首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Several steps of cAMP- and substrate-dependent testosterone production in the testes were studied with laboratory mouse micropopulations of six inbred strains (A/He, CBA/Lac, C57Bl/6J, DD, YT, PP). The strains differed in basal testosterone production in the gonads and in its response to activation of the adenylate cyclase signal transduction pathway at various steps by human chorionic gonadotropin (hCG), the cholera toxin, forskolin, and dibutyryl-cAMP and in the presence of pregnenolone, an early precursor of testosterone. Establishment of dominant–subordinate relationships in mouse populations substantially affected testosterone production in response to all activators of testicular steroidogenesis. The secretory activity of the testes decreased at the early establishment of social hierarchy in experimental micropopulations, then returned to the initial level, and again decreased in the case of activation with hCG, dibutyryl-cAMP, and pregnenolone. With all activators of steroidogenesis, basal and activated testosterone production changed in the same direction during the establishment and maintenance of social hierarchy, suggesting coordinated changes in all examined steps of testosterone biosynthesis in the testes. The among-strain differences in response to all activators of steroidogenesis remained much the same at various stages of the establishment of social hierarchy. The parameters of cAMP- and substrate-dependent testosterone production averaged over individual stages of the establishment of social hierarchy proved associated. Their genotypic correlations were positive and, in many cases, significant. Subsequent component analysis showed that one principal component accounted for more than 80% of the total among-strain variation, suggesting a coordinated genetic control of the endocrine function of the testes.  相似文献   

2.
Propylthiouracil (PTU) is a thioamide drug used clinically to inhibit thyroid hormone production. However, PTU is associated with some side effects in different organs. In the present study, the acute and direct effects of PTU on testosterone production in rat Leydig cells were investigated. Leydig cells were isolated from rat testes, and an investigation was performed on the effects of PTU on basal and evoked-testosterone release, the functions of steroidogenic enzymes, including protein expression of cytochrome P450 side-chain cleavage enzyme (P450(scc)) and mRNA expression of the steroidogenic acute regulatory protein (StAR). Rat Leydig cells were challenged with hCG, forskolin, and 8-bromo-cAMP to stimulate testosterone release. PTU inhibited both basal and evoked-testosterone release. To study the effects of PTU on steroidogenesis, steroidogenic precursor-stimulated testosterone release was examined. PTU inhibited pregnenolone production (i.e., it diminished the function of P450(scc) in Leydig cells). In addition to inhibiting hormone secretion, PTU also regulated steroidogenesis by diminishing mRNA expression of StAR. These results suggest that PTU acts directly on rat Leydig cells to diminish testosterone production by inhibiting P450(scc) function and StAR expression.  相似文献   

3.
Micropopulations consisting of six male mice of different genotypes were studied (each of lines A/He, CBA/Lac, C57BL/6J, DD, YT, and PT was represented by one male). Interlinear differences in the level of social dominance and the effects of genotype, social hierarchy, and season on in vitro testosterone production by testes were examined under different incubation conditions. The testosterone production was estimated under control conditions and under stimulation with human chorionic gonadotropin (CG). Significant genetic differences in the initial and CG-stimulated testosterone production by testes incubated in vitro were found. By the control production, the genotypes fell into two groups: lines C57BL/6J, A/He, and CBA/Lac had low production of the hormone; lines YT, PT, and DD, high production. By responsiveness of gonads to CG, the genotypes fell into three groups: line CBA/Lac had low testosterone production by testes; lines C57BL/6J, A/He, YT, and DD, line PT, intermediate production; and line PT, high production. The obtained data indicate stability of genetic polymorphism for the responsiveness of testes to gonadotropins, because neither season nor the formation of social hierarchy could significantly change the interlinear differences. In line PT characterized by high hormonal activity of gonads in the control and under stimulation with gonadotropins, males became dominant in a significantly greater number of cases studied during the formation of hierarchy in micropopulations. The dynamics of both control production of a male sex hormone and responsiveness of testes to CG was established in vitro during the formation of social hierarchy; the effects of season on this dynamics were revealed. Specific characteristics of secretory activity of testes were detected in the control and under stimulation with gonadotropins, depending on incubation conditions. Seasonal and genotypic characteristics of the responsiveness of testes to CG were revealed under different incubation conditions. Genotypic characteristics indicate interlinear differences in the degree of inertia of testosterone biosynthesis on exposure to gonadotropins.  相似文献   

4.
Busygina TV  Osadchuk AV 《Genetika》2001,37(1):97-106
Micropopulations consisting of six male mice of different genotypes were studied (each of lines A/He, CBA/Lac, C57BL/6J, DD, YT, and PT was represented by one male). Interlinear differences in the level of social dominance and the effects of genotype, social hierarchy, and season on in vitro testosterone production by testes were examined under different incubation conditions. The testosterone production was estimated under control conditions and under stimulation with human chorionic gonadotropin (CG). Significant genetic differences in the initial and CG-stimulated testosterone production by testes incubated in vitro were found. By the control production, the genotypes fell into two groups: lines C57BL/6J, A/He, and CBA/Lac had low production of the hormone; lines YT, PT, and DD, high production. By responsiveness of gonads to CG, the genotypes fell into three groups: line CBA/Lac had low testosterone production by testes; lines C57BL/6J, A/He, YT, and DD, line PT, intermediate production; and line PT, high production. The obtained data indicate stability of genetic polymorphism for the responsiveness of testes to gonadotropins, because neither season nor the formation of social hierarchy could significantly change the interlinear differences. In line PT characterized by high hormonal activity of gonads in the control and under stimulation with gonadotropins, males became dominant in a significantly greater number of cases studied during the formation of hierarchy in micropopulations. The dynamics of both control production of a male sex hormone and responsiveness of testes to CG was established in vitro during the formation of social hierarchy; the effects of season on this dynamics were revealed. Specific characteristics of secretory activity of testes were detected in the control and under stimulation with gonadotropins, depending on incubation conditions. Seasonal and genotypic characteristics of the responsiveness of testes to CG were revealed under different incubation conditions. Genotypic characteristics indicate interlinear differences in the degree of inertia of testosterone biosynthesis on exposure to gonadotropins.  相似文献   

5.
Testes from mice aged 3, 15, 25, 30 or 60 days were incubated under basal conditions or in the presence of hCG. One testis from each animal was incubated at 37 degrees C while the contralateral testis was incubated at 32 or 34 degrees C. During development total androgen production in response to hCG (at 32 degrees C) showed a marked increase between 15 and 30 days. The major androgens secreted at this time were testosterone and 5 alpha-androstane-3 alpha,17 beta-diol. There was little change in total androgen production between 30 and 60 days but by 60 days testosterone was the dominant androgen. Both basal and hCG-stimulated androgen production were temperature sensitive. These effects were most pronounced at 30 and 60 days with androgen production significantly inhibited at 37 degrees C. To examine the role of testicular descent in regulating steroidogenesis animals were rendered unilaterally cryptorchid at 19 days of age. At 25 days, when descent is normally completed in the mouse, there was no significant difference in steroidogenesis between scrotal and abdominal testes. By 30 days, however, the steroidogenic potential of the abdominal testis was significantly lower than that of the scrotal testis. These results show that testicular steroidogenesis is sensitive to temperature changes around the time of testicular descent, although descent itself is not required to achieve an adult level of steroidogenesis. The results also show, however, that testicular descent is required to maintain the adult level of steroidogenesis.  相似文献   

6.
Prolactin (PRL) exerts both stimulatory and inhibitory effects upon testicular steroidogenesis in vivo. The direct effects of PRL on biosynthesis of testicular androgen were studied in primary cultures of testicular cells obtained from adult, hypophysectomized or neonatal, intact rats. In cells from adult animals, treatment with human chorionic gonadotropin (hCG) (10 ng/ml) significantly increased testosterone and progesterone production relative to their respective controls. In contrast, neither steroid was increased by treatment with rat PRL (rPRL) or ovine PRL (oPRL) alone. Upon addition of 0.1-3 ng/ml of either rPRL or oPRL to the hCG-treated cultures, testosterone production was progressively increased up to a maximum of 70% greater than with hCG alone. However, when PRL exceeded 3 ng/ml, the testosterone response began to decline and was 39 or 24% less than from cells treated with hCG alone at 300 ng/ml of rPRL or oPRL, respectively. A similar biphasic response pattern was observed in cells from neonatal animals. In contrast to the biphasic effect of PRL on production of androgen, PRL treatment enhanced hCG-stimulated production of progesterone in a dose-related manner without exerting an inhibitory effect. At 3 and 300 ng/ml, rPRL augmented hCG action by 2.5- and 8-fold, respectively. Similarly, in the presence of inhibitors of pregnenolone metabolism, rPRL also enhanced hCG-stimulated production of pregnenolone. Quantitation of steroid intermediates in the testosterone biosynthetic pathway revealed that the stimulatory effect of 3 ng/ml rPRL on testosterone production was associated with 1.3- and 2.8-fold increases in accumulation of androstenedione and 17 alpha-hydroxyprogesterone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The responses of peripheral serum steroids to a single injection of hCG (80 IU/kg b wt) were compared in adult male rats and humans. Before hCG, the quantitatively dominating steroids were dehydroepiandrosterone, testosterone and 17-hydroxypregnenolone in the men, and testosterone and progesterone in the rats. One hour after hCG the concentrations of testosterone and all its precursors measured except for pregnenolone were significantly elevated in the rat serum, whereas a clear rapid response was not observed in the men. Transient blockade of C21 steroid side-chain cleavage was seen in both species at about 24-36 h after hCG, which occurred at the same time as the maximum concentration of estradiol in the men. No changes in rat serum estradiol concentrations were observed. Both species showed a secondary stimulation of testosterone and androstenedione formation at around 3 days. Our findings are compatible with the concept that the main difference in the gonadotropin-stimulated steroidogenesis in man and rat is the magnitude of the rapid steroidogenic response to hCG, which is very small in man and indicates smaller supply or lesser metabolism of mitochondrial cholesterol in human testis.  相似文献   

8.
The effect of hCG and Arginine-Vasopressin (AVP) on testosterone production by purified mouse Leydig cells was examined under dynamic conditions in a perifusion system. A rapid and dose-dependent increase in testosterone release was induced by a 5 min exposure of the cells to increasing concentrations of hCG (0.01 to 1 ng/ml). The testosterone response to hCG was Gaussian in distribution with a peak value by 100 min. A 12 h pretreatment of Leydig cells with 10(-5) M AVP enhanced testosterone accumulation in the perfusate under basal conditions, but markedly reduced the hCG-stimulated testosterone production. The basal and hCG-stimulated testosterone secretion profiles by freshly isolated Leydig cells were, however, unaffected by the continuous presence of the same dose of AVP. These results support the finding that AVP acts directly on Leydig cells. They support the hypothesis of a possible role of neurohypophysial peptides on reproductive functions in the mouse by modulating steroidogenesis at the testicular level.  相似文献   

9.
Changes in in vitro testosterone production by Leydig cells induced by chorionic gonadotropin, dibutyryl-cAMP, and pregnenolone have been studied during postnatal development of four inbred mouse strains BALB/c, PT, CBA/Lac, and A/He, with contrast hormonal activity of testes in sexually mature males. The interlinear differences significantly change with age of the males by all studied indices indicating genotype-dependent formation of hormonal activity of Leydig cells during postnatal development. Coordinated interlinear variability between all indices of Leydig cells reactivity has been established for each studied period of postnatal development. Hence, we have established coordinated interlinear genetic variability of hormonal function of Leydig cells, which was confirmed by considerable changes in it during postnatal development at puberty. Definitive genotypic differences in hormonal activity of Leydig cells appeared by late pubertal and early postpubertal development (day 60) and coincided with termination of morphological differentiation of Leydig cells and appearance of the differentiated cell population.  相似文献   

10.
Testicular interstitial cells (greater than 90% viable) obtained from 6-day-old and 3-6-week-old piglets were capable of producing dehydroepiandrosterone (DHEA, 5-10 ng/500,000 cells) and responded to hCG (60 mi.u./ml), dibutyryl-cAMP (1 mmol/l) and cholera toxin (5 ng/ml) with a 2-3-fold increase in DHEA. Aminoglutethimide (100 mumol/l) abolished the response. Testosterone was produced in comparatively minor quantities (less than 0.3 ng/500,000 cells) and was unaffected by stimulation or inhibition. When cells from both age groups were incubated with [14C]- or [3H]-pregnenolone (360 and 3.0 nmol/l), 17-hydroxypregnenolone (15%) and DHEA (5-10%) were the major metabolites on the androgen pathway and 5,16-androstadien-3 beta-ol (andien-beta, 5-10%) and 4,16-androstadien-3-one (dienone, 5-10%) on the 16-androstene pathway. Stimulation and inhibition of endogenous steroidogenesis did not alter the metabolism of exogenous pregnenolone, the same metabolites being found in the same proportions at similar times. Microsomal enzyme activities accurately reflected the metabolic profile of pregnenolone metabolism seen in intact cells, with low activities for 17 beta-HSD, 3 beta-HSD-isomerase, and 16-ene-5 alpha-reductase being observed. Since steroidogenic capacity, enzyme complement and pregnenolone metabolism were the same in testes from both age groups, the differences in Leydig cell activity observed in vivo would not appear to be consequences of changes in steroidogenic enzymes or responsiveness to gonadotrophin stimulation. The lack of effect of stimulation and inhibition of steroidogenesis on the cellular metabolism of exogenous pregnenolone suggests that the endogenous and exogenous supplies of pregnenolone are metabolized by different populations of enzymes. The relative magnitudes of these populations indicate that most of the steroidogenic enzymes in the interstitial cells are not involved in the normal response to trophic stimulation.  相似文献   

11.
Changes in in vitro testosterone production by Leydig cells induced by chorionic gonadotropin, dibutyryl-cAMP, and pregnenolone have been studied during postnatal development of four inbred mouse strains BALB/c, PT, CBA/Lac, and A/He, with contrast hormonal activity of testes in sexually mature males. The interlinear differences significantly change with age of the males by all studied indices indicating genotype-dependent formation of hormonal activity of Leydig cells during postnatal development. Coordinated interlinear variability between all indices of Leydig cells reactivity has been established for each studied period of postnatal development. Hence, we have established coordinated interlinear genetic variability of hormonal function of Leydig cells, which was confirmed by considerable changes in it during postnatal development at puberty. Definitive genotypic differences in hormonal activity of Leydig cells appeared by late pubertal and early postpubertal development (day 60) and coincided with termination of morphological differentiation of Leydig cells and appearance of the differentiated cell population.  相似文献   

12.
The present study was performed to evaluate the effects of calcium ionophore A23187 on adenosine 3',5'-monophosphate (cyclic AMP) and testosterone production in rat interstitial cells. Interstitial cells were incubated in Krebs-Ringer solution with varying amounts of luteinizing hormone, pregnenolone, or A23187. Cyclic AMP and testosterone were measured in the incubation medium after 4 h incubation. A23187 (0.01--10 microgram/ml) caused progressive increases of cyclic AMP formation (from 0.18 +/- 0.02 (S.E.) pmol/10(6) cells for the control of 0.42 +/- 0.02 pmol/10(6) cells, P less than 0.025), while testosterone production remained unaltered. When varying amounts of A23187 were added concomitantly with luteinizing hormone (5 IU/l), A23187 inhibited luteinizing hormone-induced steroidogenesis in a dose-dependent manner, but it had no effect on luteinizing hormone-induced cyclic AMP formation. When pregnenolone (10(-6) M) was added to the cells, testosterone formation increased from 1.50 +/- 0.22 to 8.46 +/- 1.65 ng/10(6) cells. A23187 (1 microgram/ml) had no discernable effect on the conversion of pregnenolone to testosterone. The main effect of increased cytosol calcium on steroidogenesis seems to be at the steps beyond adenylate cyclase-cyclic AMP. These results suggest that calcium is important for the conversion of cholesterol to pregnenolone, while the steps beyond pregnenolone are relatively independent of Ca2+.  相似文献   

13.
The in vivo uptake of human chorionic gonadotropin (hCG) in the rat testes and mode of the early testosterone response were studied after a single intravenous injection of varying doses of hCG. The uptake of hCG by the testes was parallel up to 6 h with all hormone doses, decreased thereafter to low level by 24 h with low hormone doses but continued to increase up to 24 h with the highest dose of hCG. The clearance rate of hCG from the blood was independent of the hormone dose used. Serum testosterone peaked gradually earlier when the hCG dose increased, and the highest hCG dose caused a slightly biphasic response with maxima at 1 and 12 h, the former peak being more pronounced. These results suggest that the in vivo uptake of hCG in the testes is modulated by the hormone dose used and that the mode of early serum testosterone response to varying hCG doses is dose dependent.  相似文献   

14.
In addition to well known direct stimulatory and potentiatory actions of forskolin, we have previously reported that low doses of this diterpene (10(-9), 10(-12) M) markedly inhibit the production of cAMP and testosterone in rat Leydig cells through a pertussis toxin sensitive G-protein (A. Khanum and M. L. Dufau, J. Biol. Chem. 261, 1986). A different type of inhibitory effect of forskolin is described in this study. Forskolin (10(-5) M) markedly stimulates basal adenylate cyclase activity (about 200%) in rat Leydig cell membranes and potentiates the stimulatory effect of gonadotropin (10(-9), 10(-7) M) on adenylate cyclase in presence or in absence of GTP (10(-5) M). Similarly a time-dependent stimulation of forskolin (10(-5) M) alone is noted on all cAMP pools and testosterone production. Using a supramaximal steroidogenic dose of hCG (0.26 nM) or choleragen (0.1 microM), forskolin potentiates the gonadotrophin and toxin-induced responses of all cAMP pools significantly while inhibiting testosterone production. Moreover, forskolin also inhibits 8-Bromo-cAMP stimulated steroidogenesis. In contrast, pregnenolone synthesis was not altered by the diterpene. We have demonstrated in this study that the inhibitory effect of high doses of forskolin on steroidogenesis is distal to cAMP generation, and resulted from a steroidogenic block residing beyond pregnenolone synthesis.  相似文献   

15.
Decapsulated adult rat testes were assessed for their capacity to produce testosterone and 5alpha-dihydrotestosterone when incubated in the presence of oestradiol-17beta for 3 h. Concentrations of 10(-6) and 10(-8) M-oestradiol-17beta had no significant effect on the production of these hormones and did not alter the capacity of the testes to respond to 100 i.u. hCG in vitro. It is suggested that oestradiol-17beta does not directly affect acute regulation of testicular steroidogenesis in the adult rat.  相似文献   

16.
In order to determine the significance of carbohydrate residues of human chorionic gonadotropin (hCG) in receptor interaction and signal transduction leading to steroidogenesis, the effect of deglycosylated hCG (DG-hCG) was studied in vitro with two different hCG-responsive purified testicular interstitial cell fractions. Fraction I light cells, previously found to bind 125I-labeled hCG with high affinity without producing testosterone, also bound 125I-labeled DG-hCG with high affinity (Kd 7.2.10(-10) M) without stimulating testosterone production. Fraction IV heavier cells, which produced testosterone in response to hCG without detectable high-affinity hCG-binding sites, neither bound DG-hCG nor sufficiently produced cAMP and testosterone in response. With the addition of intact hCG, DG-hCG inhibited cAMP levels, although not sufficiently to inhibit testosterone production. This observation was contrary to previous studies in which DG-hCG was shown to be an antagonist to hCG action. We conclude that: (a) DG-hCG retains its binding activity in light cells and this high-affinity binding is unrelated to steroidogenesis; (b) DG-hCG does not bind to heavier cells with high affinity and loses its biological activity as result of deglycosylation; (c) DG-hCG actions in this study strengthen the concept of two different hCG-responsive cells in the rat interstitium which, if not separated, will yield misleading data supporting the coexistence of hCG high-affinity binding and biological response in the same cell; and (d) DG-hCG partially antagonizes the activation of adenylate cyclase but does not block testosterone production, thus questioning the usefulness of this analogue in antagonizing the action of native hCG in rat testis.  相似文献   

17.
The effects of ethanol and acetaldehyde on testicular steroidogenesis were examined in enzymatically dispersed cells of the rodent testes. Both drugs significantly inhibited gonadotropin-stimulated steroidogenesis, but acetaldehyde was considerably more potent (>1000 times) than ethanol. To determine the step in testosterone's biosynthetic pathway which was inhibited by the two drugs, cells were incubated in the presence of [3H]pregnenolone and [3H]progesterone, and the amount of label incorporated into testosterone and its precursors was determined. Ethanol and acetaldehyde inhibited only the conversion of androstenedione to testosterone; none of the other precursors of testosterone was affected.  相似文献   

18.
Rats were made bilaterally cryptorchid at 21 days of age; sham-operated rats were used as controls. At 35 days, the animals were injected i.m. with saline or with 10 IU hCG. Progesterone, 17-hydroxyprogesterone, androstenedione and testosterone were measured in both testes and plasma under basal conditions and 2, 4, 8, 12, 24 and 72 h respectively after injection. The plasma levels and intratesticular contents of the steroids were generally lower in cryptorchid rats. The patterns of the steroid response to hCG were similar in both groups: in the testes and in the plasma, they increased acutely following hCG injection (except testicular androstenedione), then, after 72 h, returned to normal values in the plasma but remained higher than the basal values in the testes. These results suggest that there are no gross abnormalities in the testicular steroidogenic pathways and that the mechanism of action of hCG on the Leydig cells is unaltered in bilaterally cryptorchid immature rats.  相似文献   

19.
The in vitro testicular steroidogenesis of male rats, androgenized on the third postnatal day by a single injection of 1 mg testosterone propionate, was investigated when the animals were 100 days old. The neonatal androgenization resulted in a 25% lower testes weight, significantly increased plasma levels of FSH (P less than 0.01) and LH (P less than 0.02), and normal levels of testosterone. Although the testes were hypotrophic, the incubation of the testes pairs yielded the same amounts of testosterone, 7 alpha-hydroxytestosterone and 5 alpha-androstane-(3 alpha + 3 beta), 17 beta-diol as in the control animals. However, the steroidogenic response to an acute hCG stimulation was reduced. From incubations of testes homogenates with various labelled steroid precursors it could be inferred that the activity of the 17 alpha-hydroxylase, the 3 beta-hydroxysteroid dehydrogenase-isomerase and the 17 beta-hydroxysteroid dehydrogenase, expressed per unit of incubated protein, was significantly increased in the testes of the androgenized rats. These data indicate that the basal steroidogenesis in neonatally androgenized male rats is maintained by an increased synthesis per unit of tissue, possibly under influence of an increased gonadotrophic stimulus, but that the maximum steroidogenic capacity is reduced.  相似文献   

20.
A single s.c. injection of hCG (100 i.u.) produced a biphasic serum testosterone response in adult male rats, peaks being noted at 2 h (24 ng/ml) and 3 days (16 ng/ml). The levels fell to control during the intervening interval (8 ng/ml), although there were elevated levels of serum hCG. Maintenance of high oestradiol levels by a s.c. injection of 50 micrograms oestradiol benzoate given on Day 2 after the initial hCG injection failed to prolong the refractory period and the secondary peak of testosterone (16 ng/ml) occurred on Day 3. Administration of the antioestrogen, tamoxifen (2 mg or 3 micrograms), 24 h before or simultaneously with hCG did not prevent testicular refractoriness in vivo because serum testosterone levels still declined after 2 h to reach a nadir at 2 days. The basal in-vitro testosterone production by decapsulated testes from animals injected with hCG was enhanced at 2 h. Stimulation by hCG increased the amount of testosterone produced (X 1.5 that in controls). By 12 h basal production decreased and there was no further increment in testosterone in the presence of hCG. This refractoriness to further hCG stimulation prevailed until Day 3, but the total production of testosterone fell so that at 24 h and 2 days testes were producing basal amounts of testosterone. Testes recovered from refractoriness at 4 and 5 days, when basal and stimulated testosterone production were greater than in controls. Injection of 50 micrograms oestradiol benzoate at 2 days did not prolong the in-vitro refractory period and 2 mg or 3 micrograms tamoxifen had no effect on the in-vitro steroidogenic activity, since testes were still refractory to further hCG stimulation from 12 h to 3 days. The results of the present study do not support the hypothesis that oestradiol is involved in the hCG-induced refractoriness of the Leydig cell. The nadir between the peaks of serum testosterone in vivo corresponds to the period during which the testis is refractory to in-vitro stimulation by hCG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号