首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of poly(ADP-ribosyl)ation on native and H1-depleted chromatin was analyzed by gel electrophoresis, electron microscopy, and velocity sedimentation. In parallel, the interaction of automodified poly(ADP-ribose) polymerase with native and H1-depleted chromatin was analyzed. In H1-depleted chromatin histone H2B becomes the major poly(ADP-ribose) histone acceptor protein, whereas in native chromatin histone H1 was the major histone acceptor. Poly(ADP-ribosyl)ation of H1-depleted chromatin prevented the recondensation of polynucleosomes reconstituted with exogenous histone H1. This is probably due to the presence of modified poly(ADP-ribose) polymerase and hyper(ADP-ribosyl)ated histone H2B. Indeed, about 40% of the modified enzyme remained associated with H1-depleted chromatin, while less than 1% of the modified enzyme was bound to native chromatin. The influence of poly(ADP-ribosyl)ation on the chromatin conformation was also studied at the level of nucleosome in using monoclonal and polyclonal antibodies specific for individual histones and synthetic peptides of histones. In native chromatin incubated in the presence of Mg2+ there was a drop in the accessibility of histone epitopes to monoclonal and polyclonal antibodies whereas upon poly(ADP-ribosyl)ation their accessibility was found to remain even in the presence of Mg2+. In poly(ADP-ribosyl)ated H1-depleted chromatin an increased accessibility of some histone tails to antibodies was observed.  相似文献   

2.
3.
Modulation of chromatin structure by poly(ADP-ribosyl)ation   总被引:5,自引:0,他引:5  
Poly(ADP-ribose) polymerase is a nuclear enzyme that is highly conserved in eucaryotes. Its activity is totally dependent on the presence of DNA containing single or double stranded breaks. We have shown that this activation results in a decondensation of chromatin superstructure in vitro, which is caused mainly by hyper(ADP-ribosy)ation of histone H1. In core particles, the modification of histone H2B leads to a partial dissociation of DNA from core histones. The conformational change of native chromatin by poly(ADP-ribosyl)ation is reversible upon degradation of the histone H1-bound poly(ADP-ribose) by poly(ADP-ribose) glycohydrolase. We propose that cuts produced in vivo on DNA during DNA repair activate poly(ADP-ribose) polymerase, which then synthesizes poly(ADP-ribose) on histone H1, in particular, and contributes to the opening of the 25-nm chromatin fiber, resulting in the increased accessibility of DNA to excision repair enzymes. This mechanism is fast and reversible.  相似文献   

4.
It has been demonstrated recently by Poirier et al. (Poirier, G. G., de Murcia, G., Jongstra-Bilen, J., Niedergang, C., and Mandel, P. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 3423-3427) that poly(ADP-ribosyl)ation of pancreatic nucleosomes causes relaxation of the chromatin superstructure through H1 modification. The in vitro effect of poly(ADP-ribose) synthesis and degradation on calf thymus chromatin was investigated by the time course incorporation of ADP-ribose, electron microscopy, analytical ultracentrifugation, and autoradiography of the protein acceptors. Purified calf thymus poly(ADP-ribose) polymerase and partially purified bull testis poly(ADP-ribose) glycohydrolase were used. Degradation of ADP-ribose units on hyper(ADP-ribosyl)ated H1 by poly(ADP-ribose) glycohydrolase restores the native condensed chromatin superstructure. This reversible conformational change induced by poly(ADP-ribosyl)ation on nucleosomal arrangement could be one of the mechanisms by which the accessibility of DNA polymerases and/or excision-repair enzymes is favored, the native structure being fully restorable.  相似文献   

5.
Poly(ADP-ribosyl)ation is a posttranslational modification that alters the functions of the acceptor proteins and is catalyzed by the poly(ADP-ribose) polymerase (PARP) family of enzymes. Following DNA damage, activated poly(ADP-ribose) polymerase-1 (PARP-1) catalyzes the elongation and branching of poly(ADP-ribose) (pADPr) covalently attached to nuclear target proteins. Although the biological role of poly(ADP-ribosyl)ation has not yet been defined, it has been implicated in many important cellular processes such as DNA repair and replication, modulation of chromatin structure, and apoptosis. The transient nature and modulation of poly(ADP-ribosyl)ation depend on the activity of a unique cytoplasmic enzyme called poly(ADP-ribose) glycohydrolase which hydrolyzes pADPr bound to acceptor proteins in free ADP-ribose residues. While the PARP homologues have been recently reviewed, there are relatively scarce data about PARG in the literature. Here we summarize the latest advances in the PARG field, addressing the question of its putative nucleo-cytoplasmic shuttling that could enable the tight regulation of pADPr metabolism. This would contribute to the elucidation of the biological significance of poly(ADP-ribosyl)ation.  相似文献   

6.
A new method to determine oligo- and poly(ADP-ribosyl)ated enzymes and proteins in vitro has been developed. This method is based on the facts that in Mg2+-depleted condition automodification of poly(ADP-ribose)polymerase is minimized and exogenously added acceptor protein is oligo(ADP-ribosyl)ated predominantly, and in Mg2+-fortified conditions the exogenous acceptor can be poly(ADP-ribosyl)ated. When 13 proteins, including several enzymes, were subjected to this system, dimeric bovine seminal RNase and micrococcal nuclease were found to be oligo(ADP-ribosyl)ated under Mg2+-depleted conditions but their activity was unchanged. Under Mg2+-fortified conditions however, the RNase was deactivated concomitantly with its extensive poly(ADP-ribosyl)ation. When dimeric bovine seminal RNase was monomerized in advance by treatment with dithiothreitol and urea, the enzyme lost ADP-ribose-accepting ability in spite of a significant residual enzyme activity. As used here successfully, the Mg2+-depleted and Mg2+-fortified ADP-ribosylation and subsequent chromatographic analysis of various proteins and enzymes might be an useful method for proving their oligo- and poly(ADP-ribosyl)ation.  相似文献   

7.
Chromatin solubility was observed at several concentrations of various cations. Spermine and spermidine precipitated (50%) chromatin at about 0.2 mM, Ca2+ and Mg2+ at about 1-2 mM, and Na+ at about 100 mM. Further increases in cation concentration induced more aggregation, but eventually excess cation increased chromatin solubility so that 50% solubility was observed again at 60 mM Mg2+ and 180 mM Na+. H1 histone was 50% released by 80 mM MgCl2 or 425 mM NaCl. Combinations of MgCl2 and NaCl showed that Mg2+ and Na+ are synergistic in the induction of aggregation in lower concentrations (less than 2 mM) of Mg2+ but antagonistic at higher concentrations, and a similar effect of NaCl on spermidine-induced precipitation was shown below and above about 0.2 mM spermidine. At 5 mM, MgCl2 proved capable of precipitating chromatin depleted of H1 histone, but no concentration of NaCl was capable of doing so. These phenomena can be rationalized by supposing that neutralization of chromatin by any cation (including H1 histone) favors aggregation and also that cross-linking of chromatin fibers by multivalent cations (including H1 histone) is also critically important. The exchange of H1 histone between chromatin fragments was tested in various concentrations of different salts. H1 exchange was correlated with chromatin aggregation rather than with ionic strength and thus appears to depend on fiber to fiber contact. Under conditions where H1 exchanges between chromatin fibers that are permitted to make contact with each other, no H1 exchange occurred between chromatin inside the nucleus and chromatin outside, even though H1 histone is capable of passage through the nuclear membrane.  相似文献   

8.
Chromatin is a dynamic structure formed mainly by DNA and histones, and chemical modifications on these elements regulate its compaction. Histone posttranslational modifications (PTMs) have a direct impact on chromatin conformation, controlling important cellular events such as cell proliferation and differentiation. Redox-related posttranslational modifications may have important effects on chromatin structure and function, offering a new intriguing area of research termed "redox epigenetics." Little is known about histone carbonylation, a PTM that may be related to modifications in the cellular redox environment. The aim of our study was to determine the carbonylation of the various histones during cell proliferation, a moment in cell life during which important redox changes take place. Here, we describe changes in histone carbonylation during cell proliferation in NIH3T3 fibroblasts. In addition, we have studied the variations of poly(ADP-ribosyl)ation and phospho-H2AX at the same time, because both modifications are related to DNA damage responses. High levels of carbonylation on specific histones (H1, H1(0), and H3.1 dimers) were found when cells were in an active phase of DNA synthesis. The modification decreased when nuclear proteasome activity was activated. However, these results did not correlate completely with poly(ADP-ribosyl)ation and phospho-H2AX levels. Therefore, histone carbonylation may represent a specific event during cell proliferation. We describe a new methodology named oxy-2D-TAU Western blot that allowed us to separate and analyze the carbonylation patterns of the histone variants. In addition we offer a new role for histone carbonylation and its implication in redox epigenetics. Our results suggest that histone carbonylation is involved in histone detoxification during DNA synthesis.  相似文献   

9.
ADP-ribosylation of nuclear proteins in rat ventral prostate during ageing   总被引:2,自引:0,他引:2  
Poly(ADPR)polymerase activity and poly(ADP-ribosyl)ation of nuclear proteins have been investigated in ventral prostate nuclei of different aged rats (14, 28, 60, 180, 360 day old animals), by reverse-phase HPLC and acetic acid-urea polyacrylamide gel electrophoresis. The major ADP-ribose acceptor proteins were identified as histone H1 and H2b. It is concluded that concomitant with major changes to chromatin organization, poly(ADP-ribosyl)ation reaction is progressively inhibited during aging of rat ventral prostate. These results support the hypothesis that prostatic dysfunction in senescent animals is related to a failure of DNA repair mechanisms and deregulated template activity.  相似文献   

10.
11.
12.
Reale A  Malanga M  Zardo G  Strom R  Scovassi AI  Farina B  Caiafa P 《Biochemistry》2000,39(34):10413-10418
It is well-known that H1-H1 interactions are very important for the induction of 30 nm chromatin fiber and that, among all posttranslational modifications, poly(ADP-ribosyl)ation is one of those capable of modifying chromatin structure, mainly through H1 histone. As this protein can undergo both covalent and noncovalent modifications by poly(ADP-ribosyl)ation, our aim was to investigate whether and how ADP-ribose polymers, by themselves, are able to affect the formation of H1-H1 oligomers, which are normally present in a condensed chromatin structure. The results obtained in our in vitro experimental system indicate that ADP-ribose polymers are involved in chromatin decondensation. This conclusion was reached as the result of two different observations: (a) H1 histone molecules can be hosted in clusters on ADP-ribose polymers, as shown by their ability to be chemically cross-linked, and (b) H1 histone has a higher affinity for ADP-ribose polymers than for DNA; ADP-ribose polymers compete, in fact, with DNA for H1 histone binding.  相似文献   

13.
DEK is a nuclear phosphoprotein implicated in oncogenesis and autoimmunity and a major component of metazoan chromatin. The intracellular cues that control the binding of DEK to DNA and its pleiotropic functions in DNA- and RNA-dependent processes have remained mainly elusive so far. Our recent finding that the phosphorylation status of DEK is altered during death receptor-mediated apoptosis suggested a potential involvement of DEK in stress signaling. In this study, we show that in cells committed to die, a portion of the cellular DEK pool is extensively posttranslationally modified by phosphorylation and poly(ADP-ribosyl)ation. Through interference with DEK expression, we further show that DEK promotes the repair of DNA lesions and protects cells from genotoxic agents that typically trigger poly(ADP-ribose) polymerase activation. The posttranslational modification of DEK during apoptosis is accompanied by the removal of the protein from chromatin and its release into the extracellular space. Released modified DEK is recognized by autoantibodies present in the synovial fluids of patients affected by juvenile rheumatoid arthritis/juvenile idiopathic arthritis. These findings point to a crucial role of poly(ADP-ribosyl)ation in shaping DEK's autoantigenic properties and in its function as a promoter of cell survival.  相似文献   

14.
Chromatin undergoes a rapid ATP-dependent, ATM and H2AX-independent decondensation when DNA damage is introduced by laser microirradiation. Although the detailed mechanism of this decondensation remains to be determined, the kinetics of decondensation are similar to the kinetics of poly(ADP-ribosyl)ation. We used laser microirradiation to introduce DNA strand breaks into living cells expressing a photoactivatable GFP-tagged histone H2B. We find that poly(ADP-ribosyl)ation mediated primarily by poly(ADP-ribose) polymerase 1 (PARP1) is responsible for the rapid decondensation of chromatin at sites of DNA damage. This decondensation of chromatin correlates temporally with the displacement of histones, which is sensitive to PARP inhibition and is transient in nature. Contrary to the predictions of the histone shuttle hypothesis, we did not find that histone H1 accumulated on poly(ADP-ribose) (PAR) in vivo. Rather, histone H1, and to a lessor extent, histones H2A and H2B were rapidly depleted from the sites of PAR accumulation. However, histone H1 returns to chromatin and the chromatin recondenses. Thus, the PARP-dependent relaxation of chromatin closely correlates with histone displacement.  相似文献   

15.
The pattern of nucleosomal histones poly(ADP-ribosyl)ation is changed under conditions which affect the poly(ADP-ribosyl)ation state of the enzyme. At low NAD concentrations the enzyme can poly(ADP-ribosyl)ate histones H1 and H1, H2A, A2A, and H2B. However at NAD concentrations above 10 microM the enzyme preferentially poly(ADP-ribosyl)ates histone H1 to a hyper ADP-ribosylated form. Furthermore we have observed hyper ADP-ribosylation of histone H2B at NAD concentrations of 10 microM suggesting that histone H2B can undergo the same type of ADP-ribosylation pattern as histone H1. Also at higher NAD concentrations an elongation of the polymer attached to the enzyme and other nuclear proteins takes place.  相似文献   

16.
17.
While the ecdysone dependency of puff formation in giant polytene chromosomes from fly salivary glands has been well documented, the molecular mechanisms underlying this process remain unknown. However, it does appear to involve chromatin remodeling and modification mediated by ecdysone receptor (EcR). As Drosophila poly(ADP-ribose) polymerase (dPARP) has recently been reported to be involved in ecdysone-induced puff formation, we decided to test the possible role of dPARP in ligand-induced dEcR transactivation in an insect system. dPARP co-activated the ligand-induced transactivation function of EcR in the insect cell line S2, and appeared to physically interact with EcR in a ligand-dependent manner. ChIP analysis of an EcR target gene promoter revealed ligand-dependent recruitment of dPARP with poly(ADP-ribosyl)ation of histones in the EcR binding site and, surprisingly, also in a distal region of the promoter. Our results indicated that EcR-mediated gene regulation may be coupled with chromatin modification through poly(ADP-ribosyl)ation.  相似文献   

18.
19.
The nuclear enzyme poly(ADP-ribosyl) transferase (pADPRT) catalyzes the formation of poly(ADP-ribose) from NAD+. Several nuclear proteins and pADPRT itself are targets for the modification by poly(ADP-ribosyl)ation. It is demonstrated here that poly(ADP-ribose) or pADPRT automodified with poly(ADP-ribose) interacts noncovalently with the 20S proteasome in vitro. The interaction of pADPRT with the 20S proteasome requires the long ADP-ribose polymers formed by automodification of the pADPRT with poly(ADP-ribose). As a result pADPRT automodified with short ADP-ribose oligomers is unable to associate with the 20S proteasome. The interaction with poly(ADP-ribose) causes a specific stimulation of the peptidase activity of the 20S proteasome. Modified pADPRT does not serve as a substrate for the degradation by the 20S proteasome. No covalent modification of the 20S proteasome by ADP-ribosylation was observed. The results may point to a functional relationship between pADPRT and the 20S proteasome in a pathway protecting the cell from oxidative damage.  相似文献   

20.
The poly(ADP-ribosyl)ation system, associated with different nuclear fractions of rat testis, has been analyzed for both pADPR and pADPR acceptor proteins. The DNase I sensitive and resistant chromatin contain 35% and 40%, respectively, of the total pADPR synthesized in intact nuclei incubated with [32P]NAD. Moreover, the residual 25% were estimated to be associated with the nuclear matrix.Three different classes of pADPR are present in the nuclei. The longest and branched ADPribose polymers modify proteins present in the DNase I resistant (2 M NaCl extractable) chromatin and in the nuclear matrix, whereas polymers of > 20 residues interact with the components of the DNase I sensitive chromatin and oligomers of 6 ADPribose residues are bound specifically to the acid-soluble chromosomal proteins, present in isolated nuclear matrix. The main pADPR acceptor protein in all the nuclear fractions is represented by the PARP itself (auto-modification reaction). The hetero-modification reaction occurs mostly on histone H1 and core histones, that have been found associated to DNase I sensitive and resistant chromatin, respectively. Moreover, an oligo(ADP-ribosyl)ation occurs on core histones tightly-bound to the matrix associated regions (MARs) of chromatin loops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号