首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bacterial enrichment cultures developed with Baltimore Harbor (BH) sediments were found to reductively dechlorinate 2,3,5,6-tetrachlorobiphenyl (2,3,5,6-CB) when incubated in a minimal estuarine medium containing short-chain fatty acids under anaerobic conditions with and without the addition of sediment. Primary enrichment cultures formed both meta and ortho dechlorination products from 2,3,5,6-CB. The lag time preceding dechlorination decreased from 30 to less than 20 days as the cultures were sequentially transferred into estuarine medium containing dried, sterile BH sediment. In addition, only ortho dechlorination was observed following transfer of the cultures. Sequential transfer into medium without added sediment also resulted in the development of a strict ortho-dechlorinating culture following a lag of more than 100 days. Upon further transfer into the minimal medium without sediment, the lag time decreased to less than 50 days. At this stage all cultures, regardless of the presence of sediment, would produce 2,3,5-CB and 3,5-CB from 2,3,5,6-CB. The strict ortho-dechlorinating activity in the sediment-free cultures has remained stable for more than 1 year through several transfers. These results reveal that the classical microbial enrichment technique using a minimal medium with a single polychlorinated biphenyl (PCB) congener selected for ortho dechlorination of 2,3,5,6-CB. Furthermore, this is the first report of sustained anaerobic PCB dechlorination in the complete absence of soil or sediment.Anaerobic dechlorination of polychlorinated biphenyls (PCBs) has been demonstrated in situ and with laboratory microcosms containing sediment (reviewed in reference 1a). However, sustained PCB dechlorination has never been shown to occur in the absence of soil or sediments. Morris et al. (6) demonstrated a sediment requirement for the stimulation of PCB dechlorination within freshwater sediment slurries. Wu and Wiegel have recently described PCB-dechlorinating enrichments which required soil for the successful transfer of PCB-dechlorinating activity (9). In addition, no anaerobic microorganisms that dechlorinate PCBs have been isolated or characterized, and this may be due in part to the soil or sediment requirement. The inability to isolate dechlorinating organisms or maintain dechlorination without sediment has limited biogeochemical and physiological investigations into the mechanisms of PCB dechlorination.Dechlorination (ortho, meta, and para) of single PCB congeners has been observed following anaerobic incubation of Baltimore Harbor (BH) sediment under estuarine or marine conditions (2). While sediments from several sites within BH are contaminated with PCBs (1, 5), background contamination of sediment is not necessarily a prerequisite for the development of PCB dechlorination in laboratory microcosms. Wu et al. (8) recently demonstrated meta and ortho dechlorination of Aroclor 1260 when it was added to the same BH sediments. These results showed that more than one dechlorinating activity could be developed with these sediments. It has been proposed that discrete microbial populations are responsible for specific PCB dechlorinations (1a). Consistent with this idea, the ortho dechlorination observed with BH sediments may be catalyzed by discrete microbial populations. In addition, these organisms may be able to couple PCB dechlorination with growth. Therefore we have attempted to select for ortho PCB-dechlorinating organisms by enrichment under minimal conditions with high levels of 2,3,5,6-tetrachlorobiphenyl. We also speculated that given the proper conditions, a PCB-dechlorinating population could be maintained in an actively dechlorinating state in the absence of sediment. Here we report that a distinct PCB-dechlorinating activity, namely, ortho dechlorination, was selected for through sequential transfer initiated with sediments from BH and sustained in the absence of soil or sediment. This is the first report of sustained anaerobic PCB-dechlorinating activity in the total absence of sediment.  相似文献   

2.
The specific dechlorination pathways for Aroclor 1260 were determined in Baltimore Harbor sediment microcosms developed with the 11 most predominant congeners from this commercial mixture and their resulting dechlorination intermediates. Most of the polychlorinated biphenyl (PCB) congeners were dechlorinated in the meta position, and the major products were tetrachlorobiphenyls with unflanked chlorines. Using PCR primers specific for the 16S rRNA genes of known PCB-dehalogenating bacteria, we detected three phylotypes within the microbial community that had the capability to dechlorinate PCB congeners present in Aroclor 1260 and identified their selective activities. Phylotype DEH10, which has a high level of sequence identity to Dehalococcoides spp., removed the double-flanked chlorine in 234-substituted congeners and exhibited a preference for para-flanked meta-chlorines when no double-flanked chlorines were available. Phylotype SF1 had similarity to the o-17/DF-1 group of PCB-dechlorinating bacteria. Phylotype SF1 dechlorinated all of the 2345-substituted congeners, mostly in the double-flanked meta position and 2356-, 236-, and 235-substituted congeners in the ortho-flanked meta position, with a few exceptions. A phylotype with 100% sequence identity to PCB-dechlorinating bacterium o-17 was responsible for an ortho and a double-flanked meta dechlorination reaction. Most of the dechlorination pathways supported the growth of all three phylotypes based on competitive PCR enumeration assays, which indicates that PCB-impacted environments have the potential to sustain populations of these PCB-dechlorinating microorganisms. The results demonstrate that the variation in dechlorination patterns of congener mixtures typically observed at different PCB impacted sites can potentially be mediated by the synergistic activities of relatively few dechlorinating species.  相似文献   

3.
We used gas chromatography-mass spectrometry to study the metabolic fate of 2,3,5,6-tetrachlorobiphenyl (2356-CB) (350 μM) incubated with unacclimated methanogenic pond sediment. The 2356-CB was dechlorinated to 25-CB (21%), 26-CB (63%), and 236-CB (16%) in 37 weeks. This is the first experimental demonstration of ortho dechlorination of a polychlorinated biphenyl by anaerobic microorganisms.  相似文献   

4.
The rate, extent, and pattern of dechlorination of four Aroclors by inocula prepared from two polychlorinated biphenyl (PCB)-contaminated sediments were compared. The four mixtures used, Aroclors 1242, 1248, 1254, and 1260, average approximately three, four, five, and six chlorines, respectively, per biphenyl molecule. All four Aroclors were dechlorinated with the loss of meta plus para chlorines ranging from 15 to 85%. Microorganisms from an Aroclor 1242-contaminated site in the upper Hudson River dechlorinated Aroclor 1242 to a greater extent than did microorganisms from Aroclor 1260-contaminated sediments from Silver Lake, Mass. The Silver Lake inoculum dechlorinated Aroclor 1260 more rapidly than the Hudson River inoculum did and showed a preferential removal of meta chlorines. For each inoculum the rate and extent of dechlorination tended to decrease as the degree of chlorination of the Aroclor increased, especially for Aroclor 1260. The maximal observed dechlorination rates were 0.3, 0.3, and 0.2 μg-atoms of Cl removed per g of sediment per week for Aroclors 1242, 1248, and 1254, respectively. The maximal observed dechlorination rates for Hudson River and Silver Lake organisms for Aroclor 1260 were 0.04 and 0.21 μg-atoms of Cl removed per g of sediment per week, respectively. The dechlorination patterns obtained suggested that the Hudson River microorganisms were more capable than the Silver Lake organisms of removing the last para chlorine. These results suggest that there are different PCB-dechlorinating microorganisms at different sites, with characteristic specificities for PCB dechlorination.  相似文献   

5.
Reductive dechlorination of the ortho moiety of polychlorinated biphenyls (PCBs) as well as of meta and para moieties is shown to occur in anaerobic enrichments of Baltimore Harbor sediments. These estuarine sediments ortho dechlorinated 2,3,5,6-chlorinated biphenyl (CB), 2,3,5-CB, and 2,3,6-CB in freshwater or estuarine media within a relatively short period of 25 to 44 days. ortho dechlorination developed within 77 days in marine medium. High levels of ortho dechlorination (>90%) occurred when harbor sediments were supplied with only 2,3,5-CB. Incubation with 2,3,4,5,6-CB or 2,3,4,5-CB resulted in the formation of the ortho dechlorination product 3,5-CB; however, para dechlorination of these congeners always preceded ortho chlorine removal. ortho dechlorination of PCBs is an exceedingly rare event that has not been reported previously for marine or estuarine conditions. The activity was reproducible and could be sustained through sequential transfers. In contrast, freshwater sediments incubated under the same conditions exhibited only meta and para dechlorinations. The results indicate that unique anaerobic dechlorinating activity is catalyzed by microorganisms in the estuarine sediments from Baltimore Harbor.  相似文献   

6.
Estuarine sediment from Charleston Harbor, South Carolina, was used as inoculum for the development of an anaerobic enrichment culture that specifically dechlorinates doubly flanked chlorines (i.e., chlorines bound to carbon that are flanked on both sides by other chlorine-carbon bonds) of polychlorinated biphenyls (PCBs). Dechlorination was restricted to the para chlorine in cultures enriched with 10 mM fumarate, 50 ppm (173 μM) 2,3,4,5-tetrachlorobiphenyl, and no sediment. Initially the rate of dechlorination decreased upon the removal of sediment from the medium. However, the dechlorinating activity was sustainable, and following sequential transfer in a defined, sediment-free estuarine medium, the activity increased to levels near that observed with sediment. The culture was nonmethanogenic, and molybdate, ampicillin, chloramphenicol, neomycin, and streptomycin inhibited dechlorination activity; bromoethanesulfonate and vancomycin did not. Addition of 17 PCB congeners indicated that the culture specifically removes double flanked chlorines, preferably in the para position, and does not attack ortho chlorines. This is the first microbial consortium shown to para or meta dechlorinate a PCB congener in a defined sediment-free medium. It is the second PCB-dechlorinating enrichment culture to be sustained in the absence of sediment, but its dechlorinating capabilities are entirely different from those of the other sediment-free PCB-dechlorinating culture, an ortho-dechlorinating consortium, and do not match any previously published Aroclor-dechlorinating patterns.  相似文献   

7.
  An anaerobic methanogenic microbial consortium, developed in a granular form, exhibited extensive dechlorination of defined polychlorinated biphenyl (PCB) congeners. A 2,3,4,5,6-pentachlorobiphenyl was dechlorinated to biphenyl via 2,3,4,6-tetrachlorobiphenyl, 2,4,6-trichlorobiphenyl, 2,4-dichlorobi-phenyl and 2-chlorobiphenyl (CB). Removal of chlorine atoms from all three positions of the biphenyl ring, i.e., ortho, meta and para, was observed during this reductive dechlorination process. Biphenyl was identified as one of the end-products of the reductive dechlorination by GC-MS. After 20 weeks, the concentrations of the dechlorination products 2,4,6-CB, 2,4-CB, 2-CB and biphenyl were 8.1, 41.2, 3.0 and 47.8 μM respectively, from an initial 105 μM 2,3,4,5,6-CB. The extent and pattern of the dechlorination were further confirmed by the dechlorination of lightly chlorinated congeners including 2-CB, 3-CB, 4-CB, 2,4-CB and 2,6-CB individually. This study indicates that the dechlorination of 2,3,4,5,6-CB to biphenyl is due to ortho, meta and para dechlorination by this anaerobic microbial consortium. Received: 30 April 1996 / Received revision: 26 July 1996 / Accepted: 5 August 1996  相似文献   

8.
The upper Housatonic River and Woods Pond (Lenox, Mass.), a shallow impoundment on the river, are contaminated with polychlorinated biphenyls (PCBs), the residue of partially dechlorinated Aroclor 1260. Certain PCB congeners have the ability to activate or “prime” anaerobic microorganisms in Woods Pond sediment to reductively dehalogenate the Aroclor 1260 residue. We proposed that brominated biphenyls might have the same effect and tested the priming activities of 14 mono-, di-, and tribrominated biphenyls (350 μM) in anaerobic microcosms of sediment from Woods Pond. All of the brominated biphenyls were completely dehalogenated to biphenyl, and 13 of them primed PCB dechlorination. Measured in terms of chlorine removal and decrease in the proportion of hexa- through nonachlorobiphenyls, the microbial PCB dechlorination primed by several brominated biphenyls was nearly twice as effective as that primed by chlorinated biphenyls. Congeners containing a meta bromine primed Dechlorination Process N (flanked meta dechlorination), and congeners containing an unflanked para bromine primed Dechlorination Process P (flanked para dechlorination). Two ortho-substituted congeners, 2-bromobiphenyl and 2,6-dibromobiphenyl (2-BB and 26-BB), also primed Process N dechlorination. The most effective primers were 26-BB, 245-BB, 25-3-BB, and 25-4-BB. The microbial dechlorination primed by 26-BB converted ~75% of the hexa- through nonachlorobiphenyls to tri- and tetrachlorobiphenyls in 100 days and removed ~75% of the PCBs that are most persistent in humans. These results represent a major step toward identifying an effective method for accelerating PCB dechlorination in situ. The challenge now is to identify naturally occurring compounds that are safe and effective primers.  相似文献   

9.
Microbial reductive dechlorination of commercial polychlorinated biphenyl (PCB) mixtures (e.g., Aroclors) in aquatic sediments is crucial to achieve detoxification. Despite extensive efforts over nearly two decades, the microorganisms responsible for Aroclor dechlorination remained elusive. Here we demonstrate that anaerobic bacteria of the Dehalococcoides group derived from sediment of the Housatonic River (Lenox, MA) simultaneously dechlorinate 64 PCB congeners carrying four to nine chlorines in Aroclor 1260 in the sediment-free JN cultures. Quantitative real-time PCR showed that the Dehalococcoides cell titer in JN cultures amended with acetate and hydrogen increased from 7.07 × 106 ± 0.42 × 106 to 1.67 × 108 ± 0.04 × 108 cells/ml, concomitant with a 64.2% decrease of the PCBs with six or more chlorines in Aroclor 1260. No Dehalococcoides growth occurred in parallel cultures without PCBs. Aroclor 1260 dechlorination supported the growth of 9.25 × 108 ± 0.04 × 108 Dehalococcoides cells per μmol of chlorine removed. 16S rRNA gene-targeted PCR analysis of known dechlorinators (i.e., Desulfitobacterium, Dehalobacter, Desulfuromonas, Sulfurospirillum, Anaeromyxobacter, Geobacter, and o-17/DF-1-type Chloroflexi organisms) ruled out any involvement of these bacterial groups in the dechlorination. Our results suggest that the Dehalococcoides population present in the JN cultures also catalyzes in situ dechlorination of Aroclor 1260 in the Housatonic River. The identification of Dehalococcoides organisms as catalysts of extensive Aroclor 1260 dechlorination and our ability to propagate the JN cultures under defined conditions offer opportunities to study the organisms' ecophysiology, elucidate nutritional requirements, identify reductive dehalogenase genes involved in PCB dechlorination, and design molecular tools required for bioremediation applications.  相似文献   

10.
Anaerobic cultures capable of reductively dechlorinating 2,3,4,5-tetrachlorobiphenyl (CB) were enriched from three different sediments, one estuarine, one marine and one riverine. Two different electron donors were used in enrichments with the estuarine sediment (elemental iron or a mixture of fatty acids). The removal of doubly flanked meta and para chlorines to form 2,3,5-CB and 2,4,5-CB was observed in all cultures. Bacterial community analysis of PCR-amplified 16S rRNA gene fragments revealed different communities in these cultures, with the exception of one common population that showed a high phylogentic relatedness to Dehalococcoides species. No Dehalococcoides-like populations were ever detected in control cultures to which no PCBs were added. In addition, the dynamics of this Dehalococcoides-like population were strongly correlated with dechlorination. Subcultures of the estuarine sediment culture demonstrated that the Dehalococcoides-like population disappeared when dechlorination was inhibited with 2-bromoethanesulfonate or when 2,3,4,5-CB had been consumed. These results provide evidence that Dehalococcoides-like populations were involved in the removal of doubly flanked chlorines from 2,3,4,5-CB. Furthermore, the successful enrichment of these populations from geographically distant and geochemically distinct environments indicates the widespread presence of these PCB-dechlorinating, Dehalococcoides-like organisms.  相似文献   

11.
Q Wu  J Wiegel 《Applied microbiology》1997,63(12):4826-4832
Two anaerobic polychlorinated biphenyl (PCB)-dechlorinating enrichments with distinct substrate specificities were obtained: a 2,3,4,6-tetrachlorobiphenyl (2346-CB) para-dechlorinating enrichment derived from Aroclor 1260-contaminated Woods Pond (Lenox, Mass.) sediment and a 2,4,6-trichlorobiphenyl (246-CB) unflanked para-dechlorinating enrichment derived from PCB-free Sandy Creek Nature Center (Athens, Ga.) sediment. The enrichments have been successfully transferred to autoclaved soil slurries over 20 times by using 300 to 350 microM 2346-CB or 246-CB. Both enrichments required soil for successful transfer of dechlorination activity. The 2346-CB enrichment para dehalogenated, in the absence or presence of 2346-CB, only 4 of 25 tested para halogen-containing congeners: 234-CB, 2345-CB, 2346-CB, and 2,4,6-tribromobiphenyl (246-BrB). In the presence of 246-CB, the 246-CB enrichment para dehalogenated 23 of the 25 tested congeners. However, only three congeners (34-CB, 2346-CB, and 246-BrB) were dehalogenated in the absence of 246-CB, indicating that these specific congeners initiate dehalogenation in this enrichment culture. The addition of the 2346-CB (para)-dechlorinating enrichment did not further stimulate the 2346-CB-primed dechlorination of the Aroclor 1260 residue in Woods Pond sediment samples. Compared to the addition of the primer 246-CB or the 246-CB unflanked para-dechlorinating enrichment alone, the addition of both 246-CB (300 microM) and the 246-CB enrichment stimulated the unflanked para dechlorination of the Aroclor 1260 residue in Woods Pond sediments. These results indicate that the two enrichments contain different PCB-dechlorinating organisms, each with high substrate specificities. Furthermore, bioaugmentation with the enrichment alone did not stimulate the desired dechlorination in PCB-contaminated Woods Pond sediment.  相似文献   

12.
Q Wu  D L Bedard    J Wiegel 《Applied microbiology》1997,63(12):4818-4825
Reductive dechlorination of the Aroclor 1260 residue in Woods Pond (Lenox, Mass.) sediment samples was investigated for a year at incubation temperatures from 4 to 66 degrees C. Sediment slurries were incubated anaerobically with and without 2,3,4,6-tetrachlorobiphenyl (2346-CB; 350 microM) as a primer for dechlorination of the Aroclor 1260 residue. Dechlorination of the Aroclor residue occurred only in live samples primed with 2346-CB and only at 8 to 34 degrees C and 50 to 60 degrees C. The extent and pattern of polychlorinated biphenyl (PCB) dechlorination were temperature dependent. At 8 to 34 degrees C, the dechlorination resulted in 28 to 65% decreases of the hexathrough nonachlorobiphenyls and corresponding increases in the tri- and tetrachlorobiphenyls. At 12 to 30 degrees C, 30 to 40% of the hexa- through nonachlorobiphenyls were dechlorinated in just 3 months. The optimal temperature for overall chlorine removal was 20 to 27 degrees C. We observed four different microbial dechlorination processes with different but partially overlapping temperature ranges, i.e., Process N (flanked meta dechlorination) at 8 to 30 degrees C, Process P (flanked para dechlorination) at 12 to 34 degrees C, Process LP (unflanked para dechlorination) at 18 to 30 degrees C, and Process T (a very restricted meta dechlorination of specific hepta- and octachlorobiphenyls) at 50 to 60 degrees C. These temperature ranges should aid in the development of strategies for the enrichment and isolation of the microorganisms responsible for each dechlorination process. The incubation temperature determined the relative dominance of the four PCB dechlorination processes and the extent and products of dechlorination. Hence, understanding the effects of temperature on PCB dechlorination at contaminated sites should assist in predicting the environmental fate of PCBs or planning bioremediation strategies at those sites.  相似文献   

13.
14.
Microbial reductive dechlorination of the persistent polychlorinated biphenyls (PCBs) is attracting much attention in cleanup of the contaminated environment. Nevertheless, most PCB dechlorinating cultures require presence of sediment or sediment substitutes to maintain their dechlorination activities which hinders subsequent bacterial enrichment and isolation processes. The information on enriching sediment-free PCB dechlorinating cultures is still limited. In this study, 18 microcosms established with soils and sediments were screened for their dechlorination activities on a PCB mixture – Aroclor 1260. After one year of incubation, 10 out of 18 microcosms showed significant PCB dechlorination with distinct dechlorination patterns (e.g., Process H, N and T classified based on profiles of PCB congeners loss and new congeners formation). Through serial transfers in defined medium, six sediment-free PCB dechlorinating cultures (i.e., CW-4, CG-1, CG-3, CG-4, CG-5 and SG-1) were obtained without amending any sediment or sediment-substitutes. PCB dechlorination Process H was the most frequently observed dechlorination pattern, which was found in four sediment-free cultures (CW-4, CG-3, CG-4 and SG-1). Sediment-free culture CG-5 showed the most extensive PCB dechlorination among the six cultures, which was mediated by Process N, resulting in the accumulation of penta- (e.g., 236-24-CB) and tetra-chlorobiphenyls (tetra-CBs) (e.g., 24-24-CB, 24-25-CB, 24-26-CB and 25-26-CB) via dechlorinating 30.44% hepta-CBs and 59.12% hexa-CBs after three months of incubation. For culture CG-1, dechlorinators mainly attacked double flanked meta-chlorines and partially ortho-chlorines, which might represent a novel dechlorination pattern. Phylogenetic analysis showed distinct affiliation of PCB dechlorinators in the microcosms, including Dehalogenimonas and Dehalococcoides species. This study broadens our knowledge in microbial reductive dechlorination of PCBs, and provides essential information for culturing and stimulating PCB dechlorinators for in situ bioremediation applications.  相似文献   

15.
Defined microbial communities were developed by combining selective enrichment with molecular monitoring of total community genes coding for 16S rRNAs (16S rDNAs) to identify potential polychlorinated biphenyl (PCB)-dechlorinating anaerobes that ortho dechlorinate 2,3,5,6-tetrachlorobiphenyl. In enrichment cultures that contained a defined estuarine medium, three fatty acids, and sterile sediment, a Clostridium sp. was predominant in the absence of added PCB, but undescribed species in the δ subgroup of the class Proteobacteria, the low-G+C gram-positive subgroup, the Thermotogales subgroup, and a single species with sequence similarity to the deeply branching species Dehalococcoides ethenogenes were more predominant during active dechlorination of the PCB. Species with high sequence similarities to Methanomicrobiales and Methanosarcinales archaeal subgroups were predominant in both dechlorinating and nondechlorinating enrichment cultures. Deletion of sediment from PCB-dechlorinating enrichment cultures reduced the rate of dechlorination and the diversity of the community. Substitution of sodium acetate for the mixture of three fatty acids increased the rate of dechlorination, further reduced the community diversity, and caused a shift in the predominant species that included restriction fragment length polymorphism patterns not previously detected. Although PCB-dechlorinating cultures were methanogenic, inhibition of methanogenesis and elimination of the archaeal community by addition of bromoethanesulfonic acid only slightly inhibited dechlorination, indicating that the archaea were not required for ortho dechlorination of the congener. Deletion of Clostridium spp. from the community profile by addition of vancomycin only slightly reduced dechlorination. However, addition of sodium molybdate, an inhibitor of sulfate reduction, inhibited dechlorination and deleted selected species from the community profiles of the class Bacteria. With the exception of one 16S rDNA sequence that had the highest sequence similarity to the obligate perchloroethylene-dechlorinating Dehalococcoides, the 16S rDNA sequences associated with PCB ortho dechlorination had high sequence similarities to the δ, low-G+C gram-positive, and Thermotogales subgroups, which all include sulfur-, sulfate-, and/or iron(III)-respiring bacterial species.The extensive industrial use of polychlorinated biphenyls (PCBs) during the 20th century has resulted in the release of an estimated several million pounds of PCBs into the environment (2). Due to the hydrophobicity and chemical stability of these compounds, PCBs ultimately accumulate in subsurface anaerobic sediments, where reductive dechlorination by anaerobic microorganisms is proposed to be an essential step in PCB degradation and detoxification (6). Although anaerobic reductive dechlorination has been documented in the environment and in the laboratory, attempts to identify and isolate anaerobic PCB-dechlorinating microbes by classical enrichment and isolation techniques have been unsuccessful (for a review, see reference 2). Isolation of anaerobic PCB-dechlorinating microbes has been hindered in part by the inability to maintain and sequentially transfer dechlorinating consortia in defined medium. May et al. (24) were the first to demonstrate that single colonies could be obtained by plating highly enriched PCB-dechlorinating enrichment cultures on agar-solidified media. Although two of the colonies exhibited para dechlorination activity when transferred back to liquid enrichment medium, the colonies contained a mixed community of microorganisms and dechlorination required the addition of sediment to the medium. More recently, highly enriched PCB-ortho-dechlorinating enrichment cultures were developed from Baltimore Harbor sediments in minimal media that contained sediments and a single congener (3) or Aroclor 1260 (37). These were the first confirmed reports of sustained ortho dechlorination of PCBs throughout sequential transfers in medium with estuarine sediments. Finally, Cutter et al. demonstrated that a consortium of PCB-ortho-dechlorinating anaerobes from Baltimore Harbor could be sequentially transferred and maintained in minimal medium without the addition of sterile sediment (9). With the ability to maintain PCB dechlorination in a completely defined medium, highly enriched PCB-dechlorinating consortia could be developed by sequential transfers in medium that contained the minimal growth requirements for dechlorinating species.The current study identifies putative PCB-dechlorinating anaerobes in ortho-dechlorinating enrichment cultures by a comprehensive approach that combines traditional selective enrichment techniques with molecular monitoring (SEMM). Microbial consortia enriched for PCB ortho dechlorination in minimal medium were analyzed by comparative sequence analysis of genes coding for 16S rRNA (16S rDNA) amplified from total community DNAs. Protocols were developed for chromosomal DNA extraction from sediment, 16S rDNA amplification by PCR, cloning of partial 16S rDNA PCR fragments, screening by restriction fragment length polymorphism (RFLP) analysis, and DNA sequencing for comparative sequence analysis. By utilizing these techniques, shifts in the microbial community were monitored as the cultures were further enriched for PCB-dechlorinating anaerobes by elimination of undefined medium components (i.e., sediment), changes in carbon source, and addition of selective physiological inhibitors. The results presented herein demonstrate the applicability of the SEMM approach for the selection and monitoring of highly defined PCB-dechlorinating microbial consortia.  相似文献   

16.
The specific dechlorination pathways for Aroclor 1260 were determined in Baltimore Harbor sediment microcosms developed with the 11 most predominant congeners from this commercial mixture and their resulting dechlorination intermediates. Most of the polychlorinated biphenyl (PCB) congeners were dechlorinated in the meta position, and the major products were tetrachlorobiphenyls with unflanked chlorines. Using PCR primers specific for the 16S rRNA genes of known PCB-dehalogenating bacteria, we detected three phylotypes within the microbial community that had the capability to dechlorinate PCB congeners present in Aroclor 1260 and identified their selective activities. Phylotype DEH10, which has a high level of sequence identity to Dehalococcoides spp., removed the double-flanked chlorine in 234-substituted congeners and exhibited a preference for para-flanked meta-chlorines when no double-flanked chlorines were available. Phylotype SF1 had similarity to the o-17/DF-1 group of PCB-dechlorinating bacteria. Phylotype SF1 dechlorinated all of the 2345-substituted congeners, mostly in the double-flanked meta position and 2356-, 236-, and 235-substituted congeners in the ortho-flanked meta position, with a few exceptions. A phylotype with 100% sequence identity to PCB-dechlorinating bacterium o-17 was responsible for an ortho and a double-flanked meta dechlorination reaction. Most of the dechlorination pathways supported the growth of all three phylotypes based on competitive PCR enumeration assays, which indicates that PCB-impacted environments have the potential to sustain populations of these PCB-dechlorinating microorganisms. The results demonstrate that the variation in dechlorination patterns of congener mixtures typically observed at different PCB impacted sites can potentially be mediated by the synergistic activities of relatively few dechlorinating species.  相似文献   

17.
When di-, tri-, and tetrachloroaniline were incubated in methanogenic groundwater slurries, they were reductively dehalogenated by the aquifer microbiota. 2,3,4-Trichloroaniline was metabolized by two pathways. Primary dehalogenation occurred at either the meta or ortho position of this substrate to form 2,4- and 3,4-dichloroaniline, respectively. The latter chemical could be stoichiometrically converted to 3-chloroaniline. 2,3,4,5-Tetrachloroaniline was degraded by the sequential removal of halogens from the para and then the ortho position to form 3,5-dichloroaniline. An additional pathway was observed with this substrate when the aquifer slurries were amended with butyrate. That is, halogens could be removed from both the meta and ortho positions of tetrachloroaniline. The amendment of sulfate to methanogenic aquifer slurries slowed the rate of 2,3,4,5-tetrachloroaniline degradation and increased the amount of substrate channeled through the additional pathway. The reported intermediates or end products are identified by their chromatographic mobility and mass-spectral profiles.  相似文献   

18.
Three species within a deeply branching cluster of the Chloroflexi are the only microorganisms currently known to anaerobically transform polychlorinated biphenyls (PCBs) by the mechanism of reductive dechlorination. A selective PCR primer set was designed that amplifies the 16S rRNA genes of a monophyletic group within the Chloroflexi including Dehalococcoides spp. and the o-17/DF-1 group. Assays for both qualitative and quantitative analyses by denaturing gradient gel electrophoresis and most probable number-PCR, respectively, were developed to assess sediment microcosm enrichments that reductively dechlorinated PCBs 101 (2,2′,4,5,5′-CB) and 132 (2,2′,3,3′,4,6′-CB). PCB 101 was reductively dechlorinated at the para-flanked meta position to PCB 49 (2,2′,4,5′-CB) by phylotype DEH10, which belongs to the Dehalococcoides group. This same species reductively dechlorinated the para- and ortho-flanked meta-chlorine of PCB 132 to PCB 91 (2,2′,3′,4,6′-CB). However, another phylotype designated SF1, which is more closely related to the o-17/DF-1 group, was responsible for the subsequent dechlorination of PCB 91 to PCB 51 (2,2′,4,6′-CB). Using the selective primer set, an increase in 16S rRNA gene copies was observed only with actively dechlorinating cultures, indicating that PCB-dechlorinating activities by both phylotype DEH10 and SF1 were linked to growth. The results suggest that individual species within the Chloroflexi exhibit a limited range of congener specificities and that a relatively diverse community of species within a deeply branching group of Chloroflexi with complementary congener specificities is likely required for the reductive dechlorination of different PCBs congeners in the environment.  相似文献   

19.
Vitamin B12, reduced by titanium (III) citrate to vitamin B12s, catalyzes the reductive dechlorination of chlorophenols. Reductive dechlorination of pentachlorophenol and of all tetrachlorophenol and trichlorophenol isomers was observed. Reaction of various chlorophenols with vitamin B12 favored reductive dechlorination at positions adjacent to another chlorinated carbon, but chlorines ortho to the hydroxyl group of a phenol were particularly resistant to reductive dechlorination, even if they were also ortho to a chlorine. This resulted in a reductive dechlorination pattern favoring removal of para and meta chlorines, which differs substantially from the pattern exhibited by anaerobic microbial consortia.  相似文献   

20.
We investigated the microbial reductive dechlorination of both weathered (aged) and nonweathered (freshly added) Aroclor 1260 in aerobic soil from Resolution Island, Nunavut, Canada. Initial polychlorinated biphenyl (PCB) concentrations were 106 and 100 ppm, respectively. The aerobic soil samples were inoculated with anaerobic sediment, incubated at 30 degrees C until methanogenic, inoculated with a dechlorinating enrichment culture, and incubated a further 8 weeks. The average number of chlorine substituents per biphenyl molecule was biologically reduced from 6.6 to 5.1 and from 6.2 to 4.5 for weathered and nonweathered Aroclor 1260, respectively. Removal of hexa- and heptachlorobiphenyls (CBs), the major homolog groups present, was significantly greater for nonweathered than for weathered Aroclor 1260. Formation of dechlorination products, primarily 2,2',4,4'- and 2,2',4,6'-tetraCBs, was also significantly greater for nonweathered than for weathered Aroclor 1260. We additionally compared the dechlorination at 21 degrees C of weathered Aroclor 1260 in soils from Resolution Island and Saglek, Labrador, Canada. The average number of chlorine substituents per biphenyl molecule was biologically reduced from 6.7 to 5.1 and from 6.5 to 4.6, respectively. This study demonstrated the potential for bioremediation of aerobic soil contaminated with Aroclor 1260 and showed that weathering may limit such treatment to an extent variable among different soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号