ccr4, or Caf1, did not result in the inhibition of poliovirus gene expression or induce eIF2α phosphorylation. The translation blockade induced by Dcp1a expression suggests novel signaling linking RNA degradation/decapping and regulation of translation.  相似文献   

18.
Messenger RNA can be stored in the cytoplasm of higher Eukaryotes in the form of masked messenger ribonucleoprotein particles (masked mRNPs, or informosomes). The typical example is the storage of mRNPs in germ cells (oocytes and spermatocytes). The masked mRNPs are inactive in translation, stable, i.e., protected against degradation, and unavailable for poly(A) tail processing, such as cytoplasmic polyadenylation and deadenylation. The major nonspecific mRNA-binding protein forming mRNPs and belonging to a special p50 family of basic, glycine-rich, phosphorylatable proteins seems to be necessary, but not sufficient for the masking. In some cases, mRNA-specific repressor proteins bound to the 5′-untranslated regions (5′-UTR) of mRNAs may be involved. Interactions of the 3′-untranslated regions (3′-UTR) with sequence-specific proteins seem to be of decisive importance for the masking of mRNPs. The hypothesis is proposed that the masking is achieved through a 3′-UTR–induced conformational rearrangement of mRNP; closing into a circle and condensation of mRNP are considered plausible. © 1994 Wiley-Liss, Inc.  相似文献   

19.
20.
真核生物mRNA降解途径   总被引:1,自引:0,他引:1  
mRNA降解在真核生物的基因表达调控中发挥重要作用.目前,已经鉴定了多种参与mRNA降解 的酶和复合物,并发现细胞质处理小体可能是降解mRNA的主要位点.本文着重总结了正常和 异常mRNA降解的主要途径以及各途径相关因子和酶的功能,并讨论了细胞质处理小体在mR NA降解过程中的作用.最后对该领域今后的研究重点和方向作了探讨.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号