首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose was to test the hypothesis that twice daily, short-term, variable intensity isotonic and intermittent high-intensity isokinetic leg exercise would maintain peak O2 uptake (VO2) and muscular strength and endurance, respectively, at or near ambulatory control levels during 30 days of -6 degrees head-down bed rest (BR) deconditioning. Nineteen men (aged 32-42 yr) were divided into no exercise control (peak VO2 once/wk, n = 5), isokinetic (Lido ergometer, n = 7), and isotonic (Quinton ergometer, n = 7) groups. Exercise training was conducted in the supine position for two 30-min periods/day for 5 days/wk. Isotonic training was at 60-90% of peak VO2, and isokinetic training (knee flexion-extension) was at 100 degrees/s. Mean (+/- SE) changes (P less than 0.05) in peak VO2 (ml.m-1.kg-1) from ambulatory control to BR day 28 were 44 +/- 4 to 36 +/- 3, -18.2% (3.27-2.60 l/m) for no exercise, 39 +/- 4 to 40 +/- 3, +2.6% (3.13-3.14 l/min) for isotonic, and 44 +/- 3 to 40 +/- 2, -9.1% (3.24-2.90 l/min) for isokinetic. There were no significant changes in any groups in leg peak torque (right knee flexion or extension), leg mean total work, arm total peak torque, or arm mean total work. Mean energy costs for the isotonic and isokinetic exercise training were 446 kcal/h (18.8 +/- 1.6 ml.min-1.kg-1) and 214 kcal/h (8.9 +/- 0.5 ml.m-1.kg-1), respectively. Thus near-peak, variable intensity, isotonic leg exercise maintains peak VO2 during 30 days of BR, while this peak, intermittent, isokinetic leg exercise protocol does not.  相似文献   

2.
We attempted to determine the change in total excess volume of CO2 output (CO2 excess) due to bicarbonate buffering of lactic acid produced in exercise due to endurance training for approximately 2 months and to assess the relationship between the changes of CO2 excess and distance-running performance. Six male endurance runners, aged 19-22 years, were subjects. Maximal oxygen uptake (VO2max), oxygen uptake (VO2) at anaerobic threshold (AT), CO2 excess and blood lactate concentration were measured during incremental exercise on a cycle ergometer and 12-min exhausting running performance (12-min ERP) was also measured on the track before and after endurance training. The absolute magnitudes in the improvement due to training for CO2 excess per unit of body mass per unit of blood lactate accumulation (delta la-) in exercise (CO2 excess.mass-1.delta la-), 12-min ERP, VO2 at AT (AT-VO2) and VO2max on average were 0.8 ml.kg-1.l-1.mmol-1, 97.8 m, 4.4 ml.kg-1. min-1 and 7.3 ml.kg-1.min-1, respectively. The percentage change in CO2 excess.mass-1.delta la- (15.7%) was almost same as those of VO2max (13.7%) and AT-VO2 (13.2%). It was found to be a high correlation between the absolute amount of change in CO2 excess.mass-1.delta la-, and the absolute amount of change in AT-VO2 (r = 0.94, P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
To find out whether endurance training influences the kinetics of the increases in heart rate (fc) during exercise driven by the sympathetic nervous system, the changes in the rate of fc adjustment to step increments in exercise intensities from 100 to 150 W were followed in seven healthy, previously sedentary men, subjected to 10-week training. The training programme consisted of 30-min cycle exercise at 50%-70% of maximal oxygen uptake (VO2max) three times a week. Every week during the first 5 weeks of training, and then after the 10th week the subjects underwent the submaximal three-stage exercise test (50, 100 and 150 W) with continuous fc recording. At the completion of the training programme, the subjects' VO2max had increased significantly (39.2 ml.min-1.kg-1, SD 4.7 vs 46 ml.min-1.kg-1, SD 5.6) and the steady-state fc at rest and at all submaximal intensities were significantly reduced. The greatest decrease in steady-state fc was found at 150 W (146 beats.min-1, SD 10 vs 169 beats.min-1, SD 9) but the difference between the steady-state fc at 150 W and that at 100 W (delta fc) did not decrease significantly (26 beats.min-1, SD 7 vs 32 beats.min-1, SD 6). The time constant (tau) of the fc increase from the steady-state at 100 W to steady-state at 150 W increased during training from 99.4 s, SD 6.6 to 123.7 s, SD 22.7 (P less than 0.01) and the acceleration index (A = 0.63.delta fc.tau-1) decreased from 0.20 beats.min-1.s-1, SD 0.05 to 0.14 beats.min-1.s-1, SD 0.04 (P less than 0.02). The major part of the changes in tau and A occurred during the first 4 weeks of training. It was concluded that heart acceleration following incremental exercise intensities slowed down in the early phase of endurance training, most probably due to diminished sympathetic activation.  相似文献   

4.
To determine whether the reduced blood lactate concentrations [La] during submaximal exercise in humans after endurance training result from a decreased rate of lactate appearance (Ra) or an increased rate of lactate metabolic clearance (MCR), interrelationships among blood [La], lactate Ra, and lactate MCR were investigated in eight untrained men during progressive exercise before and after a 9-wk endurance training program. Radioisotope dilution measurements of L-[U-14C]lactate revealed that the slower rise in blood [La] with increasing O2 uptake (VO2) after training was due to a reduced lactate Ra at the lower work rates [VO2 less than 2.27 l/min, less than 60% maximum VO2 (VO2max); P less than 0.01]. At power outputs closer to maximum, peak lactate Ra values before (215 +/- 28 mumol.min-1.kg-1) and after training (244 +/- 12 mumol.min-1.kg-1) became similar. In contrast, submaximal (less than 75% VO2max) and peak lactate MCR values were higher after than before training (40 +/- 3 vs. 31 +/- 4 ml.min-1.kg-1, P less than 0.05). Thus the lower blood [La] values during exercise after training in this study were caused by a diminished lactate Ra at low absolute and relative work rates and an elevated MCR at higher absolute and all relative work rates during exercise.  相似文献   

5.
To evaluate the effect of endurance training on ventilatory function in older individuals, 1) 14 master athletes (MA) [age 63 +/- 2 yr (mean +/- SD); maximum O2 uptake (VO2max) 52.1 +/- 7.9 ml . kg-1 . min-1] were compared with 14 healthy male sedentary controls (CON) (age 63 +/- 3 yr; VO2max of 27.6 +/- 3.4 ml . kg-1 . min-1), and 2) 11 sedentary healthy men and women, age 63 +/- 2 yr, were reevaluated after 12 mo of endurance training that increased their VO2max 25%. MA had a significantly lower ventilatory response to submaximal exercise at the same O2 uptake (VE/VO2) and greater maximal voluntary ventilation (MVV), maximal exercise ventilation (VEmax), and ratio of VEmax to MVV than CON. Except for MVV, all of these parameters improved significantly in the previously sedentary subjects in response to training. Hypercapnic ventilatory response (HCVR) at rest and the ventilatory equivalent for CO2 (VE/VCO2) during submaximal exercise were similar for MA and CON and unaffected by training. We conclude that the increase in VE/VO2 during submaximal exercise observed with aging can be reversed by endurance training, and that after training, previously sedentary older individuals breathe at the same percentage of MVV during maximal exercise as highly trained athletes of similar age.  相似文献   

6.
This study investigated the effects of intensity and duration of exercise on lymphocyte proliferation as a measure of immunologic function in men of defined fitness. Three fitness groups--low [maximal O2 uptake (VO2max) = 44.9 +/- 1.5 ml O2.kg-1.min-1 and sedentary], moderate (VO2max = 55.2 +/- 1.6 ml O2.kg-1.min-1 and recreationally active), and high (VO2max = 63.3 +/- 1.8 ml O2.kg-1.min-1 and endurance trained)--and a mixed control group (VO2max = 52.4 +/- 2.3 ml O2.kg-1.min-1) participated in the study. Subjects completed four randomly ordered cycle ergometer rides: ride 1, 30 min at 65% VO2max; ride 2, 60 min at 30% VO2max; ride 3, 60 min at 75% VO2max; and ride 4, 120 min at 65% VO2max. Blood samples were obtained at various times before and after the exercise sessions. Lymphocyte responses to the T cell mitogen concanavalin A were determined at each sample time through the incorporation of radiolabeled thymidine [( 3H]TdR). Despite differences in resting levels of [3H]TdR uptake, a consistent depression in mitogenesis was present 2 h after an exercise bout in all fitness groups. The magnitude of the reduction in T cell mitogenesis was not affected by an increase in exercise duration. A trend toward greater reduction was present in the highly fit group when exercise intensity was increased. The reduction in lymphocyte proliferation to the concanavalin A mitogen after exercise was a short-term phenomenon with recovery to resting (preexercise) values 24 h after cessation of the work bout. These data suggest that single sessions of submaximal exercise transiently reduce lymphocyte function in men and that this effect occurs irrespective of subject fitness level.  相似文献   

7.
Slow upward drift of VO2 during constant-load cycling in untrained subjects   总被引:2,自引:0,他引:2  
The oxygen uptake kinetics during constant-load exercise when sitting on a bicycle ergometer were determined in 7 untrained subjects by measuring breath-by-breath VO2 during continuous exercise to volitional exhaustion (mean endurance time = 1160 +/- 172 s) at a pedal frequency of 70 revolutions.min-1. The power output, averaging 189.5 W, was set at 82.5% of that eliciting the individual VO2max during a 5 min incremental exercise test. Throughout the exercise period, the VO2 kinetics could be appropriately described by a two-component exponential equation of the form: VO2(t) = Ya[1 - exp(-kat)] + Yb[1 - exp(-kbt)] where VO2 is net oxygen consumption and t the time from work onset. VO2 measured at the end of exercise was close to VO2max (98% VO2max) and the mean values of Ya, ka, Yb and kb amounted to 1195 ml O2.min-1, 0.034 s-1, 1562 ml O2.min-1, and 0.005 s-1 respectively. The initial rate of increase in VO2 predicted from the above equation is slower than that calculated, for the same work intensity, on the basis of the data obtained by Morton (1985) in trained subjects. For t greater than 480 s, however, the two models yield substantially equal results.  相似文献   

8.
Eleven laboratory-pretrained subjects (initial VO2max = 54 ml.kg-1.min-1) took part in a study to evaluate the effect of a short endurance training programme [8-12 sessions, 1 h per session, with an intensity varying from 60% to 90% maximal oxygen consumption (VO2max)] on the responses of blood ammonia (b[NH+4]) and lactate (b[la]) concentrations during progressive and constant exercise intensities. After training, during which VO2max did not increase, significant decreases in b[NH+4], b[la] and muscle proton concentration were observed at the end of the 80% VO2max constant exercise intensity, although b[NH+4] and b[la] during progressive exercise were unchanged. On the other hand, no correlations were found between muscle fibre composition and b[NH+4] in any of the exercise procedures. This study demonstrated that a constant exercise intensity was necessary to reveal the effect of training on muscle metabolic changes inducing the decrease in b[NH+4] and b[la]. At a relative power of exercise of 80% VO2max, there was no effect of muscle fibre composition on b[NH+4] accumulation.  相似文献   

9.
10.
The adaptation of muscle structure, power output, and mass-specific rate of maximal O2 consumption (VO2max/Mb) with endurance training on bicycle ergometers was studied for five male and five female subjects. Biopsies of vastus lateralis muscle and VO2max determinations were made at the start and end of 6 wk of training. The power output maintained on the ergometer daily for 30 min was adjusted to achieve a heart rate exceeding 85% of the maximum for two-thirds of the training session. It is proposed that the observed preferential proliferation of subsarcolemmal vs. interfibrillar mitochondria and the increase in intracellular lipid deposits are two possible mechanisms by which muscle cells adapt to an increased use of fat as a fuel. The relative increase of VO2max/Mb (14%) with training was found to be smaller by more than twofold than the relative increase in maximal maintained power (33%) and the relative change in the volume density of total mitochondria (+40%). However, the calculated VO2 required at an efficiency of 0.25 to produce the observed mass-specific increase in maximal maintained power matched the actual increase in VO2max/Mb (8.0 and 6.5 ml O2 X min-1 X kg-1, respectively). These results indicate that despite disparate relative changes the absolute change in aerobic capacity at the local level (maintained power) can account for the increase in aerobic capacity observed at the general level (VO2max).  相似文献   

11.
Technical limitations of some isokinetic dynamometers have called into question the validity of some data on human muscle mechanics. The Biodex dynamometer has been shown to minimize the impact artefact while permitting automatic gravity correction. This dynamometer was used to study quadriceps muscle torque and power generation in elite power (n = 6) and elite endurance (n = 7) athletes over 12 randomly assigned isokinetic velocities from 30 degrees.s-1 to 300 degrees.s-1. The angle at peak torque varied as a negative, linear function of angular velocity, with the average angle across test velocities being 59.5 degrees (SD 10.2 degrees). Power athletes developed greater peak torque at each angular velocity (P less than 0.05) and experienced a 39.7% decrement in torque over the velocity range tested. Endurance athletes encountered a 38.8% decline in peak torque. Torques measured at 60 degrees of knee flexion followed a similar trend in both groups; however the greatest torques were recorded at 60 degrees.s-1 rather than at 30 degrees.s-1. Leg extensor muscle power increased monotonically with angular velocity in both power (r2 = 0.728) and endurance athletes (r2 = 0.839); however these curves diverged significantly so that the power athletes produced progressively more power with each velocity increment. These inter group differences probably reflected a combination of natural selection and training adaptation.  相似文献   

12.
A multi-stage, repetitive lifting maximal oxygen uptake (VO2max) test was developed to be used as an occupational research tool which would parallel standard ergometric VO2max testing procedures. The repetitive lifting VO2max test was administered to 18 men using an automatic repetitive lifting device. An intraclass reliability coefficient of 0.91 was obtained with data from repeated tests on seven subjects. Repetitive lifting VO2max test responses were compared to those for treadmill, cycle ergometer and arm crank ergometer. The mean +/- SD repetitive lifting VO2max of 3.20 +/- 0.42 l.min-1 was significantly (p less than 0.01) less than treadmill VO2max (delta = 0.92 l.min-1) and cycle ergometer VO2max (delta = 0.43 l.min-1) and significantly greater than arm crank ergometer VO2max (delta = 0.63 l.min-1). The correlation between repetitive lifting oxygen uptake and power output was r = 0.65. VO2max correlated highly among exercise modes, but maximum power output did not. The efficiency of repetitive lifting exercise was significantly greater than that for arm cranking and less than that for leg cycling. The repetitive lifting VO2max test has an important advantage over treadmill or cycle ergometer tests in the determination of relative repetitive lifting intensities. The individual curves of VO2 vs. power output established during the multi-stage lifting VO2max test can be used to accurately select work loads required to elicit given percentages of maximal oxygen uptake.  相似文献   

13.
Incompatibility of endurance- and strength-training modes of exercise   总被引:2,自引:0,他引:2  
Twenty-two male and female subjects trained for 7 wk for endurance (group E), for strength (group IS), or for both strength and endurance (group C) to evaluate the effect of concurrent performance of both modes of training on the in vivo force-velocity relationship of human muscle and on aerobic power. Endurance training consisted of five 5-min sessions three times a week on cycle ergometer with a work load that approached the subject's peak cycle-ergometer O2 uptake (peak CE VO2). Strength training consisted of two 30-s sets of maximal knee extensions per day performed on an isokinetic dynamometer three times a week at a velocity of 4.19 rad X s-1. Group C performed the same training as groups IS and E, alternating days of strength and endurance training. Subjects (groups C and IS) were tested pre- and posttraining for maximal knee-extension torque at a specific joint angle (0.52 rad below horizontal) for seven specific angular velocities (0, 0.84, 1.68, 2.81, 3.35, 4.19, and 5.03 rad X s-1). Groups C and E were tested for peak CE VO2 pretraining, at 14-day intervals, and posttraining. Group IS showed significant increases in angle-specific maximal torque at velocities up to and including the training speed (4.19 rad X s-1). Group C showed increases (P less than 0.05) at velocities of 0, 0.84, and 1.68 rad X s-1 only. Peak CE VO2, when expressed in relative or absolute terms, increased (P less than 0.05) approximately 18% for both groups E and C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Eight young men were tested for strength, anaerobic capacity and aerobic endurance in a post absorptive state and after a 3.5 day fast. Strength was tested both isokinetically (elbow flexors, 0.52 rad x s-1 and 3.14 rad x s-1) and isometrically. Anaerobic capacity was evaluated by having subjects perform 50 rapidly repeated isokinetic contractions of the elbow flexors at 3.14 rad x s-1. Aerobic endurance was measured as time to volitional fatigue during a cycle ergometer exercise at 45% VO2max. Measures of VO2, VE, heart rate, and ratings of perceived exertion were obtained prior to and during the cycle exercise. The 3.5 day fast did not influence isometric strength, anaerobic capacity or aerobic endurance. Isokinetic strength was significantly reduced (approximately 10%) at both velocities. VO2, VE and perceived exertion were not affected by fasting. Fasting significantly increased heart rate during exercise but not at rest. It was concluded that there are minimal impairments in physical performance parameters measured here as a result of a 3.5 day fast.  相似文献   

15.
Recently, we have shown that an untrained respiratory system does limit the endurance of submaximal exercise (64% peak oxygen consumption) in normal sedentary subjects. These subjects were able to increase breathing endurance by almost 300% and cycle endurance by 50% after isolated respiratory training. The aim of the present study was to find out if normal, endurance trained subjects would also benefit from respiratory training. Breathing and cycle endurance as well as maximal oxygen consumption (VO2max) and anaerobic threshold were measured in eight subjects. Subsequently, the subjects trained their respiratory muscles for 4 weeks by breathing 85-160 l.min-1 for 30 min daily. Otherwise they continued their habitual endurance training. After respiratory training, the performance tests made at the beginning of the study were repeated. Respiratory training increased breathing endurance from 6.1 (SD 1.8) min to about 40 min. Cycle endurance at the anaerobic threshold [77 (SD 6) %VO2max] was improved from 22.8 (SD 8.3) min to 31.5 (SD 12.6) min while VO2max and the anaerobic threshold remained essentially the same. Therefore, the endurance of respiratory muscles can be improved remarkably even in trained subjects. Respiratory muscle fatigue induced hyperventilation which limited cycle performance at the anaerobic threshold. After respiratory training, minute ventilation for a given exercise intensity was reduced and cycle performance at the anaerobic threshold was prolonged. These results would indicate the respiratory system to be an exercise limiting factor in normal, endurance trained subjects.  相似文献   

16.
These experiments examined the exercise-induced changes in pulmonary gas exchange in elite endurance athletes and tested the hypothesis that an inadequate hyperventilatory response might explain the large intersubject variability in arterial partial pressure of oxygen (PaO2) during heavy exercise in this population. Twelve highly trained endurance cyclists [maximum oxygen consumption (VO2max) range = 65-77 ml.kg-1.min-1] performed a normoxic graded exercise test on a cycle ergometer to VO2max at sea level. During incremental exercise at VO2max, 5 of the 12 subjects had ideal alveolar to arterial PO2 gradients (PA-aO2) of above 5 kPa (range 5-5.7) and a decline from resting PaO2 (delta PaO2) 2.4 kPa or above (range 2.4-2.7). In contrast, 4 subjects had a maximal exercise PA-aO2 of 4.0-4.3 kPa with delta PaO2 of 0.4-1.3 kPa while the remaining 3 subjects had PA-aO2 of 4.3-5 kPa with delta PaO2 between 1.7 and 2.0 kPa. The correlation between PAO2 and PaO2 at VO2max was 0.17. Further, the correlation between the ratio of ventilation to oxygen consumption vs PaO2 and arterial partial pressure of carbon dioxide vs PaO2 at VO2max was 0.17 and 0.34, respectively. These experiments demonstrate that heavy exercise results in significantly compromised pulmonary gas exchange in approximately 40% of the elite endurance athletes studied. These data do not support the hypothesis that the principal mechanism to explain this gas exchange failure is an inadequate hyperventilatory response.  相似文献   

17.
Recent evidence suggests that heavy exercise may lower the percentage of O2 bound to hemoglobin (%SaO2) by greater than or equal to 5% below resting values in some highly trained endurance athletes. We tested the hypothesis that pulmonary gas exchange limitations may restrict VO2max in highly trained athletes who exhibit exercise-induced hypoxemia. Twenty healthy male volunteers were divided into two groups according to their physical fitness status and the demonstration of exercise-induced reductions in %SaO2 less than or equal to 92%: 1) trained (T), mean VO2max = 56.5 ml.kg-1.min-1 (n = 13) and 2) highly trained (HT) with maximal exercise %SaO2 less than or equal to 92%, mean VO2max = 70.1 ml.kg-1.min-1 (n = 7). Subjects performed two incremental cycle ergometer exercise tests to determine VO2max at sea level under normoxic (21% O2) and mild hyperoxic conditions (26% O2). Mean %SaO2 during maximal exercise was significantly higher (P less than 0.05) during hyperoxia compared with normoxia in both the T group (94.1 vs. 96.1%) and the HT group (90.6 vs. 95.9%). Mean VO2max was significantly elevated (P less than 0.05) during hyperoxia compared with normoxia in the HT group (74.7 vs. 70.1 ml.kg-1.min-1). In contrast, in the T group, no mean difference (P less than 0.05) existed between treatments in VO2max (56.5 vs. 57.1 ml.kg-1.min-1). These data suggest that pulmonary gas exchange may contribute significantly to the limitation of VO2max in highly trained athletes who exhibit exercise-induced reductions in %SaO2 at sea level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Forty-eight sedentary and 39 quite active or well-trained men participated in this study. Muscle biopsy samples were taken from the vastus lateralis for the determination of fiber type composition (I, IIa, IIb), fiber type area, and assay of the following enzymes: malate dehydrogenase (MDH), 3-hydroxyacyl CoA dehydrogenase (HADH) and oxoglutarate dehydrogenase (OGDH). Maximal oxygen uptake (VO2max) was determined with a progressive cycle ergometer test, while endurance performance or maximal aerobic capacity (MAC) was defined as the total work output during a 90-min cycle ergometer test. Correlation analysis revealed no evidence of association between fiber type composition and VO2max kg-1 or MAC kg-1 in sedentary subjects, while active men exhibited significant correlation between % type I (r = 0.52), % type IIb (r = 0.31) and VO2max kg-1. Enzyme activities were not significantly correlated with MAC kg-1 and VO2max kg-1 in sedentary men while active men exhibited significant correlation for the three enzymes (0.37 less than or equal to r less than or equal to 0.51) with VO2max kg-1. These results show that the contribution of muscle fiber type and enzyme activities to aerobic performance may be inflated from a statistical point of view by the training status heterogeneity of subjects. They also suggest that variation in these muscle characteristics does not account for the individual differences in aerobic performance of subjects who have never trained before. Therefore, the assessment of muscle characteristics is not as useful as originally thought for the detection of individuals with a high potential for endurance performance among untrained subjects.  相似文献   

19.
Maximal exercise responses were measured before and after 10 weeks of training in two groups of men, one trained on a treadmill (n = 12) and the other on a step ergometer (n = 9); the groups were pre- and post-tested on both machines to examine the specificity of the training modes. Training for both groups consisted of 3 days week-1, 30 min day-1, progressing to 50 min day-1, at an intensity of 75%-80% heart rate maximum reserve. Pre-training maximal oxygen uptake (VO2max) was significantly higher on the treadmill for both groups (X = 8.5%). VO2max increased 6.9% on the treadmill (P less than 0.05) and 6.9% (P greater than 0.05) on the step ergometer after treadmill training. The small increases may be attributed to the specificity of the testing protocols used to elicit VO2max. Significant (P less than 0.01) increases in VO2max were found for both modalities after step-ergometry training (treadmill = 11.8%; step ergometer = 23.2%). These increases resulted in equal post-test VO2max values (4.05 l min-1; 51 ml kg-1 min-1) on the step ergometer and treadmill. The significant increases in VO2max found for both modalities after step-ergometry training shows that (1) step ergometry is an effective training modality, and (2) its effects can be measured on the treadmill and therefore it is not task-specific training.  相似文献   

20.
The purpose of this study was to measure the cardiac output using the CO2 rebreathing method during submaximal and maximal arm cranking exercise in six male paraplegic subjects with a high level of spinal cord injury (HP). They were compared with eight able bodied subjects (AB) who were not trained in arm exercise. Maximal O2 consumption (VO2max) was lower in HP (1.11.min, SD 0.1; 17.5 ml.min-1.kg-1, SD 4) than in AB (2.5 l.min-1, SD 0.6; 36.7 ml.min-1.kg, SD 10.7). Maximal cardiac output was similar in the groups (HP, 14 l.min-1, SD 2.6; AB, 16.8 l.min-1, SD 4). The same result was obtained for maximal heart rate (fc,max) (HP, 175 beats.min-1, SD 18; AB, 187 beats.min-1, SD 16) and the maximal stroke volume (HP, 82 ml, SD 13; AB, 91 ml, SD 27). The slopes of the relationship fc/VO2 were higher in HP than AB (P less than 0.025) but when expressed as a %VO2max there were no differences. The results suggest a major alteration of oxygen transport capacity to active muscle mass in paraplegics due to changes in vasomotor regulation below the level of the lesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号