首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A sensitive, selective and high throughput liquid chromatography tandem mass spectrometry (LC–ESI-MS/MS) method has been developed for the determination of teriflunomide, an active metabolite of leflunomide in human plasma. Plasma samples were prepared by liquid–liquid extraction of teriflunomide and valsartan as internal standard (IS) in ethyl acetate from 200 μL human plasma. The chromatographic separation was achieved on an Inertsil ODS-3 C18 (50 mm × 4.6 mm, 3 μm) analytical column using isocratic mobile phase, consisting of 20 mM ammonium acetate–methanol (25:75, v/v), at a flow-rate of 0.8 mL/min. The precursor → product ion transition for teriflunomide (m/z 269.0 → 82.0) and IS (m/z 434.1 → 350.3) were monitored on a triple quadrupole mass spectrometer, operating in the multiple reaction monitoring (MRM) and negative ion mode. The method was validated over a wide dynamic concentration range of 10.1–4001 ng/mL. Matrix effect was assessed by post-column infusion experiment and the mean process efficiency were 91.7% and 88.2% for teriflunomide and IS respectively. The method was rugged and rapid with a total run time of 2.0 min and is applied to a bioequivalence study of 20 mg leflunomide (test and reference) tablet formulation in 12 healthy Indian male subjects under fasting condition.  相似文献   

2.
A quantitative method was developed and validated for rapid and sensitive analysis of pravastatin and R-416, the main metabolite of pravastatin, in human plasma. The analytes were extracted from plasma samples by a solid phase extraction method using a Bond Elut C(8). The method involved the use of liquid chromatography coupled with atmospheric pressure chemical ionization (APCI) and selected reaction monitoring (SRM) mass spectrometry. A pravastatin analog, R-122798, was used as the internal standard (I.S.). Separation of pravastatin, R-416 and the I.S. was accomplished using a reverse-phase column (C(18)). The components eluted were ionized by the APCI source (negative ion) and subsequently detected by a highly selective triple quadrupole mass spectrometer in the SRM mode. Linear standard curves were obtained from 0.1 ng/mL (lower limit of quantification, LLOQ) to 100 ng/mL. The intra-assay precisions (coefficient of variation) for the samples at the LLOQ were 1.8% for pravastatin and 1.6% for R-416. The intra-assay accuracy values were 95.8-107.6% for pravastatin, and 92.6-109.0% for R-416, respectively. Precision and accuracy of quality control (QC) samples were determined at concentrations of 0.5, 10 and 80 ng/mL for all analytes. The intra- and inter-assay precision calculated from QC samples were within 10% for pravastatin and within 11% for R-416. The overall recoveries for pravastatin and R-416 were 75.7-82.1% and 68.6-74.3%, respectively. Pravastatin and R-416 were stable in human plasma for 3 weeks at -20 degrees C in a freezer, up to 6h at room temperature, and up to 48 h at 6 degrees C. This assay method was successfully used to evaluate the pravastatin and R-416 levels in healthy volunteers following oral administration of Mevalotin.  相似文献   

3.
Vinorelbine is a semi-synthetic vinca alkaloid with demonstrated high activities against various types of advanced cancer. To support a clinical pharmacokinetic study, a simple, rapid and sensitive method to determine vinorelbine in human plasma was developed using reversed phase liquid chromatography (LC) coupled with electrospray ionization mass spectrometry/mass spectrometry (ESI-MS/MS). Vinorelbine and vinblastine (the internal standard) were extracted from human plasma by one-step liquid-liquid extraction (LLE) with methyl-t-butyl ether. The chromatographic separation was achieved on a Spursil polar-modified C(18) column (50 mm×2.1 mm, 3 μm, Dikma Technologies) with an isocratic mobile phase of a 75:25 (v/v) acetonitrile-4 mmol/L ammonium formate (pH 3.0) mixture at a flow-rate of 0.4 mL/min. The MS/MS detection was performed in the positive ion multiple reaction monitoring (MRM) mode by monitoring the precursor→product ion transitions at m/z 779.4→122.0 and m/z 811.3→224.2 for vinorelbine and the internal standard, respectively. The assay was validated in the range 0.1-200 ng/mL (r>0.997), the lowest level of this range being the lower limit of quantification (LLOQ) based on 50 μL of plasma. The intra- and inter-day precisions were within 6.0%, while the accuracy was within ±4.7% of nominal values. Detection and quantification of both analytes within 2 min make this method suitable for high-throughput analyses. The method was successfully applied to evaluate the systemic pharmacokinetics of vinorelbine after a 20-min intravenous infusion of 25 mg/m(2) of vinorelbine to patients with metastatic breast cancer.  相似文献   

4.
A novel, rapid and specific liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated for the simultaneous quantification of gefitinib and its predominant metabolite, O-desmethyl gefitinib in human plasma. Chromatographic separation of analytes was achieved on an Alltima C18 analytical HPLC column (150 mm × 2.1 mm, 5 μm) using an isocratic elution mode with a mobile phase comprised acetonitrile and 0.1% formic acid in water (30:70, v/v). The flow rate was 300 μL/min. The chromatographic run time was 3 min. The column effluents were detected by API 4000 triple quadrupole mass spectrometer using electrospray ionization (ESI) in positive mode. Linearity was demonstrated in the range of 5-1000 ng/mL for gefitinib and 5-500 ng/mL for O-desmethyl gefitinib. The intra- and inter-day precisions for gefitinib and O-desmethyl gefitinib were ≤10.8% and the accuracies ranged from 89.7 to 104.7% for gefitinib and 100.4 to 106.0% for O-desmethyl gefitinib. This method was used as a bioanalytical tool in a phase I clinical trial to investigate the possible effect of hydroxychloroquine on the pharmacokinetics of gefitinib. The results of this study enabled clinicians to ascertain the safety of the combination therapy of hydroxychloroquine and gefitinib in patients with advanced (Stage IIIB-IV) non-small cell lung cancer (NSCLC).  相似文献   

5.
A sensitive and selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of triazolam and its metabolites, alpha-hydroxytriazolam (alpha-OHTRZ) and 4-hydroxytriazolam (4-OHTRZ), was developed and validated. Triazolam-D4 was used as the internal standard (IS). This analysis was carried out on a Thermo((R)) C(18) column and the mobile phase was composed of acetonitrile:H(2)O:formic acid (35:65:0.2, v/v/v). Detection was performed on a triple-quadrupole tandem mass spectrometer using positive ion mode electrospray ionization (ESI) and quantification was performed by multiple reaction monitoring (MRM) mode. The MS/MS ion transitions monitored were m/z 343.1-->308.3, 359.0-->308.3, 359.0-->111.2 and 347.0-->312.0 for triazolam, alpha-OHTRZ, 4-OHTRZ and triazolam-D4, respectively. LLOQ of the analytical method was 0.05ng/mL for triazolam and 0.1ng/mL for alpha-OHTRZ and 4-OHTRZ. The within- and between-run precisions were less than 15.26% and accuracy was -8.08% to 13.33%. The method proved to be accurate and specific, and was applied to the pharmacokinetic study of triazolam in healthy Chinese volunteers.  相似文献   

6.
A sensitive and selective LC-MS-MS method has been developed and validated for the determination of cryptotanshinone (CTS) and its active metabolite tanshinone II A (TS II A) in rat plasma using fenofibrate (FOFB) as internal standard. Liquid-liquid extraction was used for sample preparation. Chromatographic separation was achieved on a Waters symmetry ODS column using methanol and water (85:15) as mobile phase delivered at 1.0 mL/min. LC-MS-MS analysis was carried out on a Finnigan LC-TSQ Quantum mass spectrometer using atmospheric pressure chemical ionization (APCI) and positive multiple reaction monitoring. Ions monitored were m/z 297.0--> 251.0 for CTS, m/z 295.0--> 249.0 for TS II A, and m/z 361.1--> 233.0 for FOFB with argon at a pressure of 0.2 Pa and collision energy of 25 eV for collision-induced dissociation (CID). The assay was linear over the range 0.1-20 ng/mL for CTS and 0.2-15 ng/mL for TS II A. The average recoveries of CTS and TS II A from rat plasma were 93.7 and 94.7%, respectively. The established method has been applied in a pharmacokinetic study of CTS in rats.  相似文献   

7.
A sensitive and selective high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for the determination of buagafuran in human plasma. The analyte was extracted from plasma samples with hexane after addition of isotopic internal standard and chromatographed on a RP-C(8) column. The mobile phase consisted of methanol-water (90:10, v/v) and the flow rate was 0.2 mL/min. The detection was performed on a triple quadrupole tandem mass spectrometer in multiple reactions monitoring (MRM) mode using positive electrospray ionization (ESI). The method was validated over the concentration range of 0.5-200 ng/mL. Inter- and intra-day precision (RSD%) were all within 15% and the accuracy (RE%) was equal or lower than 9.5%. The lower limit of quantitation (LLOQ) was 0.5 ng/mL. The extraction recovery was on average 38.1% and the detection was not affected by the matrix. The method was successfully applied to the pharmacokinetic study of buagafuran in healthy Chinese volunteers.  相似文献   

8.
A sensitive and selective ion-pair liquid chromatography-tandem mass spectrometric method (IP-LC-MS/MS) for the simultaneous determination of amodiaquine (AQ) and its active metabolite, N-desethylamodiaquine (AQm), in human blood has been developed and validated. Pentafluoropropionic acid (PFPA) was applied as ion-pairing reagent in reversed-phase chromatographic separation. The effects of PFPA concentrations and the volume fraction of acetonitrile in the mobile phase on the retention of analytes were investigated on a Venusil MP-C(18) column, and the mobile phase was finally optimized as acetonitrile:water (23:77, v/v) with 0.0667% PFPA in the aqueous phase. The results proved that PFPA as an ion-pairing reagent could provide desirable chromatographic performance in the IP-LC-MS/MS determination of 4-aminoquinoline compounds. Blood samples were protein precipitated with acetonitrile using hydroxychloroquine (OHCQ) as the internal standard. The detection was carried out in multiple reaction monitoring (MRM) mode via positive atmospheric pressure chemical ionization (APCI) interface. The lower limits of quantification were established at 0.150 and 1.50 ng/mL for AQ and AQm, respectively. The validated IP-LC-MS/MS method was applied to a clinical pharmacokinetic study of AQ and AQm in human blood after an oral administration of 600 mg AQ hydrochloride (45 9mg base).  相似文献   

9.
A new simple and specific method was developed and validated for the quantitative determination of OSI-774 (Tarceva, Erlotinib) and its metabolite, OSI-420, in human plasma. Sample pretreatment involved a single protein precipitation step with acetonitrile. The analytes were separated on Waters X-Terra C(18) (50 x 2.1 mm I.D., 3.5 microm) analytical column and eluted with acetonitrile-water mobile (70:30, v/v) containing 0.1% formic acid. The analytes of interest were monitored by tandem mass spectrometry with electrospray positive ionization. The overall extraction efficiency was greater than 88% for OSI-774 and 62% for OSI-420, with values for within-day and between-day precision and accuracy of <15%. Compared to previous assays, this method is simple, specific, and reproducible and will be used to characterize the plasma pharmacokinetics of OSI-774 at doses of 50 to 150 mg to optimize treatment with this agent.  相似文献   

10.
A selective, sensitive and rapid liquid chromatography-tandem mass spectrometry method for the determination of levonorgestrel in plasma was developed. An Applied Biosystems API 3000 triple quadrupole mass spectrometer set to multiple reaction monitoring (MRM) mode, using atmospheric pressure photospray ionisation (APPI) in the positive mode. Using 17-alpha-methyltestosterone as internal standard (IS), liquid-liquid extraction was followed by reversed phase liquid chromatography using a phenyl-hexyl column and tandem mass spectrometric detection. The mean recovery for levonorgestrel and 17-alpha-methyltestosterone was 99.5 and 62.9%, respectively. The method was validated from 0.265 to 130 ng levonorgestrel/ml plasma with the lower limit of quantification (LLOQ) set at 0.265 ng/ml. This assay method makes use of the increased sensitivity and selectivity of tandem mass spectrometric (MS/MS) detection, allowing for a rapid (extraction and chromatography) and selective method for the determination of levonorgestrel in human plasma. The assay method was used in a pharmacokinetic study to quantify levonorgestrel in human plasma samples generated after administrating a single oral dose of 1.5 mg levonorgestrel to healthy female volunteers for up to five half lives. The total chromatographic runtime of this method was 5.0 min per sample, allowing for analysis of a large number of samples per batch.  相似文献   

11.
A rapid, sensitive and specific liquid chromatography-tandem mass spectrometry method is described for quantitation of metformin in human plasma. After a simple, one-step protein precipitation using acetonitrile, metformin and the internal standard diphenhydramine were chromatographed on a C(8) column and detected by tandem mass spectrometry. An atmospheric pressure chemical ionization interface was chosen to reduce ion suppression from sample matrix components and provide high sensitivity. The method has a chromatographic total run time of 3.4 min and was linear within the range 2-2000 ng/ml. Intra- and inter-day precision, expressed as the relative standard deviation (R.S.D.), ranged from 4.4 to 5.7% and from 1.3 to 2.8%, respectively. Assay accuracy was less than 1% in terms of %RE (relative error). The assay was used to evaluate the pharmacokinetics of metformin after an oral administration of multicomponent formulation containing 500 mg metformin and 2.5 mg glyburide to 20 healthy volunteers.  相似文献   

12.
A sensitive and enantioselective method was developed and validated for the determination of ondansetron enantiomers in human plasma using enantioselective liquid chromatography-tandem mass spectrometry. The enantiomers of ondansetron were extracted from plasma using ethyl acetate under alkaline conditions. HPLC separation was performed on an ovomucoid column using an isocratic mobile phase of methanol-5 mM ammonium acetate-acetic acid (20:80:0.02, v/v/v) at a flow rate of 0.40 mL/min. Acquisition of mass spectrometric data was performed in multiple reaction monitoring mode, using the transitions of m/z 294-->170 for ondansetron enantiomers, and m/z 285-->124 for tropisetron (internal standard). The method was linear in the concentration range of 0.10-40 ng/mL for each enantiomer using 200 microL of plasma. The lower limit of quantification (LLOQ) for each enantiomer was 0.10 ng/mL. The intra- and inter-assay precision was 3.7-11.6% and 5.6-12.3% for R-(-)-ondansetron and S-(+)-ondansetron, respectively. The accuracy was 100.4-107.1% for R-(-)-ondansetron and 103.3-104.9% for S-(+)-ondansetron. No chiral inversion was observed during the plasma storage, preparation and analysis. The method was successfully applied to characterize the pharmacokinetic profiles of ondansetron enantiomers in healthy volunteers after an intravenous infusion of 8 mg racemic ondansetron.  相似文献   

13.
A rapid, sensitive, and highly selective liquid chromatography-tandem mass spectrometry method was developed and validated for simultaneous determination of enalapril and its major active metabolite enalaprilat in human plasma. The analytes were extracted from plasma samples by liquid-liquid extraction, separated on a Zorbax Extend-C(18) column, and detected by tandem mass spectrometry with a Turbo IonSpray ionization interface. The method has a lower limit of quantification (LLOQ) of 0.1 ng/ml for both enalapril and enalaprilat. The chromatographic run time was approximately 3.5 min. The standard calibration curves for both enalapril and enalaprilat were linear in the concentration ranges of 0.10-100.0 ng/ml in human plasma. The intra- and inter-run precisions, expressed as the relative standard deviation (R.S.D.), were less than 7.7 and 7.8%, determined from QC samples for enalapril and enalaprilat, and accuracy was within +/-3.9 and +/-2.7% in terms of relative error, respectively. The method was successfully applied for the evaluation of the pharmacokinetics of enalapril and enalaprilat in 20 volunteers after an oral dose of 10 mg enalapril maleate.  相似文献   

14.
A liquid chromatographic-tandem mass spectrometric method (LC-MS/MS) for the determination of ulifloxacin, the active metabolite of prulifloxacin, in human plasma is described. After sample preparation by protein precipitation with methanol, ulifloxacin and ofloxacin (internal standard) were chromatographically separated on a C(18) column using a mobile phase consisting of methanol, water and formic acid (70:30:0.2, v/v/v) at a flow rate of 0.5 ml/min and then were detected using MS/MS by monitoring their precursor-to-product ion transitions, m/z 350-->m/z 248 for ulifloxacin and m/z 362-->m/z 261 for ofloxacin, in selected reaction monitoring (SRM) mode. Positive electrospray ionization was used for the ionization process. The linear range was 0.025-5.0 microg/ml for ulifloxacin with a lower limit of quantitation of 0.025 microg/ml. Within- and between-run precision was less than 6.6 and 7.8%, respectively, and accuracy was within 2.0%. The recovery ranged from 92.1 to 98.2% at the concentrations of 0.025, 0.50 and 5.0 microg/ml. Compared with the reported LC method, the present LC-MS/MS method can directly determine the ulifloxacin in human plasma without any need of derivatization. The present method has been successfully used for the pharmacokinetic studies of a prulifloxacin formulation product after oral administration to healthy volunteers.  相似文献   

15.
Gemcitabine-squalene is a new prodrug that self-organizes in water forming nanoassemblies. It exhibits better anti-cancer properties in vitro and in vivo than gemcitabine. A liquid chromatography/tandem mass spectrometry assay of gemcitabine-squalene and gemcitabine was developed in human plasma in order to quantitate gemcitabine and its squalene conjugate. After protein precipitation with acetonitrile/methanol (90/10, v/v), the compounds were analyzed by reversed-phase high performance liquid chromatography and detected by tandem mass spectrometry using multiple reaction monitoring. The method was linear over the concentration range of 10-10,000 ng/ml of human plasma for both compounds with an accuracy lower than 10.4% and a precision below 14.8%. The method showed a lower limit of quantitation of 10 ng/ml of human plasma for dFdC and dFdC-SQ. A preliminary in vivo study in mice was shown as application of the method as no significant difference between human and mice plasma for the analysis of dFdC and dFdC-SQ was demonstrated.  相似文献   

16.
A selective and sensitive method has been developed and validated for simultaneous quantification of methylephedrine and noscapine in human plasma. Analytes were extracted from human plasma samples by liquid-liquid extraction, separated on a Diamonsil C18 column and detected by tandem mass spectrometer with an atmospheric pressure chemical ionization (APCI) interface. Diphenhydramine was used as the internal standard (I.S.). The method was found to be precise and accurate within the linear range 0.1-100 ng/ml for each analyte. The intra- and inter-day relative standard deviations (R.S.D.s) were below 5.2% for methylephedrine and 6.7% for noscapine. The inter-day relative error (RE) as determined from quality control samples (QCs) was less than 3.0% for each analyte. The assay was successfully employed in a pharmacokinetic study after an oral administration of a multicomponent formulation containing 20 mg DL-methylephedrine hydrochloride, 16 mg noscapine, 300 mg paracetamol and 1mg of chlorpheniramine maleate.  相似文献   

17.
A sensitive and selective HPLC-MS-MS method was developed for the determination of trimebutine maleate (TM) and its major metabolites N-monodemethyltrimebutine (TM-MPB), N-didemethyltrimebutine (APB) and 3,4,5-trimethoxybenzoic acid (TMBA) in human plasma. The analytes were extracted from plasma samples by liquid-liquid extraction and chromatographed on a YMC J'sphere C(18) column. The mobile phase consisted of 2 mM ammonium acetate buffer (pH 6.5)-methanol (20:80, v/v), and at a flow-rate of 0.2 ml/min. Detection was carried out on a triple quadrupole tandem mass spectrometer in multiple reactions monitoring (MRM) mode using positive-negative switching electrospray ionization (ESI). The method was validated over the concentration range of 1-100 ng/ml for trimebutine maleate and APB, 1-500 ng/ml for MPB, and 50-10,000 ng/ml for TMBA. Inter- and intra-day precision (RSD%) for trimebutine maleate and its three metabolites were all within +/-15% and the accuracy was within 85-115%. The limit of quantitation was 1 ng/ml for trimebutine maleate, TM-MPB and APB, and 50 ng/ml for TMBA. The extraction recovery was on average 58.2% for trimebutine maleate, 69.6% for MPB, 51.2% for APB and 62.5% for TMBA. The method was applied to the pharmacokinetic study of trimebutine maleate and its metabolites in healthy Chinese volunteers.  相似文献   

18.
A rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the simultaneous estimation of hydrochlorothiazide, quinapril and its metabolite quinaprilat in human plasma. After solid phase extraction (SPE), the analytes and IS were chromatographed on a hypurity C8 (100mmx2.1mm i.d., 5mum particle size) column using 2muL injection volume with a run time of 2.8min. An isocratic mobile phase consisting of 0.5% (v/v) formic acid:acetonitrile (25:75, v/v) was used to separate all these drugs. The precursor and product ions of these drugs were monitored on a triple quadrupole mass spectrometer, operating in the multiple reaction monitoring mode (MRM) without polarity switch. The proposed method was validated over the range of 5-500ng/mL for hydrochlorothiazide method and 5-1500ng/mL for quinapril and quinaprilat. Inter-batch and intra-batch precision (coefficient of variation - % CV) across five validation runs lower limit of quantitation (LLOQ), lower quality control (LQC), middle quality control (MQC), higher quality control (HQC) and upper limit of quantitation (ULOQ) was less than 15. The accuracy determined at these levels was within +/-13% in terms of relative percentage error.  相似文献   

19.
A sensitive and simple method was developed for determination of the enantiomers of azelnidipine, (R)-(-)-azelnidipine and (S)-(+)-azelnidipine, in human plasma using chiral liquid chromatography with positive ion atmospheric pressure chemical ionization tandem mass spectrometry. Plasma samples spiked with stable isotope-labeled azelnidipine, [(2)H(6)]-azelnidipine, as an internal standard, were processed for analysis using a solid-phase extraction in a 96-well plate format. The azelnidipine enantiomers were separated on a chiral column containing alpha(1)-acid glycoprotein as a chiral selector under isocratic mobile phase conditions. Acquisition of mass spectrometric data was performed in multiple reaction monitoring mode, monitoring the transitions from m/z 583-->167 for (R)-(-)-azelnidipine and (S)-(+)-azelnidipine, and from m/z 589-->167 for [(2)H(6)]-azelnidipine. The standard curve was linear over the studied range (0.05-20 ng/mL), with r(2)>0.997 using weighted (1/x(2)) quadratic regression, and the chromatographic run time was 5.0 min/injection. The intra- and inter-assay precision (coefficient of variation), calculated from the assay data of the quality control samples, was 1.2-8.2% and 2.4-5.8% for (R)-(-)-azelnidipine and (S)-(+)-azelnidipine, respectively. The accuracy was 101.2-117.0% for (R)-(-)-azelnidipine and 100.0-107.0% for (S)-(+)-azelnidipine. The overall recoveries for (R)-(-)-azelnidipine and (S)-(+)-azelnidipine were 71.4-79.7% and 71.7-84.2%, respectively. The lower limit of quantification for both enantiomers was 0.05 ng/mL using 1.0 mL of plasma. All the analytes showed acceptable short-term, long-term, auto-sampler and stock solution stability. Furthermore, the method described above was used to separately measure the concentrations of the azelnidipine enantiomers in plasma samples collected from healthy subjects who had received a single oral dose of 16 mg of azelnidipine.  相似文献   

20.
Dronedarone is a derivative of amiodarone--a popular antiarrhythmic drug. It was developed to overcome the limiting iodine-associated toxicities of amiodarone. Debutyldronedarone is a major circulating active metabolite of dronedarone in humans. To investigate the pharmacokinetics of dronedarone, a rapid, simple, and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated to simultaneously determine dronedarone and debutyldronedarone in human plasma using amiodarone as internal standard (IS). Acetonitrile with IS was used to precipitate proteins from a 50-μL aliquot of plasma. Effective chromatographic separation was performed on a CAPCELL PAK C(18) MG (100 mm × 4.6 mm, 5 μm) column with gradient elution (5 mmol/L ammonium acetate-acetonitrile, with each phase containing 0.2% acetic acid) at a flow rate of 0.7 mL/min. Complete separation was achieved within 5.5 min. Detection was carried out on an tandem mass spectrometer in multiple reaction monitoring mode using a positive atmospheric pressure chemical ionization interface. A lower limit of quantification of 0.200 ng/mL was achieved for both dronedarone and debutyldronedarone, with acceptable precision and accuracy. The linear range of the method was from 0.200 to 200 ng/mL for each analyte. Intra- and inter-day precisions were lower than 7.2% in relation to relative standard deviation, while accuracy was within ±5.1% in terms of relative error for analytes. Our findings demonstrate the successful application of the validated LC-MS/MS method to a pharmacokinetic study after a single oral administration of 400mg dronedarone to six healthy volunteers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号