首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report here that in vitro exposure of monomeric actin to hydrogen peroxide leads to a conversion of 6 of the 16 methionine residues to methionine sulfoxide residues. Although the initial effect of H2O2 on actin is the oxidation of Cys374, we have found that Met44, Met47, Met176, Met190, Met269, and Met355 are the other sites of the oxidative modification. Met44 and Met47 are the methionyl sites first oxidized. The methionine residues that are oxidized are not simply related to their accessibility to the external medium and are found in all four subdomains of actin. The conformations of subdomain 1, a region critical for the functional binding of different actin-binding proteins, and subdomain 2, which plays important roles in the polymerization process and stabilization of the actin filament, are changed upon oxidation. The conformational changes are deduced from the increased exposure of hydrophobic residues, which correlates with methionine sulfoxide formation, from the perturbations in tryptophan fluorescence, and from the decreased susceptibility to limited proteolysis of oxidized actin.  相似文献   

2.
A significant specific increase in the actin carbonyl content has been recently demonstrated in human brain regions severely affected by the Alzheimer's disease pathology, in postischemic isolated rat hearts, and in human intestinal cell monolayers following incubation with hypochlorous acid (HOCl). We have very recently shown that exposure of actin to HOCl results in the immediate loss of Cys-374 thiol, oxidation of some methionine residues, and, at higher molar ratios of oxidant to protein, increase in protein carbonyl groups, associated with filament disruption and inhibition of filament formation. In the present work, we have studied the effect of methionine oxidation induced by chloramine-T (CT), which at neutral or slightly alkaline pH oxidizes preferentially Met and Cys residues, on actin filament formation and stability utilizing actin blocked at Cys-374. Methionines at positions 44, 47, and 355, which are the most solvent-exposed methionyl residues in the actin molecule, were found to be the most susceptible to oxidation to the sulfoxide derivative. Met-176, Met-190, Met-227, and Met-269 are the other sites of the oxidative modification. The increase in fluorescence associated with the binding of 8-anilino-1-naphtalene sulfonic acid to hydrophobic regions of the protein reveals that actin surface hydrophobicity increases with oxidation, indicating changes in protein conformation. Structural alterations were confirmed by the decreased susceptibility to proteolysis and by urea denaturation curves. Oxidation of some critical methionines (those at positions 176, 190, and 269) causes a complete inhibition of actin polymerization and severely affects the stability of actin filaments, which rapidly depolymerize. The present results would indicate that the oxidation of some critical methionines disrupts specific noncovalent interactions that normally stabilize the structure of actin filaments. We suggest that the process involving formation of actin carbonyl derivatives would occur at an extent of oxidative insult higher than that causing the oxidation of some critical methionine residues. Therefore, methionine oxidation could be a damaging event preceding the appearance of carbonyl groups on actin and a major cause for the functional impairment of the carbonylated protein recently observed both in vivo and in vitro.  相似文献   

3.
Cofilin binding induces an allosteric conformational change in subdomain 2 of actin, reducing the distance between probes attached to Gln-41 (subdomain 2) and Cys-374 (subdomain 1) from 34.4 to 31.4 A (pH 6.8) as demonstrated by fluorescence energy transfer spectroscopy. This effect was slightly less pronounced at pH 8.0. In contrast, binding of DNase I increased this distance (35.5 A), a change that was not pH-sensitive. Although DNase I-induced changes in the distance along the small domain of actin were modest, a significantly larger change (38.2 A) was observed when the ternary complex of cofilin-actin-DNase I was formed. Saturation binding of cofilin prevents pyrene fluorescence enhancement normally associated with actin polymerization. Changes in the emission and excitation spectra of pyrene-F actin in the presence of cofilin indicate that subdomain 1 (near Cys-374) assumes a G-like conformation. Thus, the enhancement of pyrene fluorescence does not correspond to the extent of actin polymerization in the presence of cofilin. The structural changes in G and F actin induced by these actin-binding proteins may be important for understanding the mechanism regulating the G-actin pool in cells.  相似文献   

4.
The accessibility of the cysteine residues of actin from rabbit muscles to the thiol-targeted reagent 7-dimethylamino-4-methyl-(N-maleimidyl)coumarin (DACM) was investigated. Under conditions where the actin is in the unpolymerized form (G-actin), the most reactive thiol group was Cys-257, suggesting that it was located on the surface of the actin molecule. The selective modification of Cys-374 for this reagent as reported by Sutoh [(1982) Biochemistry 21, 3654-3661] was not observed. Cys-10, Cys-217 and Cys-374 were much less reactive and only gradually became extensively modified when the concentration of DACM approached 5 molar equivalents of actin. Presumably these thiol groups were located further inward away from the surface or situated in a different environment that rendered them less reactive. On the other hand, Cys-285 was completely inaccessible and presumably was buried. The lack of preferential labelling of Cys-374 by DACM is incompatible with the finding with iodoacetic acid as the reagent as reported by Elzinga & Collins [(1975) J. Biol. Chem. 250, 5897-5905]. This discrepancy, however, might well be due to the different reagents employed. The DACM-G-actin largely retained its competence for polymerization. Upon polymerization of G-actin, practically all the thiol groups became inaccessible to DACM, suggesting that a drastic change occurred in the conformation of actin units in the transition of monomers to filamentous actin.  相似文献   

5.
In this study, we use fluorescent probes and proteolytic digestions to demonstrate structural coupling between distant regions of actin. We show that modifications of Cys-374 in the C-terminus of actin slow the rate of nucleotide exchange in the nucleotide cleft. Conformational coupling between the C-terminus and the DNasal loop in subdomain II is observed in proteolytic digestion experiments in which a new C-terminal cleavage site is exposed upon DNasel binding. The functional consequences of C-terminal modification are evident from S-1 ATPase activity and the in vitro motility experiments with modified actins. Pyrene actin, labeled at Cys-374, activates S-1 ATPase activity only half as well as control actin. This reduction is attributed to a lower Vmax value because the affinity of pyrene actin to S-1 is not significantly altered. The in vitro sliding velocity of pyrene actin is also decreased. However, IAEDANS labeling of actin (also at Cys-374) enhances the Vmax of acto-S-1 ATPase activity and the in vitro sliding velocity by approximately 25%. These results are discussed in terms of conformational coupling between distant regions in actin and the functional implications of the interactions of actin-binding proteins with the C-terminus of actin.  相似文献   

6.
Structural models of F-actin suggest that three segments in actin, the DNase I binding loop (residues 38-52), the hydrophobic plug (residues 262-274) and the C-terminus, contribute to the formation of an intermolecular interface between three monomers in F-actin. To test these predictions and also to assess the dynamic properties of intermolecular contacts in F-actin, Cys-374 pyrene-labeled skeletal alpha-actin and pyrene-labeled yeast actin mutants, with Gln-41 or Ser-265 replaced with cysteine, were used in fluorescence experiments. Large differences in Cys-374 pyrene fluorescence among copolymers of subtilisin-cleaved (between Met-47 and Gly-48) and uncleaved alpha-actin showed both intra- and intermolecular interactions between the C-terminus and loop 38-52 in F-actin. Excimer band formation due to intermolecular stacking of pyrene probes attached to Cys-41 and Cys-265, and Cys-41 and Cys-374, in mutant yeast F-actin confirmed the proximity of these residues on the paired sites (to within 18 A) in accordance with the models of F-actin structure. The dynamic properties of the intermolecular interface in F-actin formed by loop 38-52, plug 262-274 and the C-terminus may account for the observed cross-linking of these sites with reagents < 18 A. The functional importance of actin filament dynamics was demonstrated by the inhibition of the in vitro motility in the Gln-41-Cys-374 cross-linked actin filaments.  相似文献   

7.
During inflammation, hydrogen peroxide, produced by polymorphonuclear leukocytes, provokes cell death mainly by disarranging filamentous (polymerized) actin (F-actin). To show the molecular mechanism(s) by which hydrogen peroxide could alter actin dynamics, we analyzed the ability of H2O2-treated actin samples to polymerize as well as the suitability of actin polymers (from oxidized monomers) to interact with cross-linking proteins. H2O2-treated monomeric (globular) actin (G-actin) shows an altered time course of polymerization. The increase in the lag phase and the lowering in both the polymerization rate and the polymerization extent have been evidenced. Furthermore, steady-state actin polymers, from oxidized monomers, are more fragmented than control polymers. This seems to be ascribable to the enhanced fragility of oxidized filaments rather than to the increase in the nucleation activity, which markedly falls. These facts; along with the unsuitability of actin polymers from oxidized monomers to interact with both filamin and alpha-actinin, suggest that hydrogen peroxide influences actin dynamics mainly by changing the F-actin structure. H2O2, via the oxidation of actin thiols (in particular, the sulfhydryl group of Cys-374), likely alters the actin C-terminus, influencing both subunit/subunit interactions and the spatial structure of the binding sites for cross-linking proteins in F-actin. We suggest that most of the effects of hydrogen peroxide on actin could be explained in the light of the "structural connectivity," demonstrated previously in actin.  相似文献   

8.
Drebrin is a mammalian neuronal protein that binds to and organizes filamentous actin (F-actin) in dendritic spines, the receptive regions of most excitatory synapses that play a crucial role in higher brain functions. Here, the structural effects of drebrin on F-actin were examined in solution. Depolymerization and differential scanning calorimetry assays show that F-actin is stabilized by the binding of drebrin. Drebrin inhibits depolymerization mainly at the barbed end of F-actin. Full-length drebrin and its C-terminal truncated constructs were used to clarify the domain requirements for these effects. The actin binding domain of drebrin decreases the intrastrand disulfide cross-linking of Cys-41 (in the DNase I binding loop) to Cys-374 (C-terminal) but increases the interstrand disulfide cross-linking of Cys-265 (hydrophobic loop) to Cys-374 in the yeast mutants Q41C and S265C, respectively. We also demonstrate, using solution biochemistry methods and EM, the rescue of filament formation by drebrin in different cases of longitudinal interprotomer contact perturbation: the T203C/C374S yeast actin mutant and grimelysin-cleaved skeletal actin (between Gly-42 and Val-43). Additionally, we show that drebrin rescues the polymerization of V266G/L267G, a hydrophobic loop yeast actin mutant with an impaired lateral interface formation between the two filament strands. Overall, our data suggest that drebrin stabilizes actin filaments through its effect on their interstrand and intrastrand contacts.  相似文献   

9.
Actin cleaved by the protease from Escherichia coli A2 strain between Gly42 and Val43 (ECP-actin) is no longer polymerizable when it contains Ca2+ as a tightly bound cation, but polymerizes when Mg2+ is bound. We have investigated the interactions of gelsolin with this actin with regard to conformational changes in the actin molecule induced by the binding of gelsolin. ECP-(Ca)actin interacts with gelsolin in a manner similar to that in which it reacts with intact actin, and forms a stoichiometric 2:1 complex. Despite the nonpolymerizability of ECP-(Ca)actin, this complex can act as a nucleus for the polymerization of intact actin, thus indicating that upon interaction with gelsolin, ECP-(Ca)actin undergoes a conformational change that enables its interaction with another actin monomer. By gel filtration and fluorometry it was shown that the binding of at least one of the ECP-cleaved actins to gelsolin is considerably weaker than of intact actin, suggesting that conformational changes in subdomain 2 of actin monomer may directly or allosterically affect actin-gelsolin interactions. On the other hand, interaction with gelsolin changes the conformation of actin within the DNase I-binding loop, as indicated by inhibition of limited proteolysis of actin by ECP and subtilisin. Cross-linking experiments with gelsolin-nucleated actin filaments using N,N-phenylene-bismaleimide (which cross-links adjacent actin monomers between Cys374 and Lys191) reveal that gelsolin causes a significant increase in the yield of the 115-kDa cross-linking product, confirming the evidence that gelsolin stabilizes or changes the conformation of the C-terminal region of the actin molecule, and these changes are propagated from the capped end along the filament. These results allow us to conclude that nucleation of actin polymerization by gelsolin is promoted by conformational changes within subdomain 2 and at the C-terminus of the actin monomer.  相似文献   

10.
ATP-G-actin in the absence of excess ATP and divalent metal ions was treated with ADP in amounts large enough to ensure complete formation of ADP-G-actin. Under these conditions the monomer undergoes a very slow structural transition as seen by the exposure of 2.0 +/- 0.2 thiol groups per actin molecule. Once exposed, the second thiol group reacts with 5,5'-dithiobis-(2-nitrobenzoic acid) at a rate approximately 10-fold higher than that of cysteine 374. Labeling experiments with 2,4-dinitrophenyl [1-14C]cysteinyl disulfide followed by digestion and peptide analysis showed (besides reaction with cysteine 374) nearly exclusive labeling of cysteine 10. Since this residue is completely shielded in ATP-G-actin, exchange of ATP for ADP must have caused a partial unfolding of the protein uncovering the side chain of this cysteine. The transition is reversible, because addition of ATP or of excess divalent metal ions restored the conformation with only cysteine 374 exposed. Reversibility of the transition allowed us to directly determine the relative affinities of ATP and ADP to monomeric actin in the absence of Me2+ ions. By determination of the 50% exposure value of cysteine 10 from either side of the equilibrium we found a value of KATP/KADP = 30. The rate of uncovering of the thiol of cysteine 10 at 0 degree C was distinctly slower (t1/2 = 9 h) than its reshielding by the addition of ATP (t1/2 = 3 h). The structural change was accompanied by a decrease in polymerization rate. Relative polymerization rates were determined as ATP-G(1S)-actin:ADP-G(approximately 1S)-actin:ADP-G(2S)-actin = 1.0:0.35:0.1. From the data presented here we conclude that preparations of ADP-G-actin remain undefined unless the number of thiol groups exposed has been determined.  相似文献   

11.
S-glutathionylation, the reversible formation of mixed disulphides of cysteinyl residues in target proteins with glutathione, occurs under conditions of oxidative stress; this could be a posttranslational mechanism through which protein function is regulated by the cellular redox status. A novel physiological relevance of actin polymerization regulated by glutathionylation of Cys(374) has been recently suggested. In the present study we showed that glutathionylated actin (GS-actin) has a decreased capacity to polymerize compared to native actin, filament elongation being the polymerization step actually inhibited. Actin polymerizability recovers completely after dethiolation, indicating that S-glutathionylation does not induce any protein denaturation and is therefore a reversible oxidative modification. The increased exposure of hydrophobic regions of protein surface observed upon S-glutathionylation indicates changes in actin conformation. Structural alterations are confirmed by the increased rate of ATP exchange as well as by the decreased susceptibility to proteolysis of the subtilisin cleavage site between Met(47) and Gly(48), in the DNase-I-binding loop of the actin subdomain 2. Structural changes in the surface loop 39-51 induced by S-glutathionylation could influence actin polymerization in view of the involvement of the N-terminal portion of this loop in intermonomer interactions, as predicted by the atomic models of F-actin.  相似文献   

12.
M Brauer  B D Sykes 《Biochemistry》1986,25(8):2187-2191
G-Actin is a globular protein (Mr 42 300) known to have three cysteine residues that are at least partially exposed and chemically reactive (Cys-10, -284, and -374). When G-actin was reacted with 3-bromo-1,1,1-trifluoropropanone, three resolvable 19F resonances were observed in the 19F NMR spectrum. This fluorinated G-actin derivative remained fully polymerizable, and its 31P NMR spectrum was not significantly different from that of unmodified G-actin, indicating that the chemical modification did not denature the actin and the modified residues do not interfere with the extent of polymerization or the binding of adenosine 5'-triphosphate. One of the three 19F resonances was assigned to fluorinated Cys-374 on the basis of its selective reaction with N-ethylmaleimide. This resonance was dramatically broadened after polymerization of fluorinated G-actin, while the other two resonances were not markedly broadened or shifted. Thus, Cys-10 and -284 are not involved in or appreciably affected by the polymerization of G-actin, while the mobility of the 19F label at Cys-374 is markedly reduced.  相似文献   

13.
Intrastrand cross-linking of actin filaments by ANP, N-(4-azido-2-nitrophenyl) putrescine, between Gln-41 in subdomain 2 and Cys-374 at the C-terminus, was shown to inhibit force generation with myosin in the in vitro motility assays [Kim et al. (1998) Biochemistry 37, 17801-17809]. To clarify the immobilization of which of these two sites inhibits the actomyosin motor, the properties of actins with partially overlapping cross-linked sites were examined. pPDM (N,N'-p-phenylenedimaleimide) and ABP [N-(4-azidobenzoyl) putrescine] were used to obtain actin filaments cross-linked ( approximately 50%) between Cys-374 and Lys-191 (interstrand) and Gln-41 and Lys-113 (intrastrand), respectively. ANP, ABP, and pPDM cross-linked filaments showed similar inhibition of their sliding speeds and force generation with myosin ( approximately 25%) in the in vitro motility assays. In analogy to ANP cross-linking of actin, pPDM and ABP cross-linkings did not change the strong S1 binding to actin and the V(max) and K(m) parameters of actomyosin ATPase. The similar effects of these three cross-linkings reveal the tight coupling between structural elements of the subdomain 2/subdomain 1 interface and show the importance of its dynamic flexibility to force generation with myosin. The possibility that actin cross-linkings inhibit rate-limiting steps in motion and force generation during myosin cross-bridge cycle was tested in stopped-flow experiments. Measurements of the rates of mantADP release from actoS1 and ATP-induced dissociation of actoS1 did not reveal any differences between un-cross-linked and ANP cross-linked actin in these complexes. These findings are discussed in terms of the uncoupling between force generation and other aspects of actomyosin interactions due to a constrained dynamic flexibility of the subdomain 2/subdomain 1 interface in cross-linked actin filaments.  相似文献   

14.
Methionine sulfoxide reductases catalyze the reduction of protein-bound methionine sulfoxide back to methionine via a thioredoxin-recycling process. Two classes of methionine sulfoxide reductases, called MsrA and MsrB, exist that display opposite stereoselectivities toward the sulfoxide function. Although they are structurally unrelated, they share a similar chemical mechanism that includes three steps with 1) formation of a sulfenic acid intermediate with a concomitant release of 1 mol of methionine per mole of enzyme; 2) formation of an intradisulfide Msr bond; and 3) reduction of the oxidized Msr by thioredoxin. In the MsrBs that have been biochemically, enzymatically, and structurally characterized so far, the cysteine involved in the regeneration of the catalytic Cys-117 is Cys-63. Cys-117 is located on a beta strand, whereas the recycling Cys-63 is on a loop near Cys-117. The distance between the two cysteines is compatible with formation of the Cys-117/Cys-63 intradisulfide bond. Analyses of MsrB sequences show that at least 37% of the MsrBs do not possess the recycling Cys-63. In the present study, it is shown that Cys-31 in the Xanthomonas campestris MsrB, which is located on another loop, can efficiently substitute for Cys-63. Such a result implies flexibility of the MsrB structures, at least of the loops on which Cys-31 or Cys-63 are located. The fact that about 25% of the putative MsrBs have no recycling cysteine supports other recycling processes in which thioredoxin is not operative.  相似文献   

15.
E Kim  E Reisler 《Biophysical journal》1996,71(4):1914-1919
The recently reported structural connectivity in F-actin between the DNase I binding loop on actin (residues 38-52) and the C-terminus region was investigated by fluorescence and proteolytic digestion methods. The binding of copper to Cys-374 on F- but not G-actin quenched the fluorescence of dansyl ethylenediamine (DED) attached to Gin-41 by more than 50%. The blocking of copper binding to DED-actin by N-ethylmaleimide labeling of Cys-374 on actin abolished the fluorescence quenching. The quenching of DED-actin fluorescence was restored in copolymers (1:9) of N-ethylmaleimide-DED-actin with unlabeled actin. The quenching of DED-actin fluorescence by copper was also abolished in copolymers (1:4) of DED-actin and N-ethylmaleimide-actin. These results show intermolecular coupling between loop 38-52 and the C-terminus in F-actin. Consistent with this, the rate of subtilisin cleavage of actin at loop 38-52 was increased by the bound copper by more than 10-fold in F-actin but not in G-actin. Neither acto-myosin subfragment-1 (S1) ATPase activity nor the tryptic digestion of G-actin and F-actin at the Lys-61 and Lys-69 sites were affected by the bound copper. These observations suggest that copper binding to Cys-374 does not induce extensive changes in actin structure and that the perturbation of loop 38-52 environment results from changes in the intermolecular contacts in F-actin.  相似文献   

16.
To determine the reason for the inviability of Saccharomyces cerevisiae with skeletal muscle actin, we introduced into yeast actin the first variant muscle residue from the C-terminal end, H372R. Arg is also found at this position in non-yeast nonmuscle actins. The substitution caused retarded growth on glucose and an inability to use glycerol as a sole carbon source. The mitochondria were clumped and had lost their DNA, the vacuole appeared hypervesiculated, and the actin cytoskeleton became somewhat depolarized. Introduction of the second muscle actin-specific substitution, S365A, rescued these defects. Suppression was also achieved by introducing the four acidic N-terminal residues of muscle actin in place of the two found in yeast actin. The H372R substitution results in an increase in polymerization-dependent fluorescence of Cys-374 pyrene-labeled actin. H372R actin polymerizes slightly faster than wild-type (WT) actin. Yeast actin-related proteins 2 and 3 (Arp2/3) accelerates the polymerization of H372R actin to a much greater extent than WT actin. The two suppressors did not affect the rate of H372R actin polymerization in the absence of an Arp2/3 complex. In contrast, the S365A substitution dampened the rate of Arp2/3 complex-stimulated H372R actin polymerization, and the addition of the four acidic N-terminal residues caused this rate to decrease below that observed with WT actin in the presence of Arp2/3. Structural analysis of the mutations suggests the presence of stringent steric and ionic requirements for the bottom of actin subdomain 1 and also suggests that there is allosteric communication through subdomain 1 within the actin monomer between the N and C termini.  相似文献   

17.
Disulfide cross-linking of caldesmon to actin.   总被引:2,自引:0,他引:2  
Treatment of a solution of actin and smooth muscle caldesmon with 5,5'-dithiobis(2-nitrobenzoic acid) results in the formation of a disulfide cross-link between the C-terminal penultimate residue Cys-374 of actin and Cys-580 in caldesmon's C-terminal actin-binding region. Therefore, these 2 residues are close in the actin-caldesmon complex. Since myosin also binds to actin in the vicinity of Cys-374 and since caldesmon inhibits actomyosin ATPase activity by the reduction of myosin binding to actin, then the inhibition might be by caldesmon sterically hindering or blocking myosin's interaction with actin. [Ca2+]Calmodulin, which reverses the inhibition of the ATPase activity, decreases the yield of the cross-linked species, suggesting a weakening of the caldesmon-actin interaction in the cross-linked region. It is possible to maximally cross-link one caldesmon molecule/every three actin monomers, in the absence or presence of tropomyosin, clearly ruling out an elongated, end-to-end alignment of caldesmon on the actin filament in vitro, and raising the possibility that the N-terminal part of caldesmon projects out from the filament. Reaction of 5,5'-dithiobis(2-nitrobenzoic acid)-modified actin with caldesmon leads to the same disulfide cross-linked product between actin and caldesmon Cys-580, enabling the specific labeling of the other caldesmon cysteine, residue 153, in the N-terminal part of caldesmon with a spectroscopic probe.  相似文献   

18.
The resonance energy transfer between fluorescein-5-isothiocyanate (FITC) attached to Lys-61 and Co2+ bound to the high-affinity metal binding site was measured. The distance between FITC and Co2+ on the actin molecule was calculated to be either 1.9 nm, using the absorption spectrum of Co-EDTA or 2.8 nm, using the absorption spectrum of Co2+ bound to carboxypeptidase as a model spectrum of Co2+ bound to actin, respectively. The effects of the polymerization of actin and of the interaction of actin with myosin subfragment-1 (S1) on the solvent accessibility of the fluorescein molecule attached to Lys-61 or Cys-374 were measured. The accessibility of the probe at Lys-61 was reduced following polymerization and also appreciably reduced by interaction with S1. The accessibility of the probe attached to Cys-374 was affected to only a small degree. These results indicate that the Lys-61 residue is located close to an actin-actin contact region as well as being close to an S1 binding site, although it is not directly involved [Miki, M. (1987) Eur. J. Biochem. 164, 228-235]. The accessibility of the probe at Lys-61 was also decreased by the addition of the tropomyosintroponin complex, although the accessibility of the probe at Cys-374 was not affected at all. Thus, Lys-61 appears to be involved in the binding site of the regulatory proteins.  相似文献   

19.
Using fluorescence resonance energy transfer spectroscopy we demonstrate that thymosin beta(4) (tbeta(4)) binding induces spatial rearrangements within the small domain (subdomains 1 and 2) of actin monomers in solution. Tbeta(4) binding increases the distance between probes attached to Gln-41 and Cys-374 of actin by 2 A and decreases the distance between the purine base of bound ATP (epsilonATP) and Lys-61 by 1.9 A, whereas the distance between Cys-374 and Lys-61 is minimally affected. Distance determinations are consistent with tbeta(4) binding being coupled to a rotation of subdomain 2. By differential scanning calorimetry, tbeta(4) binding increases the cooperativity of ATP-actin monomer denaturation, consistent with conformational rearrangements in the tbeta(4)-actin complex. Changes in fluorescence resonance energy transfer are accompanied by marked reduction in solvent accessibility of the probe at Gln-41, suggesting it forms part of the binding interface. Tbeta(4) and cofilin compete for actin binding. Tbeta(4) concentrations that dissociate cofilin from actin do not dissociate the cofilin-DNase I-actin ternary complex, consistent with the DNase binding loop contributing to high-affinity tbeta(4)-binding. Our results favor a model where thymosin binding changes the average orientation of actin subdomain 2. The tbeta(4)-induced conformational change presumably accounts for the reduced rate of amide hydrogen exchange from actin monomers and may contribute to nucleotide-dependent, high affinity binding.  相似文献   

20.
Oxidative damage to the sulfur-containing amino acids, methionine and cysteine, is a major concern in biotechnology and medicine. alpha1-Antitrypsin, which is a metastable and conformationally flexible protein that belongs to the serpin family of protease inhibitors, contains nine methionines and a single cysteine in its primary sequence. Although it is known that methionine oxidation in the protein active site results in a loss of biological activity, there is little specific knowledge regarding the reactivity of its unpaired thiol, Cys-232. In this study, the thiol-modifying reagent NBD-Cl (7-chloro-4-nitrobenz-2-oxa-1,3-diazole) was used to label peroxide-modified alpha1-antitrypsin and demonstrate that the Cys-232 in vitro oxidation pathway begins with a stable sulfenic acid intermediate and is followed by the formation of sulfinic and cysteic acid in successive steps. pH-dependent reactivity with hydrogen peroxide showed that Cys-232 has a pK(a) of 6.86 +/- 0.05, a value that is more than 1.5 pH units lower than that of a typical protein thiol. pH-induced conformational changes in the region surrounding Cys-232 were also examined and indicate that mildly acidic conditions induce a conformation that enhances Cys-232 reactivity. In summary, this work provides new insights into alpha1-antitrypsin reactivity in oxidizing environments and shows that a unique structural environment renders its unpaired thiol, Cys-232, its most reactive amino acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号