首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Glycosylation is one of the most important posttranslational modifications of proteins and plays essential roles in various biological processes. Aberration in the glycan moieties of glycoproteins is associated with many diseases. It is especially critical to develop the rapid and sensitive methods for analysis of aberrant glycoproteins associated with diseases. Mass spectrometry (MS) has become a powerful tool for glycoprotein analysis. Especially, tandem mass spectrometry can provide highly informative fragments for structural identification of glycoproteins. This review provides an overview of the development of MS technologies and their applications in identification of abnormal glycoproteins and glycans in human serum to screen cancer biomarkers in recent years.  相似文献   

2.
We present a detailed protocol for the structural analysis of protein-linked glycans. In this approach, appropriate for glycomics studies, N-linked glycans are released using peptide N-glycosidase F and O-linked glycans are released by reductive alkaline beta-elimination. Using strategies based on mass spectrometry (matrix-assisted laser desorption/ionization-time of flight mass spectrometry and nano-electrospray ionization mass spectrometry/mass spectrometry (nano-ESI-MS-MS)), chemical derivatization, sequential exoglycosidase digestions and linkage analysis, the structures of the N- and/or O-glycans are defined. This approach can be used to study the glycosylation of isolated complex glycoproteins or of numerous glycoproteins encountered in a complex biological medium (cells, tissues and physiological fluids).  相似文献   

3.
Glycosylation, the addition of carbohydrates to a peptide backbone, is the most extensive cotranslational and posttranslational modification made to proteins by eukaryotic cells. The glycosylation profile of a recombinant glycoprotein can significantly affect its biological activity, which is particularly important when being used in human therapeutic applications. Therefore, defining glycan structures to ensure consistency of recombinant glycoproteins among different batches is critical. In this study we describe a method to prepare N-linked glycans derived from insect cell glycoproteins for structural analysis by capillary electrophoresis. Briefly, glycoproteins obtained from uninfected Spodoptera frugiperda Sf-9 insect cells were precipitated with ammonium sulfate and the glycans were chemically cleaved by hydrazinolysis. Following the regeneration of the glycan reducing terminal residue and the removal of contaminating proteins and peptides, the glycans were fluorescently labeled by reductive amination. Fluorescent labeling greatly enhanced the detection limit of the glycan structures determined by capillary electrophoresis. Five major glycan structures were found that migrated between tetra-mannosylated hexasaccharide and nonamannosylated undecasaccharide standards. Upon alpha-mannosidase digestion the number of glycan structures was reduced to two major structures with shorter migration times than the undigested glycans. None of the glycans were susceptible to hexosaminidase or galactosidase treatment. These results are consistent with the majority of previous results demonstrating hypermannosylated glycan structures in Sf-9 insect cells.  相似文献   

4.
Biosynthetic enzymes in the secretory pathway create distributions of glycans at each glycosite that elaborate the biophysical properties and biological functions of glycoproteins. Because the biosynthetic glycosylation reactions do not go to completion, each protein glycosite is heterogeneous with respect to glycosylation. This heterogeneity means that it is not sufficient to measure protein abundance in omics experiments. Rather, it is necessary to sample the distribution of glycosylation at each glycosite to quantify the changes that occur during biological processes. On the one hand, the use of data-dependent acquisition methods to sample glycopeptides is limited by the instrument duty cycle and the missing value problem. On the other, stepped window data-independent acquisition samples all precursors, but ion abundances are limited by duty cycle. Therefore, the ability to quantify accurately the flux in glycoprotein glycosylation that occurs during biological processes requires the exploitation of emerging mass spectrometry technologies capable of deep, comprehensive sampling and selective high confidence assignment of the complex glycopeptide mixtures. This review summarizes recent technical advances and mass spectral glycoproteomics analysis strategies and how these developments impact our ability to quantify the changes in glycosylation that occur during biological processes. We highlight specific improvements to glycopeptide characterization through activated electron dissociation, ion mobility trends and instrumentation, and efficient algorithmic approaches for glycopeptide assignment. We also discuss the emerging need for unified standards to enable interlaboratory collaborations and effective monitoring of structural changes in glycoproteins.  相似文献   

5.
Hendra virus (HeV) continues to cause morbidity and mortality in both humans and horses with a number of sporadic outbreaks. HeV has two structural membrane glycoproteins that mediate the infection of host cells: the attachment (G) and the fusion (F) glycoproteins that are essential for receptor binding and virion-host cell membrane fusion, respectively. N-linked glycosylation of viral envelope proteins are critical post-translation modifications that have been implicated in roles of structural integrity, virus replication and evasion of the host immune response. Deciphering the glycan composition and structure on these glycoproteins may assist in the development of glycan-targeted therapeutic intervention strategies. We examined the site occupancy and glycan composition of recombinant soluble G (sG) glycoproteins expressed in two different mammalian cell systems, transient human embryonic kidney 293 (HEK293) cells and vaccinia virus (VV)-HeLa cells, using a suite of biochemical and biophysical tools: electrophoresis, lectin binding and tandem mass spectrometry. The N-linked glycans of both VV and HEK293-derived sG glycoproteins carried predominantly mono- and disialylated complex-type N-glycans and a smaller population of high mannose-type glycans. All seven consensus sequences for N-linked glycosylation were definitively found to be occupied in the VV-derived protein, whereas only four sites were found and characterized in the HEK293-derived protein. We also report, for the first time, the existence of O-linked glycosylation sites in both proteins. The striking characteristic of both proteins was glycan heterogeneity in both N- and O-linked sites. The structural features of G protein glycosylation were also determined by X-ray crystallography and interactions with the ephrin-B2 receptor are discussed.  相似文献   

6.
Protein glycosylation is a common post-translational modification that is involved in many biological processes, including cell adhesion, protein-protein and receptor-ligand interactions. The glycoproteome constitutes a source for identification of disease biomarkers since altered protein glycosylation profiles are associated with certain human ailments. Glycoprotein analysis by mass spectrometry of biological samples, such as blood serum, is hampered by sample complexity and the low concentration of the potentially informative glycopeptides and -proteins. We assessed the utility of lectin-based and HILIC-based affinity enrichment techniques, alone or in combination, for preparation of glycoproteins and glycopeptides for subsequent analysis by MALDI and ESI mass spectrometry. The methods were successfully applied to human serum samples and a total of 86 N-glycosylation sites in 45 proteins were identified using a mixture of three immobilized lectins for consecutive glycoprotein enrichment and glycopeptide enrichment. The combination of lectin affinity enrichment of glycoproteins and subsequent HILIC enrichment of tryptic glycopeptides identified 81 N-glycosylation sites in 44 proteins. A total of 63 glycosylation sites in 38 proteins were identified by both methods, demonstrating distinct differences and complementarity. Serial application of custom-made microcolumns of mixed, immobilized lectins proved efficient for recovery and analysis of glycopeptides from serum samples of breast cancer patients and healthy individuals to assess glycosylation site frequencies.  相似文献   

7.
Ovarian cancer is difficult to diagnose in women because symptoms of the disease are often not noticed until the disease has progressed to an advanced untreatable stage. Although a serum test, CA125, is currently available to assist with monitoring treatment of ovarian cancer, this test lacks the necessary specificity and sensitivity for early detection. Therefore, better biomarkers of ovarian cancer are needed. A glycoprotein analysis approach was undertaken using high resolution Fourier transform ion cyclotron resonance mass spectrometry to analyze glycosylated proteins present in the conditioned media of ovarian cancer cell lines and in sera obtained from ovarian cancer patients and normal controls. In this study, glycosylated proteins were separated by gel electrophoresis, and individual glycoproteins were selected for glycosylation analysis and protein identification. The attached glycans from each protein were released and profiled by mass spectrometry. Glycosylation of a mucin protein and a large glycosylated protein isolated from the ES2 ovarian cancer cell line was determined to consist of mostly O-linked glycans. Four prominent glycoproteins of approximate 517, 370, 250, 163 kDa from serum samples were identified as two forms of apolipoprotein B-100, fibronectin, and immunoglobulin A1, respectively. Mass spectrometric analysis of glycans isolated from apolipoprotein B-100 (517 kD) showed the presence of small, specific O-linked oligosaccharides. In contrast, analysis of fibronectin (250 kD) and immunoglobulin A1 (163 kD) produced N-linked glycan fragments in forms that were sufficiently different from the glycans obtained from the corresponding protein band present in the normal serum samples. This study shows that not only a single protein but several are aberrantly glycosylated, and those abnormal glycosylation changes can be detected and may ultimately serve as glycan biomarkers for ovarian cancer.  相似文献   

8.
The cell surface glycoprotein γ-glutamyl transpeptidase (GGT) was isolated from healthy human kidney and liver to characterize its glycosylation in normal human tissue in vivo. GGT is expressed by a single cell type in the kidney. The spectrum of N-glycans released from kidney GGT constituted a subset of the N-glycans identified from renal membrane glycoproteins. Recent advances in mass spectrometry enabled us to identify the microheterogeneity and relative abundance of glycans on specific glycopeptides and revealed a broader spectrum of glycans than was observed among glycans enzymatically released from isolated GGT. A total of 36 glycan compositions, with 40 unique structures, were identified by site-specific glycan analysis. Up to 15 different glycans were observed at a single site, with site-specific variation in glycan composition. N-Glycans released from liver membrane glycoproteins included many glycans also identified in the kidney. However, analysis of hepatic GGT glycopeptides revealed 11 glycan compositions, with 12 unique structures, none of which were observed on kidney GGT. No variation in glycosylation was observed among multiple kidney and liver donors. Two glycosylation sites on renal GGT were modified exclusively by neutral glycans. In silico modeling of GGT predicts that these two glycans are located in clefts on the surface of the protein facing the cell membrane, and their synthesis may be subject to steric constraints. This is the first analysis at the level of individual glycopeptides of a human glycoprotein produced by two different tissues in vivo and provides novel insights into tissue-specific and site-specific glycosylation in normal human tissues.  相似文献   

9.
Protein glycosylation serves critical roles in the cellular and biological processes of many organisms. Aberrant glycosylation has been associated with many illnesses such as hereditary and chronic diseases like cancer, cardiovascular diseases, neurological disorders, and immunological disorders. Emerging mass spectrometry (MS) technologies that enable the high-throughput identification of glycoproteins and glycans have accelerated the analysis and made possible the creation of dynamic and expanding databases. Although glycosylation-related databases have been established by many laboratories and institutions, they are not yet widely known in the community. Our study reviews 15 different publicly available databases and identifies their key elements so that users can identify the most applicable platform for their analytical needs. These databases include biological information on the experimentally identified glycans and glycopeptides from various cells and organisms such as human, rat, mouse, fly and zebrafish. The features of these databases - 7 for glycoproteomic data, 6 for glycomic data, and 2 for glycan binding proteins are summarized including the enrichment techniques that are used for glycoproteome and glycan identification. Furthermore databases such as Unipep, GlycoFly, GlycoFish recently established by our group are introduced. The unique features of each database, such as the analytical methods used and bioinformatical tools available are summarized. This information will be a valuable resource for the glycobiology community as it presents the analytical methods and glycosylation related databases together in one compendium. It will also represent a step towards the desired long term goal of integrating the different databases of glycosylation in order to characterize and categorize glycoproteins and glycans better for biomedical research.  相似文献   

10.
Taylor AM  Holst O  Thomas-Oates J 《Proteomics》2006,6(10):2936-2946
Glycosylation is a widespread PTM of proteins; the carbohydrate moieties provide various functional, immunological and structural aspects of both eukaryotic and prokaryotic glycoproteins. Traditional strategies used to analyse glycoprotein O-glycans involve glycoprotein isolation, followed by glycan release using solution-phase base-catalysed beta-elimination. However, in a proteomics context, mixtures of proteins and glycoproteins are routinely separated using SDS-PAGE. We have therefore developed a method to enable the profiling of O-linked glycans directly from glycoproteins on gels. This is achieved using in-gel reductive beta-elimination followed by mass spectrometric analysis of the released glycans. Here we describe our demonstration of the feasibility of this approach, our development and optimisation of the procedure using bovine submaxillary gland glycoproteins as a standard, and then show its usefulness by applying the developed procedure to the analysis of the O-glycans from a glycoprotein band from a Coomassie-stained SDS-PAGE separation of a mixture of Mycobacterium avium capsular proteins and glycoproteins. The procedure has been shown to be applicable to both CBB- and silver-stained gels. The method offers a quick and easy way to identify the O-glycans from gel-separated glycoproteins within gel-based proteomics workflows.  相似文献   

11.
Single proteins, when analyzed with 2-D-PAGE, often show multiple spots due to PTMs. In gels of human body fluids, the spot patterns facilitate the assignment and identification of the proteins. We analyzed serums from patients with congenital disorders of glycosylation (CDG) in which glycoproteins are strongly impacted and exhibit highly distinguishable spot patterns compared to healthy controls. We detected a typical protein pattern for alpha1-acid glycoprotein (AGP) and transferrin (Trf) that are markers for CDG. AGP contains five glycosylation sites which results in a complex microheterogeneity of the glycoprotein. On the other hand, in Trf, a glycoprotein with only two glycosylation sites, mainly biantennary complex-type-N-linked glycans are bound. We used 2-D-PAGE, MALDI-TOF-MS, and ESI-MS for the analysis of these glycoproteins and their corresponding glycans. In AGP, the heterogenic glycosylation of the different glycosylation sites is responsible for the complex spot pattern. In contrast to AGP, the protein spots of Trf cannot be explained by glycosylation. We found strong evidence that oxidation of cysteine is responsible for the spot pattern. This study contradicts the commonly accepted assumption that the multiple protein spots of Trf observed in 2-D-PAGE are due, as in AGP, to the glycosylation of the protein.  相似文献   

12.
Protein glycosylation is critical since it connects complex metabolic pathways to diverse proteoforms, fine-tunes protein structures and exerts biological functions. Aberrant glycosylation on the other hand is associated with many diseases, including cancers, inflammation and metabolic disorders. By resolving monosaccharide residues on intact glycoprotein complexes, native mass spectrometry can shed light on glycan heterogeneity, glycoprotein structure and molecular recognition. Here, we focus on the two most prevalent forms of glycosylation, namely N- and O- linked, and discuss recent progress in native mass spectrometry for elucidating glycoprotein structural heterogeneity and relating specific glycan repertoires to glycoprotein interactions.  相似文献   

13.
Glycopeptides representing each individual N-glycosylation site in six animal and plant glycoproteins (ovoinhibitor and ovotransferrin, orosomucoid, antitrypsin, phaseolin, and phytohemagglutinin) have been isolated and compared by mass spectrometric analysis. Since the isolation step separates each individual peptide regardless of the nature of the glycan attached to it, it is possible to observe the entire spectrum of glycans associated with each site from the mass spectrum of the corresponding glycopeptide. The three glycosylation sites in ovoinhibitor have very similar but not identical glycans; they are significantly different from those observed in the single site of ovotransferrin. The three sites in serum antitrypsin also have quite similar glycans, whereas the five sites in orosomucoid show considerable variation in both the nature and the relative amount of glycans. The two plant glycoproteins each have two sites with very different glycan structures. Except for the first and third glycosylation sites of antitrypsin which were found to have remarkably homogeneous glycans (97 and 90% of a biantennary complex structure), all the individual glycosylation sites contained heterogeneous mixtures of glycan structures. The results support the proposition that each N-linked glycan in a glycoprotein is affected by its unique protein environment to such an extent that each one may be displayed to the processing enzymes as a unique structural entity. On the basis of a limited number of observations of the glycan interfering with chymotryptic but not tryptic cleavage in the proximity of the glycan attachment site, it is proposed that hydrophobic interactions between the protein and the glycan may be involved in the conformational modulation of the glycans.  相似文献   

14.
Protein glycosylation is a critical post-translational modification that regulates the structure, stability, and function of many proteins. Mass spectrometry is currently the preferred method for qualitative and quantitative characterization of glycosylation. However, the inherent heterogeneity of glycosylation makes its analysis difficult. Quantification of glycosylation occupancy, or macroheterogeneity, has proven to be especially challenging. Here, we used a variation of high-resolution multiple reaction monitoring (MRMHR) or pseudo-MRM for targeted data-independent acquisition that we term SWAT (sequential window acquisition of targeted fragment ions). We compared the analytical performance of SWATH (sequential window acquisition of all theoretical fragment ions), SWAT, and SRM (selected reaction monitoring) using a suite of synthetic peptides spiked at various concentrations into a complex yeast tryptic digest sample. SWAT provided superior analytical performance to SWATH in a targeted approach. We then used SWAT to measure site-specific N-glycosylation occupancy in cell wall glycoproteins from yeast with defects in the glycosylation biosynthetic machinery. SWAT provided robust measurement of occupancy at more N-glycosylation sites and with higher precision than SWATH, allowing identification of novel glycosylation sites dependent on the Ost3p and Ost6p regulatory subunits of oligosaccharyltransferase.  相似文献   

15.
Glycans present on glycoproteins from the eggs of the parasite Schistosoma mansoni are mediators of various immune responses of the human host, including T-cell modulation and granuloma formation, and they are the target of glycan-specific antibodies. Here we have analyzed the glycosylation of kappa-5, a major glycoprotein antigen from S. mansoni eggs using a targeted approach of lectin purification followed by mass spectrometry of glycopeptides as well as released glycans. We demonstrate that kappa-5 has four fully occupied N-glycosylation sites carrying unique triantennary glycans composed of a difucosylated and xylosylated core region, and immunogenic GalNAcβ1-4GlcNAc (LDN) termini. Furthermore, we show that the kappa-5 specific IgE antibodies in sera of S. mansoni-infected individuals are directed against the core region of the kappa-5 glycans. Whereas two previously analyzed immunomodulatory egg glycoproteins, IPSE/alpha-1 and omega-1, both express diantennary N-glycans with a difucosylated core and one or two Galβ1-4(Fucα1-3)GlcNAc (Lewis X) antennae, the kappa-5 glycosylation appears unique among the major soluble egg antigens of S. mansoni. The distinct structural and antigenic properties of kappa-5 glycans suggest a specific role for kappa-5 in schistosome egg immunogenicity.  相似文献   

16.
An important frontier in glycoproteomics is the discovery of proteins with post-translational glycan modifications. The first step in glycoprotein identification is the isolation of glycosylated proteins from the remainder of the proteome. New enzymatic and metabolic methods are being used to chemically tag proteins to enable their isolation. Once isolated, glycoproteins can be identified by mass spectrometry. Additional information can be obtained by using either enzymatic or chemoselective reactions to incorporate isotope labels at specific sites of glycosylation. Isotopic labeling facilitates mass spectrometry-based confirmation of glycoprotein identity, identification of glycosylation sites, and quantification of the extent of modification. By combining chemical tagging for isolation and isotope labeling for mass spectrometry analysis, researchers are developing highly effective strategies for glycoproteomics. These techniques are enabling cancer biologists to identify biomarkers whose glycosylation state correlates with disease states, and developmental biologists to characterize stage-specific changes in glycoprotein expression. Next-generation methods will make functional analyses of the glycoproteome possible, including the discovery of glycoprotein interaction partners and the identification of enzymes responsible for synthesis of particular glycan structures.  相似文献   

17.
Exosomes consist of vesicles that are secreted by several human cells, including tumor cells and neurons, and they are found in several biological fluids. Exosomes have characteristic protein and lipid composition, however, the results concerning glycoprotein composition and glycosylation are scarce. Here, protein glycosylation of exosomes from ovarian carcinoma SKOV3 cells has been studied by lectin blotting, NP-HPLC analysis of 2-aminobenzamide labeled glycans and mass spectrometry. An abundant sialoglycoprotein was found enriched in exosomes and it was identified by peptide mass fingerprinting and immunoblot as the galectin-3-binding protein (LGALS3BP). Exosomes were found to contain predominantly complex glycans of the di-, tri-, and tetraantennary type with or without proximal fucose and also high mannose glycans. Diantennary glycans containing bisecting N-acetylglucosamine were also detected. This work provides detailed information about glycoprotein and N-glycan composition of exosomes from ovarian cancer cells, furthermore it opens novel perspectives to further explore the functional role of glycans in the biology of exosomes.  相似文献   

18.
A strategy is developed in this study for identifying sialylated glycoprotein markers in human cancer serum. This method consists of three steps: lectin affinity selection, a liquid separation and characterization of the glycoprotein markers using mass spectrometry. In this work, we use three different lectins (Wheat Germ Agglutinin, (WGA) Elderberry lectin,(SNA), Maackia amurensis lectin, (MAL)) to extract sialylated glycoproteins from normal and cancer serum. Twelve highly abundant proteins are depleted from the serum using an IgY-12 antibody column. The use of the different lectin columns allows one to monitor the distribution of alpha(2,3) and alpha(2,6) linkage type sialylation in cancer serum vs that in normal samples. Extracted glycoproteins are fractionated using NPS-RP-HPLC followed by SDS-PAGE. Target glycoproteins are characterized further using mass spectrometry to elucidate the carbohydrate structure and glycosylation site. We applied this approach to the analysis of sialylated glycoproteins in pancreatic cancer serum. Approximately 130 sialylated glycoproteins are identified using microLC-MS/MS. Sialylated plasma protease C1 inhibitor is identified to be down-regulated in cancer serum. Changes in glycosylation sites in cancer serum are also observed by glycopeptide mapping using microLC-ESI-TOF-MS where the N83 glycosylation of alpha1-antitrypsin is down regulated. In addition, the glycan structures of the altered proteins are assigned using MALDI-QIT-MS. This strategy offers the ability to quantitatively analyze changes in glycoprotein abundance and detect the extent of glycosylation alteration as well as the carbohydrate structure that correlate with cancer.  相似文献   

19.
Glycosylation of viral proteins is required for the progeny formation and infectivity of virtually all viruses. It is increasingly clear that distinct glycans also play pivotal roles in the virus's ability to shield and evade the host's immune system. Recently, there has been a great advancement in structural identification and quantitation of viral glycosylation, especially spike proteins. Given the ongoing pandemic and the high demand for structure analysis of SARS-CoV-2 densely glycosylated spike protein, mass spectrometry methodologies have been employed to accurately determine glycosylation patterns. There are still many challenges in the determination of site-specific glycosylation of SARS-CoV-2 viral spike protein. This is compounded by some conflicting results regarding glycan site occupancy and glycan structural characterization. These are probably due to differences in the expression systems, form of expressed spike glycoprotein, MS methodologies, and analysis software. In this review, we recap the glycosylation of spike protein and compare among various studies. Also, we describe the most recent advancements in glycosylation analysis in greater detail and we explain some misinterpretation of previously observed data in recent publications. Our study provides a comprehensive view of the spike protein glycosylation and highlights the importance of consistent glycosylation determination.  相似文献   

20.
Mass spectrometry plays an increasingly important role in structural glycomics. This review provides an overview on currently used mass spectrometric approaches such as the characterization of glycans, the analysis of glycopeptides obtained by proteolytic cleavage of proteins and the analysis of glycosphingolipids. The given examples are demonstrating the application of mass spectrometry to study glycosylation changes associated with congenital disorders of glycosylation, lysosomal storage diseases, autoimmune diseases and cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号