首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Significant metabolism of 5 alpha-androstane-3 beta,17 beta-diol to 17 beta-hydroxy-5 alpha-androstan-3-one was recorded in several tissues and organs from rats and humans. This bioconversion was further investigated in rat testis homogenates. 5 alpha-Androstane-3 beta,17 beta-diol was readily metabolized to 17 beta-hydroxy-5 alpha-androstan-3-one with NAD and/or NADP added as cofactors. When a NADPH generating system was included in the incubation, 5 alpha-androstane-3 beta,17 beta-diol was metabolized to 5 alpha-androstan-3 alpha,17 beta-diol. Only small amounts of 17 beta-hydroxy-5 alpha-androstan-3-one accumulated under the latter condition.  相似文献   

2.
Conversion of labelled 5 alpha-androstane-17 beta-ol-3-one (DHT) by isolated testicular cells from rats of different ages was examined under saturating substrate conditions in vitro (5--10 micrograms DHT/ml in a 24 h incubation). Two detectable metabolites of DHT were produced by testicular cells in vitro. 5 alpha-androstane-3 alpha, 17 beta-diol (3 alpha-diol) and 5 alpha-androstane-3 beta, 17 beta-diol (3 beta-diol). Production of these diols during a 24 h period was linear, and the amounts formed were directly related to the cell number. The amount of 3 alpha- and 3 beta-diols formed by testicular cells of rats of different ages increased from Day 10 to Day 25, then declined. Testicular cells from rats 10 to 20 days of age converted DHT mainly to 3 alpha-diol, but thereafter 3 beta-diol was the predominant testicular metabolite of DHT.  相似文献   

3.
The direct effect of ethanol on dihydrotestosterone (DHT) conversion to 5 alpha-androstan-3 beta,17 beta-diol (3 beta-diol) and 5 alpha-androstan-3 alpha,17 beta-diol (3 alpha-diol) by adult rat Leydig cells was examined. Concentrations of ethanol comparable to blood levels of alcoholic men (2.2 - 65 mM) increased DHT conversion to 3 beta - and 3 alpha-diol, in direct relation to the dose of ethanol added; a 2-fold or greater stimulation was observed. Because this effect was blocked by 4-methylpyrazole or a saturating NADH concentration, these results suggest that this action is mediated by Leydig cell alcohol dehydrogenase activity. These results may have significant impact in the testis and/or other DHT sensitive tissues because ethanol may decrease the availability of the proposed active androgen.  相似文献   

4.
The metabolism of 5 alpha-dihydrotestosterone by adult sheep blood was investigated. Erythrocytes contain 3 alpha- and 3 beta-hydroxysteroid dehydrogenase activities. The mean rate of reduction of 5 alpha-dihydrotestosterone by erythrocytes established in 15-min incubations was 0.66 +/- 0.36 (s.d.) mumol ml-1 erythrocytes h-1 and at equilibrium after a 60-min incubation, 90.6 +/- 5.1% of the substrate was reduced. The reduction of 5 alpha-dihydrotestosterone was shown to be dependent upon extracellular glucose and the intracellular cofactor NADPH. The proportion of the two reduction products was determined at equilibrium after separation by paper partition, chromatography and favoured 5 alpha-androstane-3 alpha, 17 beta-diol (96.0%) to 5 alpha-androstane-3 beta, 17 beta-diol (4.0%). The identities and proportions of the two products were confirmed by recrystallization procedures. The fact that erythrocytes can significantly metabolize the androgen 5 alpha-dihydrotestosterone is evidence for the recognition of blood as a major component of steroid endocrine homeostasis in sheep.  相似文献   

5.
3alpha-Hydroxysteroid oxidoreductases catalyzing the interconversion between 17 beta-hydroxy-5alpha-androstan-3-one (5alpha-dihydrotestosterone) and 5alpha-androstane-3alpha, 17 beta-diol (3alpha-androstanediol) have been studied in rat kidney. Three enzymes can be distinguished: a soluble NADPH-dependent oxidoreductase, a microsomal NADPH-dependent enzyme and a microsomal NADH-linked enzyme. Traces of the microsomal enzymes are consistently observed in the 108 000 X g supernatant. Studies on crude preparations reveal that these enzymes differ not only in subcellular localization and co-factor requirement, but also in optimum pH, kinetic characteristics, sensitivity to potential steroidal inhibitors and sensitivity to detergents, ionic strength and temperature. Moreover, salient sex differences exist in the activity of all three kidney enzymes. The soluble NADPH-dependent enzyme is more active in female rats whereas both microsomal enzymes are considerably more active in male animals. The microsomal NADH-dependent oxidoreductase displays favorable characteristics to catalyze the 3alpha-dehydrogenation of 3alpha-androstanediol. Evidence is presented that it is mainly this enzyme that enables the kidney to use 3alpha-androstanediol as an efficient precursor for the local formation of 5alpha-dihydrotestosterone.  相似文献   

6.
Androsterone (3alpha-hydroxy-5alpha-androstan-17-one), 5alpha-androstane-3alpha, 17beta-diol and 5alpha-androstane-3beta, 17beta-diol were conjugated at C-16 through sulfur to bovine and human serum albumin. Rabbits injected with these conjugates produced antibodies suitable for radioimmunoassays of these hormone metabolites. Samples were purified on Sephadex LH-20 columns. Levels of these steroids were measured in a rat blood serum pool and in ovarian tissue extract pools.  相似文献   

7.
Our studies demonstrate that direct stimulation of dihydrotestosterone metabolism by ethanol (2.2 - 65 mM) in rat Leydig cells primarily involves an increase in 5 alpha-androstan-3 beta, 17 beta-diol. Although the enzyme catalyzing this conversion, 5 alpha-androstane-3 beta-hydroxysteroid dehydrogenase, is localized in the microsomal fraction of Leydig cells, ethanol does not increase 5 alpha-androstan-3 beta, 17 beta-diol formation in isolated microsomes, presumably because of the removal of soluble alcohol dehydrogenase activity, which we propose mediates this action. Because 5 alpha-androstan-3 beta, 17 beta-diol is generally considered a weak or inactive androgen, this effect may function to decrease dihydrotestosterone secretion by Leydig cells and/or to reduce the availability of this androgen in responsive tissues.  相似文献   

8.
9.
5 alpha-Androstane-3 alpha,17 beta-diol (3 alpha-diol) and 5 alpha-androstane-3 beta,17 beta-diol (3 beta-diol) were measured in human peripheral plasma by radioimmunoassay using celite microcolumn purification. The antisera used for the assay were obtained by immunization of rabbits with 3 alpha,17 beta-dihydroxy-5 alpha-androstane-6-(O-carboxymethyl) oxime: BSA for 3 alpha-diol and 3 beta,17 beta-dihydroxy-5 alpha-androstane-15 alpha-carboxymethyl: BSA for 3 beta-diol. The concentrations (pg/ml +/- SD) of the two diols in normal male and female plasma are respectively: 216 +/- 51 and 49 +/- 32 for 3 alpha-diol, 239 +/- 76 and 82 +/- 45 for 3 beta-diol. Comparison of these results with published ones shows that 3 beta diol concentrations were significantly lower. The high specificity of the assay is due to chromatography on celite microcolumns, allowing elimination of 5-androstene-3 beta,17 beta-diol from the plasma sample.  相似文献   

10.
The present results demonstrate for the first time in rat liver, that low ethanol concentrations (2.2 and 22 mM) directly stimulate dihydrotestosterone conversion to 5 alpha-androstan-3 alpha, 17 beta-diol and 5 alpha-androstan-3 beta, 17 beta-diol. Because this effect was blocked by 4-methylpyrazole, an alcohol dehydrogenase inhibitor, or by the addition of a saturating NADH concentration, this action probably is mediated by hepatic alcohol dehydrogenase activity through elevation of the NADH/NAD+ ratio. It remains to be determined whether this effect of ethanol actually reduces circulating and/or target tissue dihydrotestosterone levels; nevertheless, it is tempting to speculate that this action, in part, is responsible for the reported adverse effects of alcohol on male reproductive functions.  相似文献   

11.
S M Ho  P Ofner 《Steroids》1986,47(1):21-34
The goal of the present research was characterization of the interaction of 5 alpha-androstane-3 beta, 17 beta-diol (3 beta-diol) with prostatic estradiol-17 beta(E2) binding sites to address the role of this 5 alpha-dihydrotestosterone(DHT)a metabolite in prostatic regulation. Using dextran-charcoal assay we demonstrated specific 3 beta-diol and E2 binding sites in rat ventral prostate cytosol (RVPC) and dog prostate cytosol (DPC). In both cytosols, E2 binding is of high affinity (Ka congruent to 10(9) M-1; RVPC:68 fmol/mg protein), DPC:170 fmol/mg protein), and 3 beta-diol binding is of moderate affinity (Ka congruent to 10(8) M-1; RVPC:62 fmol/mg protein, DPC:165 fmol/mg protein). Unlabeled 3 beta-diol competes effectively for cytosolic 3H-E2 binding sites, whereas unlabeled DHT, 5 alpha-androstane-3 alpha, 17 beta-diol (3 alpha-diol) and testosterone (T) are poor competitors for 3H-E2 binding sites. Using DNA-cellulose column chromatography, we separated prostatic androgen and estrogen binding activities. The E2 binding activity which adhered to DNA-cellulose was displaced by 100-fold excess 3 beta-diol but not by DHT. Thus data from two assay procedures show competition of 3 beta-diol for 3H-E2 binding sites in rat and dog prostate.  相似文献   

12.
The concentrations of testosterone and its tissular metabolites were determined in testicular and epididymal tissue obtained from eleven male subjects (aged 65-85 years) after orchiectomy for prostatic cancer. The steroids were measured in different tissular compartments, i.e. testis, caput, corpus and cauda epididymis. The values (mean +/- SD; ng/g wet weight) were: Testosterone 724.0 +/- 286.0, 32.08 +/- 2.56, 41.45 +/- 1.77 and 32.24 +/- 2.14; 5 alpha-dihydrotestosterone 6.95 +/- 1.99, 9.76 +/- 2.33, 16.87 +/- 0.21 and 15.79 +/- 2.67; 5 alpha-androstane-3 alpha, 17 beta-diol 6.07 +/- 2.33, 2.17 +/- 0.24, 1.93 +/- 0.02 and 1.17 +/- 0.20; 5 alpha-androstane-3 beta, 17 beta-diol 56.66 +/- 20.97, 3.55 +/- 0.19, 2.21 +/- 0.27 and 3.34 +/- 0.32; estradiol-17 beta 5.36 +/- 3.0, 1.08 +/- 0.014, 1.44 +/- 0.038 and 1.47 +/- 0.03, respectively. Incubation of human testicular tissue with [3H]androst-5-ene-3 beta, 17 beta-diol or [3H]dihydrotestosterone showed that both androstane-diols were exclusively formed from dihydrotestosterone. Since high concentrations of 5 alpha-androstane-3 beta, 17 beta-diol are found in testicular tissue it is suggested that this steroid may be an index of seminiferous tubular function.  相似文献   

13.
The steroids 7 alpha,17 beta-dihydroxy-5 alpha-androstan-3-one (7 alpha-hydroxy-Dht), 5 alpha-androstan-3 alpha,7 alpha,17 beta-triol (7 alpha-hydroxy-3 alpha-A'DIOL) and 5 alpha-androstane-3 beta,7 alpha,17 beta-triol (7 alpha-hydroxy-3 beta-A'DIOL) have been synthetized from 7 alpha,17 beta-dihydroxy-4-androsten-3-one (7 alpha-hydroxy-testosterone). The effect of administering 7 alpha-hydroxy-Dht, 7 alpha-hydroxy-3 alpha-A'DIOL or 7 alpha-hydroxy-3 beta-A'DIOL on serum levels of LH, FSH and on ventral prostate and seminal vesicle weight were investigated in gonadectomized adult male rats. Each steroid was administered for seven days in a dose of 300 micrograms per day. No suppression of serum LH or FSH levels was recorded following injections of these 7 alpha-hydroxylated steroids to castrated rats, compared to castrated control rats receiving vehicle only. Administration of 7 alpha-hydroxy-Dht or 7 alpha-hydroxy-3 alpha-A'DIOL to castrated mature rats could maintain ventral prostate and seminal vesicle weights above that of castrated control rats. Administration of 7 alpha-hydroxy-3 beta-A'DIOL to castrated mature rats resulted in ventral prostate weights slightly above castrate control levels, while seminal vesicle weight in such rats were in the same range as castrated control rats. Intraperitoneal administration of testosterone or of 5 alpha-androstane-3 beta,17 beta-diol (3 beta-A'DIOL) to castrated rats maintained activity of the androgen dependent isoenzyme of acid phosphatase in the ventral prostate; 7 alpha-hydroxy-testosterone or 7 alpha-hydroxy-3 beta-A'DIOL showed, however, no effect on this enzymic activity.  相似文献   

14.
This study has characterized two new enzymatic hydroxylase activities specific for 5 alpha-androstane-3 beta, 17 beta-diol (3 beta-diol) in the rat ventral prostate: 5 alpha-androstane-3 beta, 17 beta-diol 6 alpha-hydroxylase (6 alpha-hydroxylase) and 5 alpha-androstane-3 beta, 17 beta-diol 7 alpha-hydroxylase (7 alpha-hydroxylase). Both of these irreversible hydroxylase activities require NADPH and are localized in the microsomal fraction of the prostate. The apparent Km for 3 beta-diol is 2.5 microM for both the 6 alpha- and 7 alpha-hydroxylase activities. The apparent Km for NADPH is 7.6 microM for the 6 alpha-hydroxylase and 7.0 microM for the 7 alpha-hydroxylase. The pH optimum for both activities is 7.4. Several steroid inhibitors of these hydroxylase activities in vitro were identified including cholesterol, progesterone, and estradiol. Estradiol was found in vitro to be a noncompetitive inhibitor (Ki = 5 microM). Injection of estradiol into intact male rats, simultaneously receiving exogenous testosterone, also produced a significant lowering of the 6 alpha-plus 7 alpha-hydroxylase activities. Both the 6 alpha- and 7 alpha-hydroxylase were found to be androgen sensitive. Following castration there is a rapid decrease in both activities.  相似文献   

15.
Based on histological criteria, Kingsley and Bogdanove (3) reported that the benzoate ester of 17beta-hydroxy-5alpha-androstan-3-one (5alpha-DHT), unlike testosterone propionate, is unable to induce vaginal mucification when given subcutaneously to rats. In contrats, Kennedy (4) found in estrogen-pretreated rats that both 5alpha-DHT and testosterone induced vaginal mucification as indicated by increased vaginal sialic acid concentration.To determine if esterification of these androgens altered their ability to induce vaginal mucification, ovariectomized rats, pretreated for 3 days with 0.25 mug estradiol-17beta, were treated for 8 days with either sesame oil or 7 mumoles of testosterone, 5alpha-DHT and their respective propionate and benzoate esters. All treatments except 5-alpha-DHT benzoate increased vaginal weight and vaginal mucification, as assessed histochemically and biochemically. 5alpha-DHT propionate was less effective than 5alpha-DHT while testosterone benzoate, but not propionate was less effective than testosterone. To determine if estrogens are necessary for the vaginal effects of androgens, ovariectomized and ovariectomized-adrenalectomized rats were treated with testosterone or 5alpha-DHT. Adrenalectomy did not significantly affect the vaginal response to either androgen. It is therefore concluded that androgens are capable of inducing vaginal mucification in the absence of estrogens.  相似文献   

16.
P Ofner  R L Vena 《Steroids》1974,24(2):261-279
An unknown radiometabolite, formed in the canine prostate and epididymis after intra-arterial infusion of testosterone-4-14C in physiologic saline and extraction of the organs with ethyl acetate-acetone, was identified as the 3-monoacetate of 5α-androstane-3β, 17β-diol (3β-diol). Transformation of 3β-diol-14C to its identified 3-monoacetate derivative could also be demonstrated, if the incubation of the radiosubstrate with minced canine prostate was terminated by ethyl acetate extraction. The formation of polar products in high yield was noted. Whereas minced canine prostate actively converted 5α-androstane-3α,17β-diol-14C to 17β-hydroxy-5α-androstan-3-one-14C, the same preparation hydroxylated 3β-diol-14C predominantly at the 7ξ- and, to a lesser extent, at the 6ξ-positions. Partial identification of the hydroxylated radiometabolites was by crystallization of the CrO3-oxidation products 5α-androstane-3,6,17-trione-14C and 5α-androstane-3,7,17-trione-14C to constant SA and by GLC/MS of the latter derivative. NADPH-supplementation of the preparation enhanced the yield of hydroxylated products derived from 3β-diol-14C in a 1 hr incubation from 22% to 41%. Analogous supplemented incubations of benign hyperplastic human prostate and canine epididymis produced polar metabolites (in 12.5% and 76% yields, respectively) which gave rise to similar proportions of the same androstanetrione epimers on CrO3-oxidation.  相似文献   

17.
In the male rat pituitary, 5alpha-androstane-3beta, 17beta-diol (3beta-diol) is extensively metabolized into polar steroids. They were identified as 5alpha-androstane-3beta, 6alpha-17beta-triol (6alpha-triol) and 5alpha-androstane-3beta, 7alpha, 17beta-triol (7alpha-triol). 6-alpha-Triol represents 53% and 7alpha-Triol 28% of the total 3beta-diol metabolites. The remaining percentage is related to 6beta and 7beta isomers. The biological role of triols is still unknown.  相似文献   

18.
Serum sulphates of 5-androstene-3 beta,17 beta-diol (5-ADIOL-S), 5 alpha-androstane-3 alpha,17 beta-diol (3 alpha-DIOL-S) and dehydroepiandrosterone (DHEA-S), unconjugated androstene-dione (AD) and testosterone (T), sex hormone binding globulin (SHBG), free androgen index (FAI), 17 alpha-hydroxyprogesterone (17OHP), luteinising hormone (LH) and follicle stimulating hormone (FSH) were measured by specific radioimmunoassay in 28 hirsute women with polycystic ovarian disease (PCO) and in normal women (n = 73). Mean levels of steroids measured were significantly elevated, and SHBG significantly depressed, in the women with PCO with values (mean +/- SE) for 5-ADIOL-S (516 +/- 51 vs 267 +/- 10 nmol/l), 3 alpha-DIOL-S (130 +/- 9 vs 52 +/- 2 nmol/l), DHEA-S (7.3 +/- 0.5 vs 4.4 +/- 0.2 mumol/l), AD (11.3 +/- 1.1 vs 3.4 +/- 0.2 nmol/l), T (3.3 +/- 0.2 vs 1.5 +/- 0.1 nmol/l) and 17OHP (5.1 +/- 0.8 vs 2.8 +/- 0.2 nmol/l). SHBG levels were 31 +/- 2.9 vs 65 +/- 2.5 nmol/l, and the free androgen index [100 x T (nmol/l) divided by (SHBG nmol/l)] was 12.5 +/- 1.4 vs 2.4 +/- 0.1. The mean LH to FSH ratio was also elevated at 2.8 +/- 0.3. These studies suggest that the measurement of 5-ADIOL-S and DHEA-S may indicate adrenal gland involvement in PCO while 3 alpha-DIOL-S appears to be a reflection of peripheral androgen metabolism. A comprehensive biochemical profile of PCO should thus include the analysis of these sulphoconjugates as well as unconjugated steroids.  相似文献   

19.
20.
Rat ventral prostate and liver were investigated for the binding in vitro to particulate fractions and for the metabolism of 5 alpha-androstane-3 beta, 17 beta-diol. Comparative investigations were carried out on the metabolism of 5 alpha-androstane-3 alpha, 17 beta-diol. Preparations of the liver were investigated in order to establish the organ specificity of the method. In the prostate, the bulk of the metabolites of 5 alpha-androstane-3 beta, 17 beta-diol was present as steroids of high polarity. Of the less polar metabolites, 17 beta-hydroxy-5 alpha-androstan-3-one, 3 beta-hydroxy-5 alpha-androstan, 17-one and 5 alpha-androstane-3 alpha, 17 beta-diol were detectable. The binding of a 5 alpha-androstane-3 beta, 17 beta-diol to mitochondria and microsomes was unspecific. In the liver, among the less polar metabolites, 3 beta-hydroxy-5 alpha-androstan-17-one was the main metabolite, and the binding was unspecific. The main metabolite in the prostate homogenate of 5 alpha-androstane-3 alpha, 17 beta-diol was 17 beta-hydroxy-5 alpha-androstan-3-one. The portion of highly polar steroids was very low. The portion of unmetabolized hormone was distributed almost equally among the different cell preparations except the nuclei, in which 17 beta-hydroxy-5 alpha-androstan-3-one was higher and 5 alpha-androstane-3 alpha, 17 beta-diol was lower than in the remaining cell fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号