首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The avian sarcoma/leukosis virus (ASLV) is activated for fusion by a two-step mechanism. For ASLV subgroup A (ASLV-A), association with its receptor (Tva) at neutral pH converts virions to a form that can bind target membranes and, in some assays, induce the lipid-mixing stage of fusion. Low pH is necessary to complete the fusion reaction. ASLV-A env (EnvA) exists on the viral surface as a trimer of heterodimers consisting of receptor binding (SU-A) and fusion-mediating (TM-A) subunits. As the receptor binding and fusion-mediating functions reside in separate subunits, we hypothesize that SU-A and TM-A are conformationally coupled. To begin to understand the effect of the binding of a soluble 47-residue domain of the receptor (sTva) on this coupling and the subsequent function of low pH, we prepared recombinant proteins representing full-length SU-A and a nested set of deletion mutant proteins. Full-length SU-A binds sTva with high affinity, but even small deletions at either the N or the C terminus severely impair sTva binding. We have purified the full-length SU-A subunit and characterized its interactions with sTva and the subsequent effect of low pH on the complex. sTva binds SU-A with an apparent KD of 3 pM. Complex formation occludes hydrophobic surfaces and tryptophan residues and leads to a partial loss of alpha-helical structure in SU-A. Low pH does not alter the off rate for the complex, further alter the secondary structure of SU-A, or induce measurable changes in tryptophan environment. The implications of these findings for fusion are discussed.  相似文献   

2.
The receptor for avian sarcoma/leukosis virus subtype A (ASLV-A), Tva, is the simplest member of the low density lipoprotein receptor family containing a single ligand-binding repeat (LBR). Most LBRs contain a central Trp (Trp33 in Tva) that is important for ligand binding and, for the low density lipoprotein receptor, is associated with familial hypercholesterolemia. The Tva ligand-binding module contains a second Trp (Trp48) that is part of a DEW motif present in a subset of LBRs. Trp48 is important for ASLV-A infectivity. A soluble Tva (sTva) ligand-binding module is sufficient for ASLV-A infectivity. Tva interacts with the viral glycoprotein, and a soluble receptor-binding domain (SUA) binds sTva with picomolar affinity. We investigated whether Tva, a retroviral receptor, could behave as a classic LBR by assessing sTva interactions with the universal receptor-associated protein (RAP) and comparing these interactions with those between sTva and its viral ligand (SUA). To address the role of the two Trp residues in Tva function, we prepared sTva harboring mutations of Trp33, Trp48, or both and determined the binding kinetics with RAP and SUA. We found that sTva behaved as a "normal" receptor toward RAP, requiring both calcium and Trp33 for binding. However, sTva binding to SUA required neither calcium nor Trp33. Furthermore, sTva could bind both RAP and SUA simultaneously. These results show that the single LBR of Tva has two ligand-binding sites, raising the possibility that other LBRs may also.  相似文献   

3.
The interactions between the subgroup A avian leukosis virus [ALV(A)] envelope glycoproteins and soluble forms of the ALV(A) receptor Tva were analyzed both in vitro and in vivo by quantitating the ability of the soluble Tva proteins to inhibit ALV(A) entry into susceptible cells. Two soluble Tva proteins were tested: the 83-amino-acid Tva extracellular region fused to two epitope tags (sTva) or fused to the constant region of the mouse immunoglobulin G heavy chain (sTva-mIgG). Replication-competent ALV-based retroviral vectors with subgroup B or C env were used to deliver and express the two soluble tv-a (stva) genes in avian cells. In vitro, chicken embryo fibroblasts or DF-1 cells expressing sTva or sTva-mIgG proteins were much more resistant to infection by ALV(A) ( approximately 200-fold) than were control cells infected by only the vector. The antiviral effect was specific for ALV(A), which is consistent with a receptor interference mechanism. The antiviral effect of sTva-mIgG was positively correlated with the amount of sTva-mIgG protein. In vivo, the stva genes were delivered and expressed in line 0 chicken embryos by the ALV(B)-based vector RCASBP(B). Viremic chickens expressed relatively high levels of stva and stva-mIgG RNA in a broad range of tissues. High levels of sTva-mIgG protein were detected in the sera of chickens infected with RCASBP(B)stva-mIgG. Viremic chickens infected with RCASBP(B) alone, RCASBP(B)stva, or RCASBP(B)stva-mIgG were challenged separately with ALV(A) and ALV(C). Both sTva and sTva-mIgG significantly inhibited infection by ALV(A) (95 and 100% respectively) but had no measurable effect on ALV(C) infection. The results of this study indicate that a soluble receptor can effectively block infection of at least some retroviruses and demonstrates the utility of the ALV experimental system in characterizing the mechanism(s) of viral entry.  相似文献   

4.
To better understand retroviral entry, we have characterized the interactions between subgroup A avian leukosis virus [ALV(A)] envelope glycoproteins and Tva, the receptor for ALV(A), that result in receptor interference. We have recently shown that soluble forms of the chicken and quail Tva receptor (sTva), expressed from genes delivered by retroviral vectors, block ALV(A) infection of cultured chicken cells ( approximately 200-fold antiviral effect) and chickens (>98% of the birds were not infected). We hypothesized that inhibition of viral replication by sTva would select virus variants with mutations in the surface glycoprotein (SU) that altered the binding affinity of the subgroup A SU for the sTva protein and/or altered the normal receptor usage of the virus. Virus propagation in the presence of quail sTva-mIgG, the quail Tva extracellular region fused to the constant region of the mouse immunoglobulin G (IgG) protein, identified viruses with three mutations in the subgroup A hr1 region of SU, E149K, Y142N, and Y142N/E149K. These mutations reduced the binding affinity of the subgroup A envelope glycoproteins for quail sTva-mIgG (32-, 324-, and 4,739-fold, respectively) but did not alter their binding affinity for chicken sTva-mIgG. The ALV(A) mutants efficiently infected cells expressing the chicken Tva receptor but were 2-fold (E149K), 10-fold (Y142N), and 600-fold (Y142N/E149K) less efficient at infecting cells expressing the quail Tva receptor. These mutations identify key determinants of the interaction between the ALV(A) glycoproteins and the Tva receptor. We also conclude from these results that, at least for the wild-type and variant ALV(A)s tested, the receptor binding affinity was directly related to infection efficiency.  相似文献   

5.
We report here on the generation of a mouse monoclonal antibody directed against Rous sarcoma virus (RSV) subgroup A Env that will be useful in functional and structural analysis of RSV Env, as well as in approaches employing the RCAS/Tva system for gene targeting. BALB/c mice were primed and given boosters twice with EnvA-expressing NIH 3T3 cells. Resulting hybridomas were tested by enzyme-linked immunosorbent assay against RCANBP virions and SU-A-immunoglobulin G immunoadhesin. One highly reactive hybridoma clone, mc8C5, was subcloned and tested in immunofluorescence, immunoprecipitation (IP), and Western blotting assays. In all three assays, mc8C5-4 subgroup-specifically recognizes SR-A Env, through the SU domain, expressed from different vectors in both avian and mammalian cells. This multifunctionality is notable for a mouse monoclonal. We furthermore observed a preference for binding to terminally glycosylated Env over core-glycosylated Env precursor in IPs, suggesting that the epitope is at least partially conformational and dependent on glycosylation. Most importantly, we found mc8C5-4 inhibited Env function: in vitro, the monoclonal not only interferes with binding of the EnvA receptor, Tva, but it also blocks the Tva-induced conformational change required for activation of the fusion peptide, without inducing that change itself. Infection of Tva-expressing avian or mammalian cells by avian sarcoma and leukosis virus (ASLV) or EnvA-pseudotyped murine leukemia virus, respectively, is efficiently inhibited by mc8C5-4. The apparent interference of the monoclonal with the EnvA-Tva complex formation suggests that the epitope seen by mc8C5 overlaps with the receptor binding site. This is supported by the observation that mutations of basic residues in hr2 or of the downstream glycosylation site, which both impair Tva-binding to EnvA, have similar effects on the binding of mc8C5. Thus, anti-ASLV-SU-A mc8C5-4 proves to be a unique new immunoreagent that targets the receptor-binding site on a prototypical retroviral envelope.  相似文献   

6.
Damico R  Bates P 《Journal of virology》2000,74(14):6469-6475
Current models of retroviral entry hypothesize that interactions between the host cell receptor(s) and viral envelope protein induce structural changes in the envelope protein that convert it to an active conformation, allowing it to mediate fusion with the membrane. Recent evidence supporting this hypothesis is the demonstration that Tva, the receptor for subgroup A avian sarcoma and leukosis virus (ASLV-A), induces conformational changes in the viral envelope protein. These changes include conversion of the envelope protein to an active, membrane-binding state likely representing a fusogenic conformation. To determine whether binding of the soluble Tva (sTva) receptor was sufficient to activate fully the fusogenic potential of the ASLV-A envelope protein, we have evaluated the ability of ASLV-A to infect receptor-deficient cell lines in the presence of sTva. Soluble receptor efficiently mediated infection of cells devoid of endogenous Tva in a dose-dependent manner, and this infection was dependent absolutely on the addition of sTva. The infectivity of the virus was enhanced dramatically in the presence of the polycationic polymer Polybrene or when centrifugal forces were applied during inoculation, resulting in viral titers comparable to those achieved on cells expressing endogenous receptor. sTva functioned to mediate infection at low concentrations, approaching the estimated binding constant of the receptor and viral envelope protein. These results demonstrate that receptor binding can activate the ASLV-A envelope protein and convert it to a fusogenic conformation competent to mediate the fusion of the viral and cellular membranes.  相似文献   

7.
The five highly related envelope subgroups of the avian sarcoma and leukosis viruses (ASLVs), subgroup A [ASLV(A)] to ASLV(E), are thought to have evolved from an ancestral envelope glycoprotein yet utilize different cellular proteins as receptors. Alleles encoding the subgroup A ASLV receptors (Tva), members of the low-density lipoprotein receptor family, and the subgroup B, D, and E ASLV receptors (Tvb), members of the tumor necrosis factor receptor family, have been identified and cloned. However, alleles encoding the subgroup C ASLV receptors (Tvc) have not been cloned. Previously, we established a genetic linkage between tvc and several other nearby genetic markers on chicken chromosome 28, including tva. In this study, we used this information to clone the tvc gene and identify the Tvc receptor. A bacterial artificial chromosome containing a portion of chicken chromosome 28 that conferred susceptibility to ASLV(C) infection was identified. The tvc gene was identified on this genomic DNA fragment and encodes a 488-amino-acid protein most closely related to mammalian butyrophilins, members of the immunoglobulin protein family. We subsequently cloned cDNAs encoding Tvc that confer susceptibility to infection by subgroup C viruses in chicken cells resistant to ASLV(C) infection and in mammalian cells that do not normally express functional ASLV receptors. In addition, normally susceptible chicken DT40 cells were resistant to ASLV(C) infection after both tvc alleles were disrupted by homologous recombination. Tvc binds the ASLV(C) envelope glycoproteins with low-nanomolar affinity, an affinity similar to that of binding of Tva and Tvb with their respective envelope glycoproteins. We have also identified a mutation in the tvc gene in line L15 chickens that explains why this line is resistant to ASLV(C) infection.  相似文献   

8.
The putative subgroup A avian leukosis-sarcoma virus (ALSV) receptor (Tva) was recently cloned by gene transfer (P. Bates, J. A. Young, and H. E. Varmus, Cell 74:1043-1051, 1993; J. A. T. Young, P. Bates, and H. E. Varmus, J. Virol. 67:1811-1816, 1993). Susceptibility to infection by subgroup A ALSV is conferred on cells upon transfection with cDNAs encoding tva. The hypothesis that tva encodes a specific receptor for subgroup A ALSV predicts that the Tva protein should bind to subgroup A, but not to subgroup C, envelope glycoprotein. In this study, we examined this prediction by using several biochemical assays. We established stable NIH 3T3 cell lines expressing either Tva, the subgroup A envelope glycoprotein (Env-A), or the subgroup C envelop glycoprotein (Env-C) and used them in conjunction with soluble forms of these molecules to demonstrate specific binding. When cell lysates containing Tva were mixed with lysates of either Env-A or Env-C, an immunoprecipitable complex formed between Tva and Env-A but not between Tva and Env-C. A soluble, oligomeric form, of Env-A, not Env-C, binds to cells expressing Tva. Reciprocally, a secreted form of Tva can bind to cells expressing Env-A but not to cells expressing Env-C. A specific and stable complex formed between soluble Env-A and secreted Tva as demonstrated by sucrose density gradient centrifugation. Thus, by three kinds of assays, Tva appears to bind specifically to Env-A, which is consistent with genetic evidence that it serves as the cell surface receptor of subgroup A ALSV and the main determinant of subgroup specificity.  相似文献   

9.
The subgroup A to E avian sarcoma and leukosis viruses (ASLVs) are highly related and are thought to have evolved from a common ancestor. These viruses use distinct cell surface proteins as receptors to gain entry into avian cells. Chickens have evolved resistance to infection by the ASLVs. We have identified the mutations responsible for the block to virus entry in chicken lines resistant to infection by subgroup A ASLVs [ASLV(A)]. The tva genetic locus determines the susceptibility of chicken cells to ASLV(A) viruses. In quail, the ASLV(A) susceptibility allele tva(s) encodes two forms of the Tva receptor; these proteins are translated from alternatively spliced mRNAs. The normal cellular function of the Tva receptor is unknown; however, the extracellular domain contains a 40-amino-acid, cysteine-rich region that is homologous to the ligand binding region of the low-density lipoprotein receptor (LDLR) proteins. The chicken tva(s) cDNAs had not yet been fully characterized; we cloned the chicken tva cDNAs from two lines of subgroup A-susceptible chickens, line H6 and line 0. Two types of chicken tva(s) cDNAs were obtained. These cDNAs encode a longer and shorter form of the Tva receptor homologous to the Tva forms in quail. Two different defects were identified in cDNAs cloned from two different ASLV(A)-resistant inbred chickens, line C and line 7(2). Line C tva(r) contains a single base pair substitution, resulting in a cysteine-to-tryptophan change in the LDLR-like region of Tva. This mutation drastically reduces the binding affinity of Tva(R) for the ASLV(A) envelope glycoproteins. Line 7(2) tva(r2) contains a 4-bp insertion in exon 1 that causes a change in the reading frame, which blocks expression of the Tva receptor.  相似文献   

10.
The cellular receptor for subgroup A avian leukosis and sarcoma virus (ALSV-A) is Tva, which contains a motif related to repeats in the low density lipoprotein receptor (LDLR) ligand binding repeat (LBr) and which is necessary for viral entry. As observed with LBr repeats of LDLR, the 47 residue LBr domain of Tva (sTva47) requires calcium during oxidative folding to form the correct disulfide bonds, and calcium enhances the structure of correctly oxidized sTva47, as well as its ability to bind the viral envelope protein (Env). However, solution nuclear magnetic resonance studies indicate that, even in the presence of excess calcium, sTva47 exists in an ensemble of conformations. Nonetheless, as reported here, the structure of the predominant sTva47 solution conformer closely resembles that of other LBr repeats, with identical S-S binding topology and octahedral calcium coordination. The location of W48 and other critical residues on the surface suggests a region of the molecule necessary for Env binding and to mediate post-binding events important for ALSV-A cell entry.  相似文献   

11.
Delos SE  White JM 《Journal of virology》2000,74(20):9738-9741
The transmembrane subunit (TM) of the envelope glycoprotein (Env) of the oncovirus avian sarcoma/leukosis virus (ASLV) contains an internal fusion peptide flanked by two cysteines (C9 and C45). These cysteines, as well as an analogous pair in the Ebola virus GP glycoprotein, are predicted to be joined by a disulfide bond. To examine the importance of these cysteines, we mutated C9 and C45 in the ASLV subtype A Env (EnvA), individually and together, to serine. All of the mutant EnvAs formed trimers that were composed of the proteolytically processed surface (SU) and TM subunits. All mutant EnvAs were incorporated into murine leukemia virus pseudotyped virions and bound receptor with wild-type affinity. Nonetheless, all mutant EnvAs were significantly impaired ( approximately 1,000-fold) in their ability to support infectivity. They were also significantly impaired in their ability to mediate cell-cell fusion. Our data are consistent with a model in which the internal fusion peptide of ASLV-A EnvA exists as a loop that is stabilized by a disulfide bond at its base and in which this stabilized loop serves an important function during virus-cell fusion. The fusion peptide of the Ebola virus GP glycoprotein may conform to a similar structure.  相似文献   

12.
Rai T  Caffrey M  Rong L 《Journal of virology》2005,79(23):14962-14966
Avian sarcoma and leukosis virus subgroup A (ASLV-A) entry is mediated by interactions between the viral glycoprotein EnvA and its cognate receptor Tva. Previously, some interesting mutants of ASLV-A have been selected by others which can use chicken Tva, but not quail Tva, for efficient entry. The mutant phenotypes are caused by two point mutations within the surface subunit of EnvA (S. L. Holmen, D. C. Melder, and M. J. Federspiel, J. Virol. 75:726-737, 2001). In this study, we have shown that the altered receptor specificity maps to the LDL-A module of Tva. Further, we have identified two residues in the chicken LDL-A module that allow more efficient viral entry by the mutant viruses. These results demonstrate that the altered receptor specificity of the mutant viruses is determined by specific interactions with residues in the LDL-A module of Tva.  相似文献   

13.
Damico R  Rong L  Bates P 《Journal of virology》1999,73(4):3087-3094
The retrovirus avian sarcoma and leukosis virus (ASLV) enters cells via pH-independent membrane fusion. This reaction is catalyzed by the viral glycoprotein Env, composed of a membrane-distal subunit, SU, and a membrane-anchored subunit, TM. Previous mutational analysis of a variable region, central within the SU subunit, indicates that this region constitutes part of the receptor-binding domain for subgroup A envelope (EnvA) and furthermore that basic residues (R210, R213, R223, R224, and K227) within this region are critical determinants of efficient ASLV infection. Substitutions of these basic residues exert effects on both receptor binding and postbinding events in EnvA-mediated entry. In this study, we performed biochemical analysis of the EnvA protein from three of the receptor-binding domain mutants (R213A/K227A, R213A/R223A/R224A, and R213S) to define the role of this domain in early molecular events in the entry pathway. Protease sensitivity assays demonstrated that receptor binding was sufficient to trigger conformational changes in the SU subunit of mutants R213A/K227A and R213S similar to those in the wild-type EnvA, while R213A/R223A/R224A was constitutively sensitive to protease. In contrast, all three receptor-binding domain mutants disrupted receptor-triggered conversion of EnvA to an active, membrane-binding conformation as assessed by liposome flotation assays. Our results demonstrate that mutations in the receptor-binding site can dissociate receptor-triggered conformational changes in the SU subunit from membrane binding. Furthermore, they suggest that communication between the receptor-binding subunit, SU, and the fusogenic subunit, TM, is crucial for efficient activation of the fusogenic state of EnvA. Analysis of these mutants continues earlier observations that binding to the cellular receptor provides the trigger for efficient activation of this pH-independent viral envelope protein.  相似文献   

14.
L Rong  A Edinger    P Bates 《Journal of virology》1997,71(5):3458-3465
Receptor specificity in avian sarcoma and leukosis viruses (ASLV) maps to the central region of the envelope surface protein, SU. Two hypervariable regions, hr1 and hr2, within this region of SU are the principal determinants of receptor specificity. The cellular receptor for subgroup A ASLV, Tva, utilizes a 40-residue, acidic, cysteine-rich sequence for viral binding and entry. This domain in Tva is closely related to the ligand-binding domain of the low-density lipoprotein receptor (LDLR). Ligands bind to LDLR via the interaction of clustered basic residues in the ligand with the acidic cysteine-rich domains of the receptor. Analysis of the ASLV envelope sequences revealed a cluster of basic residues within hr2 that is unique to the subgroup A viruses, suggesting a possible role for these residues in receptor recognition. Therefore, the effects of altering these basic residues on subgroup A envelope expression, receptor binding, and infectivity were examined. Most of the mutant proteins were transported to the cell surface and processed normally. Receptor binding was diminished approximately 50% by alanine substitution at amino acid R213 or K227, whereas substitution by alanine at R210, R223, or R224 had no effect. However, when coupled with mutations at R213 or K227, changes at R223,R224 reduced envelope binding by 90%. Mutation of all five basic residues abrogated receptor binding. The effect of the hr2 mutations on ASLV envelope-mediated infection did not parallel the effect on receptor binding. Residues 210, 213, 223, and 224 were important for efficient infection, while mutations at residue 227 had little effect on infectivity. These results demonstrate that the basic residues in the ASLV envelope have roles in both receptor recognition and post-receptor binding events during viral entry.  相似文献   

15.
We previously showed that the envelope glycoprotein (EnvA) of avian sarcoma/leukosis virus subtype A (ASLV-A) binds to liposomes at neutral pH following incubation with its receptor, Tva, at >or=22 degrees C. We also provided evidence that ASLV-C fuses with cells at neutral pH. These findings suggested that receptor binding at neutral pH and >or=22 degrees C is sufficient to activate Env for fusion. A recent study suggested that two steps are necessary to activate avian retroviral Envs: receptor binding at neutral pH, followed by exposure to low pH (W. Mothes et al., Cell 103:679-689, 2000). Therefore, we evaluated the requirements for intact ASLV-A particles to bind to target bilayers and fuse with cells. We found that ASLV-A particles bind stably to liposomes in a receptor- and temperature-dependent manner at neutral pH. Using ASLV-A particles biosynthetically labeled with pyrene, we found that ASLV-A mixes its lipid envelope with cells within 5 to 10 min at 37 degrees C. Lipid mixing was neither inhibited nor enhanced by incubation at low pH. Lipid mixing of ASLV-A was inhibited by a peptide designed to prevent six-helix bundle formation in EnvA; the same peptide inhibits virus infection and EnvA-mediated cell-cell fusion (at both neutral and low pHs). Bafilomycin and dominant-negative dynamin inhibited lipid mixing of Sindbis virus (which requires low pH for fusion), but not of ASLV-A, with host cells. Finally, we found that, although EnvA-induced cell-cell fusion is enhanced at low pH, a mutant EnvA that is severely compromised in its ability to support infection still induced massive syncytia at low pH. Our results indicate that receptor binding at neutral pH is sufficient to activate EnvA, such that ASLV-A particles bind hydrophobically to and merge their membranes with target cells. Possible roles for low pH at subsequent stages of viral entry are discussed.  相似文献   

16.
Binding of avian sarcoma and leukosis virus (ASLV) to its cognate receptor on the cell surface causes conformational changes in its envelope protein (Env). It is currently debated whether low pH is required for ASLV infection. To elucidate the role of low pH, we studied the association between ASLV subgroup B (ASLV-B) and liposomes and fusion between effector cells expressing Env from ASLV-A and ASLV-B and target cells expressing cognate receptors. Neither EnvA nor EnvB promoted cell-cell fusion at neutral pH, but lowering the pH resulted in quick and extensive fusion. As expected for a low-pH-triggered reaction, fusion was a steep function of pH. Steps that required low pH were identified. Binding a soluble form of the receptor caused ASLV-B to hydrophobically associate with liposome membranes at neutral pH, indicating that low pH is not required for insertion of Env's fusion peptides into membranes. But both cell-cell hemifusion and fusion pore formation were pH dependent. It is proposed that fusion peptide insertion stabilizes the conformation of ASLV Env into a form that can be acted upon by low pH. At this point, but not before, low pH can induce fusion and is in fact required for fusion to occur. However, low pH is no longer necessary after formation of the initial fusion pore: pore enlargement does not require low pH.  相似文献   

17.
Rong et al. have demonstrated previously that with a few substitutions, the fourth repeat of human low-density lipoprotein (hLDL-A4) receptor can functionally replace the LDL-A module of Tva, the cellular receptor for subgroup A avian sarcoma and leukosis virus (ASLV-A), in viral entry (L. Rong, K. Gendron, and P. Bates, Proc. Natl. Acad. Sci. USA 95:8467-8472, 1998). Here we have shown that swapping the amino terminus of hLDL repeat 5 (hLDL-A5) with that of Tva, in addition to the corresponding substitutions made in human LDL-A4, was required to convert hLDL-A5 into an efficient ASLV-A receptor. These results substantiated our previous findings regarding the role of the specific residues in the viral interaction domain of Tva and demonstrated the critical role of the amino terminus of the Tva LDL-A module in ASLV-A infection. Furthermore, we have shown that the residues between cysteines 2 and 3 of the Tva LDL-A module in a Tva/LDL-A5 chimeric protein can be functionally replaced by the corresponding region of another LDL-A module, human LDL receptor-related protein repeat 22 (LDL-A22), to mediate efficient ASLV-A entry. Since the only conserved feature between the C2-C3 region of LDL-A22 and the Tva LDL-A module is that both contain nine amino acids of which none are conserved, we conclude that the spacing between C2 and C3 of the LDL-A module of Tva is an important determinant for ASLV-A entry. Thus, the present study provides strong evidence to support our hypothesis that one role of the N terminus of the LDL-A module of Tva is to allow proper folding and conformation of the protein for optimal interaction with the viral glycoprotein EnvA in ASLV-A entry.  相似文献   

18.
Short hydrophobic regions referred to as fusion peptide domains (FPDs) at or near the amino terminus of the membrane-anchoring subunit of viral glycoproteins are believed to insert into the host membrane during the initial stage of enveloped viral entry. Avian sarcoma and leukosis viruses (ASLV) are unusual among retroviruses in that the region in the envelope glycoprotein (EnvA) proposed to be the FPD is internal and contains a centrally located proline residue. To begin analyzing the function of this region of EnvA, 20 substitution mutations were introduced into the putative FPD. The mutant envelope glycoproteins were evaluated for effects on virion incorporation, receptor binding, and infection. Interestingly, most of the single-substitution mutations had little effect on any of these processes. In contrast, a bulky hydrophobic substitution for the central proline reduced viral titers 15-fold without affecting virion incorporation or receptor binding, whereas substitution of glycine for the proline had only a nominal effect on EnvA function. Similar to other viral FPDs, the putative ASLV FPD has been modeled as an amphipathic helix where most of the bulky hydrophobic residues form a patch on one face of the helix. A series of alanine insertion mutations designed to interrupt the hydrophobic patch on the helix had differential effects on infectivity, and the results of that analysis together with the results observed with the substitution mutations suggest no correlation between maintenance of the hydrophobic patch and glycoprotein function.  相似文献   

19.
Tva is the cellular receptor for subgroup A avian sarcoma and leukosis virus (ASLV-A). The viral receptor function of Tva is determined by a 40-residue, cysteine-rich motif called the LDL-A module. Here we report the solution structure of the LDL-A module of Tva, determined by nuclear magnetic resonance (NMR) spectroscopy. Although the carboxyl terminus of the Tva LDL-A module has a structure similar to those of other reported LDL-A modules, the amino terminus adopts a different conformation. The LDL-A module of Tva does not contain the signature antiparallel beta-sheet observed in other LDL-A modules, and it is more flexible than other reported LDL-A modules. The LDL-A structure of Tva provides mechanistic insights into how a simple viral receptor functions in retrovirus entry. The side chains of H38 and W48 of Tva, which have been identified as viral contact residues by mutational analysis, are solvent exposed, suggesting that they are directly involved in EnvA binding. However, the side chain of L34, another potential viral contact residue identified previously, is buried inside of the module and forms the hydrophobic core with other residues. Thus L34 likely stabilizes the Tva structure but is not a viral interaction determinant. In addition, we propose that the flexible amino-terminal region of Tva plays an important role in determining specificity in the Tva-EnvA interaction.  相似文献   

20.
A complex interaction between the retroviral envelope glycoproteins and a specific cell surface protein initiates viral entry into cells. The avian leukosis-sarcoma virus (ALV) group of retroviruses provides a useful experimental system for studying the retroviral entry process and the evolution of receptor usage. In this study, we demonstrate that evolutionary pressure on subgroup A ALV [ALV(A)] entry exerted by the presence of a competitive inhibitor, a soluble form of the ALV(A) Tva receptor linked to a mouse immunoglobulin G tag (quail sTva-mIgG), can select different populations of escape variants. This escape population contained three abundant ALV(A) variant viruses, all with mutations in the surface glycoprotein hypervariable regions: a previously identified variant containing the Y142N mutation in the hr1 region; a new variant with two mutations, W141G in hr1 and K261E in vr3; and another new variant with two mutations, W145R in hr1 and K261E. The W141G K261E and W145R K261E viruses escape primarily by lowering their binding affinities for the quail Tva receptor competitive inhibitor while retaining wild-type levels of binding affinity for the chicken Tva receptor. A secondary phenotype of the new variants was an alteration in receptor interference patterns from that of wild-type ALV(A), indicating that the mutant glycoproteins are possibly interacting with other cellular proteins. One result of these altered interactions was that the variants caused a transient period of cytotoxicity. We could also directly demonstrate that the W141G K261E variant glycoproteins bound significant levels of a soluble form of the Tvb(S3) ALV receptor in a binding assay. Alterations in the normally extreme specificity of the ALV(A) glycoproteins for Tva may represent an evolutionary first step toward expanding viral receptor usage in response to inefficient viral entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号