首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The reaction of meso-tetrakis (4-dimethoxyphenyl) porphinatomanganese(II), MnTPOMeP, with TCNE (TCNE = tetracyanoethylene) leads to the formation of [MnTPOMeP]+ [TCNE] and [MnTPOMeP]+[OC(CN)C(CN)2]. The single-crystal X-ray structures of the latter as well as [Cu(bipy)2Cl]+ [OC(CN)C(CN)2] were determined. The former has a disordered [OC(CN)C(CN)2] bridging via C and O between a pair of MnIII sites, whereas the latter has an isolated [OC(CN)C(CN)2] unbound to CuII. The IR characterization for μ2-C,O bound [OC(CN)C(CN)2] is at 2219m and 2196s (νCN) cm−1 and at 1558s (νCO) cm−1 while for unbound [OC(CN)C(CN)2] it is at 2210m, 2203m, 2181m (νCN) cm−1 and at 1583s (νCO) cm−1.  相似文献   

2.
Reaction center particles isolated from carotenoidless mutant Rhodopseudomonas spheroides were studied with the aim of determining the pigment composition and the molar extinction coefficients.

Two independent sets of measurements using a variety of methods show that a sample with A800 nm = 1.00 contains 20.8 ± 0.8 μM tetrapyrrole and that the ratio of bacteriochlorophyll to bacteriopheophytin is 2:1.

Measurements were made of the absorption changes attending the oxidation of cytochrome c coupled to reduction of the photooxidized primary electron donor in reaction centers, using laser flash excitation. The ratio of the absorption change at 865 nm (due to the bleaching of P870) to that at 550 nm (oxidation of cytochrome) was found to be 5.77.

These results, combined with other data, yield a pigment composition of 4 bacteriochlorophyll and 2 bacteriopheophytin molecules in a reaction center. Based on this choice, extinction coefficients are determined for the 802- and 865-nm bands: 802 nm = 288 (± 14) mM−1 · cm−1 and 865 nm = 128 (± 6) mM−1 · cm−1. For reversible bleaching of the 865-nm band, Δred - ox865nm = 112 (± 6) mM−1 · cm−1 (referred to the molarity of reaction centers). Earlier reported values of photochemical quantum efficiency are recomputed, and the revised values are shown to be compatible with those obtained from measurements of fluorescence transients.  相似文献   


3.
Stable light-induced absorbance changes in chloroplasts at −196 °C were measured across the visible spectrum from 370 to 730 nm in an effort to find previously undiscovered absorbance changes that could be related to the primary photochemical activity of Photosystem I or Photosystem II. A Photosystem I mediated absorbance increase of a band at 690 nm and a Photosystem II mediated absorbance increase of a band at 683 nm were found. The 690-nm change accompanied the oxidation of P700 and the 683-nm increase accompanied the reduction of C-550. No Soret band was detected for P700.

A specific effort was made to measure the difference spectrum for the photooxidation of P680 under conditions (chloroplasts frozen to −196 °C in the presence of ferricyanide) where a stable, Photosystem II mediated EPR signal, attributed to P680+ has been reported. The difference spectra, however, did not show that P680+ was stable at −196 °C under any conditions tested. Absorbance measurements induced by saturating flashes at −196 °C (in the presence or absence of ferricyanide) indicated that all of the P680+ formed by the flash was reduced in the dark either by a secondary electron donor or by a backreaction with the primary electron acceptor. We conclude that P680+ is not stable in the dark at −196 °C: if the normal secondary donor at −196 °C is oxidized by ferricyanide prior to freezing, P680+ will oxidize other substances.  相似文献   


4.
Phosphorescence from the 9-adenylyl group in the fom of microcrystalline powders of adenosine films of poly(riboadenylic acid) (poly(rA)) in hyaluronic acid has been studied at 77 K. For adenosine, clearly resolved vibronic structure consists of two progressions, A and B, with A ‡ 1363 cm−1 and B ‡ 1575 cm −1, correlated with in-plane C5-N7 and in-plane C4-C5 stretch, respectively. The relative strength of the progressions varies with excitation wavelength and this, together with the absence of a common origin, indicates the existence of two independent emitting states with 0-0' levels separated by either 300 or 1000 cm−1. Two different excitation spectra are observed lying below the normal (ππ*) adsorption and one is assigned as a previously undetected 1(nπ*) transition. For poly(rA) films the emission band envelope is identical with that of adenosine but the vibronic structure is lost. Only one excitation peak is observed at 32.9×103 cm−1, identical with one of the adenosine spectra. The second adenosine excitation spectrum probably represents an intermolecular charge transfer transition. Comparison is made with the predictions of six semi-empirical MO calculations.  相似文献   

5.
The luminescence and absorption properties of [Re(bpy)(CO)4](PF6) and [Re(phen)(CO)4](PF6) are consistent with representation of the lowest excited states as nominally 3LC with an admixture of 1CT character. Using high resolution spectroscopic techniques at cryogenic temperatures, such as luminescence line narrowing spectroscopy or spectroscopy in single crystals, the vibrational sideband information which is normally lost in the ‘natural’ solution environment can be observed in the luminescence and absorption spectra. Mixing between the 3LC and 1CT excitation (3%) has previously been reported in [Re(bpy)(CO)4](PF6), resulting in metal-ligand sidebands at 184 and 198 cm−1 in the absorption spectrum and a short luminescence lifetime (33.0 μs). In the luminescence spectra (line narrowed) the metal-ligand sidebands are observed at 194 cm−1. Weak mixing ( 1%) of the 1CT excitation (32 100 cm−1) with the 3LC excitation (22 100 cm−1) in [Re(phen)(CO)4](PF6) gives rise to the observation of metal-ligand vibrational sidebands in the luminescence spectrum (204 cm−1) and a luminescence lifetime of τ= 295±5 μs at 20 K. A spin-orbit mixing matrix element of 3LC|Hso|1CT for [Re(phen)(CO)4](PF6) of 65 cm−1 is calculated, compared to 261 cm−1 in [Re(bpy)(CO)4](PF6).  相似文献   

6.
Roger N.F. Thorneley 《BBA》1974,333(3):487-496
1. Single reduced methyl viologen (MV.+) acts as an electron donor in a number of enzyme systems. The large changes in extinction coefficient upon oxidation (λmax 600 nm; MV.+, = 1.3 · 104 M−1 · cm−1; oxidised form of methyl viologen (MV2+), = 0.0) make it ideally suited to kinetic studies of electron transfer reactions using stopped-flow and standard spectrophotometric techniques.

2. A convenient electrochemical preparation of large amounts of MV.+ has been developed.

3. A commercial stopped-flow apparatus was modified in order to obtain a high degree of anaerobicity.

4. The reaction of MV.+ with O2 produced H2O2 (k > 5 · 106 M−1 · s−1, pH 7.5, 25 °C). H2O2 subsequently reacted with excess MV.+ (k = 2.3 · 103 M−1 · s−1, pH 7.5, 25 °C) to produce water. The kinetics of this reaction were complex and have only been interpreted over a limited range of concentrations.

5. The results support the theory that the herbicidal action of methyl viologen (Paraquat, Gramoxone) is due to H2O2 (or radicals derived from H2O2) induced damage of plant cell membrane.  相似文献   


7.
The complex Pt(bph) (CO)2 crystallizes in the space group Cmcm with a = 18.647(6), B = 9.566(2) and C = 6.4060(5) Å. The geometry of the molecule is slightly distorted from square planar with a Pt---C(CO) bond distance of 1.98(2) Å and a Pt---C(bph) bond distance of 2.04(2) Å. The Pt(bph)(CO)2 complex serves as a precursor for the preparation of a wide variety of Pt(bph)X2 complexes, where X = monodentate ligands such as acetonitrile, pyridine, etc., and X2 = bidentate ligands such as bypyridine, 1,10-phenanthroline, etc. In the solid state, the complex exhibits a green color, but when ground with an alkali metal salt turns deep blue to purple. In CH2Cl2, the color disappears but optical transitions are observed at 271 nm (2.7 × 104 M−1 cm−1), 303 nm (1.1 × 104 M−1 cm−1) and 330 nm (5.5 × 103 M−1 cm−1). The complex is a weak emitter exhibiting a structured spectrum in CH2Cl2 at r.t. with maxima located at 562 and 594 nm and an emission lifetime of 3.1 μs when excited at 337 nm.  相似文献   

8.
Copper(II) complexes were synthesized and characterized by means of elemental analysis, IR and visible spectroscopies, EPR and electrochemistry, as well as X-ray structure crystallography. The group consists of discrete mononuclear units with the general formula [Cu(II)(Hbpa)2](A)2·nH2O, where Hbpa=(2-hydroxybenzyl-2-pyridylmethyl)amine and A=ClO4 −, n=2 (1), CH3COO, n=3 (2), NO3 −, n=2 (3) and SO4 2−, n=3 (4). The structures of the ligand Hbpa and complex 1 have been determined by X-ray crystallography. Complexes 1–4 have had their UV–Vis spectra measured in both MeCN and DMF. It was observed that the compounds interact with basic solvents, such that molecules coordinate to the metal in axial positions in which phenol oxygen atoms are coordinated in the protonated forms. The values were all less than 1000 M−1 cm−1. EPR measurements on powdered samples of 1–3 gave g/A values between 105 and 135 cm−1, typical for square planar coordination environments. Complex 4·3H2O exhibits a behaviour typical for tetrahedral coordination. The electrochemical behaviour for complexes 1 and 2 was studied showing irreversible redox waves for both compounds.  相似文献   

9.
H.F. Kauffman  B.F. Van Gelder 《BBA》1973,314(3):276-283
1. Cyanide causes a slow disappearance of the oxidized band (648 nm) of cytochrome d in particles of Azotobacter vinelandii and inhibits the appearance of the reduced band (631 nm). No effect of cyanide is found on the reduced band of cytochrome d.

2. The kinetics of the disappearance of the 648-nm band of cytochrome d with excess cyanide deviates from first-order kinetics at lower temperatures (22 °C) indicating that at least two conformations of the enzyme are involved. At higher temperatures (32 °C) the observed kinetics of the cyanide reaction are first order with a kon = 0.7 M−1·s−1 and with an estimated koff of approximately 5·10−5 s−1.

3. The value of the koff (7·10−4−14·10−4 s−1 at 32 °C) determined from the rate of reduction of cyanocytochrome d by Na2S2O4 or NADH is one order of magnitude larger than the koff value found when the enzyme is in its oxidized state.

4. No effect of cyanide is found on the spectrum of cytochrome a1.  相似文献   


10.
Kinetic resonance Raman spectra of native and isotopically labelled purple membranes are compared. Using these data and the assignments of the previous paper in this sequence, we have confirmed that the Schiff base is deprotonated at times that are short in comparison to M412 evolution. In addition, by monitoring the kinetic resonance Raman spectra in 2H2O with 488.0 nm excitation we have been able to characterize in more detail the vibrational features associated with this unprotonated intermediate that precedes M412. Furthermore, the kinetic spectra of fully deuterated purple membranes in H2O have allowed us to assign the 1465 cm−1 band in these spectra to the C=C stretching frequency of BR570 and the 1512 cm−1 band to the C=C stretching frequency of M412. These spectra have also provided an indication of a Raman spectral feature associated with O640 and, finally, our kinetic spectra have provided evidence that there is a significant alteration in the rate constants for the evolution of the various intermediates when the non-exchangeable protons on the membrane are replaced by deuterons.  相似文献   

11.
Reaction of LaCl3·7H2O containing small amounts of La(NO3)3·7H2O as an impurity with 12-crown-4 or 18-crown-6 in 3:1 CH3CN:CH3OH resulted in the isolation of the mixed anion complexes [LaCl2(NO3)(12-crown-4)]2, [La(NO3)(OH2)4(12-crown-4)]Cl2·CH3CN and [LaCl2(NO3)(18-crown-6)]. The nine-coordinate dimer, [LaCl2(NO3)(12-crown-4)]2, has all of the anions in the inner coordination sphere and La3+ has a capped square antiprismatic geometry. It crystallizes in the orthorhombic space group Pbca with (at −150 °C) a = 12.938(6), B = 15.704(3), C = 13.962(2) Å, and Dcalc = 2.08 g cm−3 for Z = 4. The second complex isolated from the same reaction, [La(NO3)(OH2)4(12-crown-4)]Cl2·CH3CN, has the bidentate nitrate anion in the inner coordination sphere but the two chloride anions are in a hydrogen bonded outer sphere. This complex is ten-coordinate 4A,6B-expanded dodecahedral and crystallizes in the monoclinic space group P21 with (at 20 °C) A = 7.651(2), B = 11.704(7), C = 11.608(4) Å, β = 95.11(2)°, and Dcalc = 1.80 g cm−3 for Z = 2. The 18-crown-6 complex, [LaCl2(NO3)(18-crown-6)], has all inner sphere anions and has ten-coordinate 4A,6B-expanded dodecahedral La3+ centers. It crystallizes in the orthorhombic space group Pbca with (at 20 °C) a = 14.122(7), B = 13.563(5), C = 19.311(9) Å, and Dcalc = 1.89 g cm−3 for Z = 8.  相似文献   

12.
Mono- and di-manganese inclusion compounds 1 and 2 are reported. Two mono-manganese molecules Mn(bpy)2(NO3)2 (bpy=2,2′-bipyridine) and [Mn(bpy)2(NO3)(H2O)]·NO3 coexist in the mole ratio of 1:1 in the structure of 1, while two di-manganese molecules [Mn2O(bpy)2(phtha)2(H2O)2]·(NO3)2 (phtha=phthalate) and [Mn2O(bpy)2(phtha)2(NO3)(H2O)]·NO3 in the structure of 2. Refluxing Mn(NO3)2/bpy/phthalic acid reaction mixtures in CH3CN leads to the isolation of 1, further concentration of the reaction solution in raising temperature results in 2. The Mn1 and Mn2 units in the inclusion compounds 1 and 2 are similar to other reported Mn1 and Mn2 analogs, respectively. The Jahn–Teller distortion was observed to give rise to the elongation along the Oterminal---Mn---Ocarboxyl axes for all the four Mn(III) sites in 2, leading to unexpected longer Mn(III)---Oaqua than Mn(II)---Oaqua in 1. Extensive hydrogen bonding interactions among H2O, NO3 − and COOH were observed in the two inclusion compounds. Cyclic voltammetry of 2 in DMF displays two quasi-reversible redox couples at +0.10/+0.22 and −0.43/−0.36 V assigned to the Mn(III)Mn(IV)/2Mn(III) and 2Mn(III)/Mn(III)Mn(II), respectively. Variable temperature magnetic susceptibilities of 1 and 2 were measured. The data were fit to a model including axial zero-field splitting term and a good fit was found with D=1.77 cm−1, g=1.98 and F=1.48×10−5 for 1. For 2, the least-squares fitting of the experimental data led to J=2.37 cm−1, g=2.02 and D=0.75 cm−1 with R=1.45×10−3.  相似文献   

13.
The mechanism of the charge separation and stabilization of separated charges was studied using the femtosecond absorption spectroscopy. It was found that nuclear wavepacket motions on potential energy surface of the excited state of the primary electron donor P* leads to a coherent formation of the charge separated states P+BA, P+HA and P+HB (where BA, HB and HA are the primary and secondary electron acceptors, respectively) in native, pheophytin-modified and mutant reaction centers (RCs) of Rhodobacter sphaeroides R-26 and in Chloroflexus aurantiacus RCs. The processes were studied by measurements of coherent oscillations in kinetics at 890 and 935 nm (the stimulated emission bands of P*), at 800 nm (the absorption band of BA) and at 1020 nm (the absorption band of BA) as well as at 760 nm (the absorption band of HA) and at 750 nm (the absorption band of HB). It was found that wavepacket motion on the 130–150 cm−1 potential surface of P* is accompanied by approaches to the intercrossing region between P* and P+BA surfaces at 120 and 380 fs delays emitting light at 935 nm (P*) and absorbing light at 1020 nm (P+BA). In the presence of Tyr M210 (Rb. sphaeroides) or M195 (C. aurantiacus) the stabilization of P+BA is observed within a few picosseconds in contrast to YM210W. At even earlier delay (40 fs) the emission at 895 nm and bleaching at 748 nm are observed in C. aurantiacus RCs showing the wavepacket approach to the intercrossing between the P* and P+HB surfaces at that time. The 32 cm−1 rotation mode of HOH was found to modulate the electron transfer rate probably due to including of this molecule in polar chain connecting PB and BA and participating in the charge separation. The mechanism of the charge separation and stabilization of separated charges is discussed in terms of the role of nuclear motions, of polar groups connecting P and acceptors and of proton of OH group of TyrM210.  相似文献   

14.
Dinuclear manganese(II) complexes [Mn2(bomp)(PhCO2)2]BPh4 (1), [Mn2(bomp)(MeCO2)2]BPh4 (2), and [Mn2(bomp)(PhCO2)2]PF6 (3) were synthesized with a dinucleating ligand 2,6-bis[bis(2-methoxyethyl)aminomethyl]-4-methylphenol [H(bomp)]. Dinuclear zinc complex [Zn2(bomp)(PhCO2)2]PF6 (4) was also synthesized for the purpose of comparison. X-ray analysis revealed that the complex 1·CHCl3 contains two manganese ions bridged by the phenolic oxygen and two benzoate groups, forming a μ-phenoxo-bis(μ-benzoato)dimanganese(II) core. Magnetic susceptibility measurements of 1–3 over the temperature range 1.8–300 K indicated antiferromagnetic interaction (J=−4 to −6 cm−1). Cyclic voltammograms of 3 showed a quasi-reversible oxidation process at +0.9 V versus a saturated sodium chloride calomel reference electrode, assigned to MnIIMnII/MnIIMnIII.  相似文献   

15.
Complexes of type A4[VO(tart)]2·nH2O, where A = Rb or Cs and tart =d,l-tartrate(4−) (n = 2) or d,d-tartrate(4−) (n = 2 for Rb and n = 3 for Cs), were prepared from an aqueous mixture of V2O5, AOH and H4tart. These complexes were studied by single-crystal X-ray diffraction methods: Rb4[VO(d,l-tart)]2·2H2O, space group P1 with a = 8.156(1),b = 8.246(1),c = 8.719(1)Å, = 66.09(1)°, β = 65.07(1)°, γ = 82.40(1)°,Z = 2, 1917 observed reflections, and final Rw = 0.035; Cs4[VO(d,l-tart)]2·2H2O, space group P21/c with a = 9.350(1),b = 13.728(2),c = 8.479(1)Å, β = 106.77(1)°,Z = 4, 2235 observed reflections, and final Rw = 0.054; Rb4[VO(d,d-tart)]2·2H2O, space group P4122 with a = 8.072(1),c = 32.006(3)Å,Z = 8, 1014 observed reflections and final Rw = 0.038; Cs4[VO(d,d-tart)]2·3H2O, space group P122 with a = 8.184(1),c = 33.680(5)Å,Z = 8, 1310 observed reflections, and final Rw = 0.063. Bulk magnetic susceptibility data (1.5–300 K) for these compounds and A4[VOl,l-tart)]2·nH2O (A = Rb, Cs) were obtained on polycrystalline samples. These data were analyzed in terms of a Van Vleck exchange coupled S = 1/2 model which was modified to include an interdimer exchange parameters Θ. Analysis of the low-temperature (1.5–20 K) susceptibility data gave 2J = +1.30 cm−1 and Θ = −1.86 K for Rb4[VO(d,l-tart)]2·2H2O, 2J = +1.16 cm−1 and Θ = −1.69 K for Cs4[VO(d,l-tart)]2·2H2O, 2J = +1.90 cm−1 and Θ = −0.82 K for Rb4[VO(d,d-tart)]2·2H2O, 2J = +2.04 cm−1 and Θ = −0.80 K for Rb4[VO(l,l-tart)]2·2H2O, 2J = +1.52 cm−1 and Θ = −0.25 K for Cs4[VO(d,d-tart)]2·3H2O, and 2J = +1.64 cm−1 and Θ = −0.31 K for Cs4[VO(l,l-tart)]2·3H2O. These results suggest the magnitudes of intradimer (ferromagnetic and interdimer (antiferromagnetic) exchange interactions are similar in these complexes, as observed for the analogous Na salts.  相似文献   

16.
B.T. Storey  C.P. Lee 《BBA》1973,292(3):554-565

1. Circular dichroism spectra of the cytochromes in membrane fragments derived from sonicated beef heart mitochondria have been obtained in the wavelength region 400–480 nm in which the major absorbance maxima of the heme prosthetic groups are found.

2. 2. Cytochrome oxidase in the mitochondrial membrane fragments has a band of positive ellipticity at 426 nm in the oxidized form and a pronounced band of positive ellipticity at 445 nm in the reduced form. The reduced-minus-oxidized difference molar ellipticity at 445 nm, Δ[θ]445 is 3.0·105 degree·cm−2·dmole−1 heme a for membrane-bound oxidase compared to 1.6·105 degree·cm−2·dmole−1 heme a for the purified oxidase. The membrane-bound oxidase in the reduced form also appears to have a band of negative ellipticity at 426 nm not found in the purified oxidase.

3. 3. When reduced with succinate in the presence of cyanide and oxygen, cytochrome oxidase in the membrane fragments has a positive band at 442 nm very similar to that observed with the purified oxidase.

4. 4. Cytochrome c, which has a positive band at 426 nm in the purified form when reduced, appears to have a negative band at this wavelength in the mito-chondrial membrane fragments which contributes to the pronounced negative band at 426 nm observed in the membrane fragments reduced with succinate in anaerobiosis. There is no evidence for a contribution to the CD spectra of the membrane fragments from cytochrome c1 or from cytochrome b561 in either the oxidized or the reduced form.

5. 5. Cytochrome b566 in the mitochondrial membrane fragments has no detectable CD spectrum in the oxidized form, but has a small positive band at 427 nm and a small negative band at 436 nm in the reduced form. The same CD spectrum is observed with cytochrome b566 reduced with succinate in the presence of antimycin A or 2-heptyl-4-hydroxyquinoline-N-oxide. The same increase in positive ellipticity is observed at 427 nm in the mitochondrial membrane fragments, treated with oligomycin to restore energy coupling, when cytochrome b566 is reduced with succinate in the energized membrane, as is observed in the inhibitor-treated membrane fragments. The absence of a pronounced conformational change in cytochrome b566 on energization, as revealed by its CD spectrum, favors the concept that its reduction by succinate in the energized state is due to reversed electron transport rather than an intrinsic shift in the cytochrome's midpoint redox potential.

Abbreviations: HOQNO, 2-heptyl-4-hydroxy quinoline-N-oxide; PMS, phenazine methosulfate  相似文献   


17.
Cuaq+ forms stable complexes with carbon monoxide in aqueous solutions. Furthermore it reacts very fast with aliphatic radicals. The reaction of Cu(CO)maq+ with methyl radicals, CH3 was studied using the pulse-radiolysis technique. The results point out that methyl radicals react with Cu(CO)aq+ to form an unstable intermediate with a CuII-C σ bond identified as (CO)CuII-CH3+, k = (1.1±0.2) × 109 M−1 s−1. This intermediate has a strong LMCT charge transfer band (λmax = 385 nm, max = 2500 M−1 cm−1) which is similar to the absorption bands of other transient complexes with CuII-alkyl σ bonds. The coordinated carbon monoxide in (CO)CuII-CH3+ inserts into the copper—carbon bond (or rather the coordinated methyl migrates to the coordinated carbon monoxide ligand) at a rate of (3.0±0.8) × 102 s−1 to form the copperacetyl complex (CO)mCuII-C(CH3)=O+max = 480 nm, max = 2100 M−1 cm−1). The rate of formation of (CO)CuII-CH3+ and of the insertion reaction are pH independent. The complex (CO)mCuII-C(CH3)=O+ is also unstable and decomposes heterolytically to yield acetaldehyde and Cuaq2+ as the final stable products. This reaction is slightly pH dependent. The same reactivity pattern has been observed for the Cu(COnaq+ complexes (n = 2 or 3). The results clearly point out that CO remains coordinated to transient complexes of the type CuII-alkyl.  相似文献   

18.
Rates of stepwise anation of cis-Cr(ox)2(H2O2) with SCN/N3, Cr(acac)2(H2O)2+ with SCN and Cr(atda)(H2O)2 with SCN have been investigated in weakly acidic aqueous solutions. Rate constants, kI and kII for the two steps in each system, are composite as kx = kx0+kxX[X] (x = I, II; X = SCN, N3). These rate constants have been evaluated also as the corresponding ΔH and ΔS values. The results obtained and the plausible Id mechanism seem to suggest Cr---OOC bond dissociation (hence a strongly negative ΔS) generating the transition state in each system with outer-sphere association forming the precursor complex in the X dependent paths.  相似文献   

19.
This work reports on the design of a complex medium based on simple and complex carbon sources, i.e. glucose, sucrose, molasses, and defatted-soybean, and simple and complex nitrogen sources, i.e. (NH4)2HPO4, casein, and defatted-soybean, for serine alkaline protease (SAP) production by recombinant Bacillus subtilis carrying pHV1431::subC gene. SAP activity was obtained as 3050 U cm−3 with the initial defatted-soybean concentration Csoybeano=20 kg m−3 and initial glucose concentration CGo=8 kg m−3; whereas, addition of the inorganic nitrogen source (NH4)2HPO4 decreased SAP production considerably. Further increase in SAP production (3850 U cm−3) was obtained when sucrose was replaced with glucose at Csucroseo=15 kg m−3 and Csoybeano=20 kg m−3. Nevertheless, when molasses was replaced with sucrose, the maximum activity was obtained with molasses having 10 kg m−3 initial sucrose concentration and Csoybeano=15 kg m−3as 2130 U cm−3; moreover, when casein was replaced with defatted-soybean SAP production decreased considerably (ca. 250 U cm−3). Thereafter, the effects of inorganic ionic compounds were investigated; and except phosphate, inorganic compounds supplied from defatted-soybean were found to be sufficient for the bioprocess. The highest SAP activity was obtained as 5350 U cm−3 in the medium that contained (kg m−3): Csoybeano=20, Csucroseo=15, CNa2HPO4o=0.021, and CNaH2PO4o=2.82, that was 6.5-fold higher than that of the SAP produced in the defined medium. By using the designed complex medium, oxygen transfer characteristics of the bioprocess were investigated; and, Damköhler number that is the oxygen transfer limitation increases with the cultivation time until t=14 h; and, at t>20 h both mass transfer and biochemical reaction resistances were effective. Overall oxygen transfer coefficient varied between 0.010 and 0.044 s−1; volumetric oxygen uptake rate varied between 0.001 and 0.006 mol m−3 s−1; and specific oxygen uptake rate varied between 0.0001 and 0.0022 mol kg−1 DW s−1 throughout the bioprocess.  相似文献   

20.
The binding of herbicides to the phylloquinone-(primary electron acceptor A1)-binding site in green plant photosystem (PS) I reaction centers is shown. Dissociation constants (Kd) of various herbicides to the phylloquinone-binding site were estimated by analyzing their competitive inhibition of the reconstitution of the phylloquinone analogue, menadione (vitamin K3), to the phylloquinone-extracted spinach PS I particles. The phylloquinone-binding site was found to bind o-phenanthroline (Kd = 1.2 × 10−4 M), but only weak binding was observed with atrazine (Kd > 10−2 M), although both are known to bind specifically to the quinone-(QB)-binding site in reaction centers of purple photosynthetic bacteria or PS II. The inhibitors of the cytochrome b/c1(ƒ) complex, myxothiazol (Kd=9.5 × 10−6 M) or antimycin A (Kd = 2.8 × 10−6 M), also strongly bound to the phylloquinone site. This is the first report showing that the PS I reaction center complex also has a herbicide-binding site, although the site is probably not sensitive in vivo to these herbicides due to its higher affinity for phylloquinone than herbicides. The inhibitor specificity of the PS I phylloquinone site is different from that of the other quinone-functioning sites in the photosynthetic or respiratory electron-transfer chain, suggesting it to have a unique structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号