首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Streptococcal exotoxins have been implicated in the pathogenesis of a toxic shock-like syndrome and scarlet fever. Previous studies have demonstrated that these toxins are potent stimulators of human T cells and have structural homology to staphylococcal enterotoxins. In the current study, we investigated the mechanism by which streptococcal erythrogenic toxins type A (SPEA) and B (SPEB) activate T cells and compared it with anti-CD3 and the known "superantigen" staphylococcal enterotoxin B. SPEA was found to selectively activate T cells bearing V beta 8, V beta 12, and V beta 14, whereas SPEB selectively activated T cells bearing V beta 2 and V beta 8. Furthermore, fibroblasts transfected with MHC class II molecules were capable of presenting SPEA and SPEB to purified T cells. The T cell response to these toxins, however, was not MHC-restricted. Although the streptococcal exotoxins stimulated both CD4+ and CD8+ T cells, SPEA but not SPEB stimulated the CD4+ T cell subset proportionately more than the CD8+ T cell subset. Our results indicate that SPEA and SPEB, like the staphylococcal enterotoxins, are superantigens and suggest a mechanism by which they may mediate particular systemic syndromes associated with streptococcal infections.  相似文献   

2.
The staphylococcal enterotoxins are a family of bacterial toxins that are thought to exert their pathogenic effects by the massive activation of T lymphocytes to produce lymphokines. Activation of T cells by these toxins is dependent on MHC class II+ APC. Recent studies from a number of laboratories have implicated MHC class II proteins as the APC surface receptor for a number of the staphylococcal enterotoxins. The present report shows that staphylococcal enterotoxin A, (SEA) binds to the purified murine MHC class II molecule I-Ed reconstituted in supported planar membranes, indicating that no other cell surface proteins are required for SEA binding. The Kd for SEA binding to I-Ed was determined to be 3.5 +/- 1.6 x 10(-6) M. Specific binding of SEA to I-Ad was also observed, but the interaction was of significantly lower affinity. Binding of SEA to purified I-Ed was blocked by antibodies against both the alpha- and the beta-chain of the I-Ed molecule, but not by antibodies specific for an unrelated MHC class II protein. Binding of SEA to I-Ad was blocked by an A beta d but not by an A alpha d-specific antibody. Planar membranes containing only lipid and purified I-Ed molecules were sufficient for activation of a V beta 1 expressing T hybrid by SEA. The T cells responded to as few as 180 toxin molecules per T cell.  相似文献   

3.
Summary Two bone-marrow-derived macrophage cell lines, C2D and C2Dt, were isolated from major histocompatibility class II-negative knock-out mice. The C2D cell line was stabilized by continuous culture in colony-stimulating factor-1 and the C2Dt cell line was transformed with SV40 virus large T antigen. These cells exhibited phenotypic properties of macrophages including morphology and expression of Mac 1 and Mac 2 cell surface molecules. These cells also had comparable growth to the bone-marrow-derived macrophage cell line B6MP102. These new cell lines were not spontaneously cytotoxic and were only capable of modest killing of F5b tumor cells when stimulated with LPS and interferon-γ, but not when stimulated with LPS alone or with staphylococcal exotoxin. C2D and C2Dt cells phagocytosed labeled Staphylococcus aureus similarly to B6MP102 cells but less well than C2D peritoneal macrophages. These cell lines secreted interleukin-6, but not tumor necrosis factor or nitric oxide in response to LPS or staphylococcal enterotoxins A or B. C2Dt cells were tumorigenic in C2D and C57BL/6J mice but C2D cells were not. These data suggest that macrophage cell lines can be established from bone marrow cells of major histocompatibility complex II-negative mice.  相似文献   

4.
The present study was designed to examine the potential involvement of calcium ions as second messengers in the mediation of the staphylococcal enterotoxin A (SEA)/MHC class II-induced activation of human monocytes. Treatment of monocytes with a monomeric form of SEA failed to induce detectable changes in the level of intracellular calcium in either monocytes or THP-1 cells. However, cross-linking of SEA with biotin-avidin induced a rapid and transient increase in calcium levels in monocytes and in INF-gamma-treated THP-1 cells. This artificial cross-linking system was reproduced by natural physiologic ligands expressed on the surface of T lymphocytes. Delayed, transient, and concentration (cell as well as toxin)-dependent increases in the cytoplasmic level of free calcium in SEA-treated monocytes were observed upon the addition of autologous resting T cells or purified CD4+ cells, but not of CD8+ cells, B cells, or neutrophils. Antibodies against MHC class II Ag, TCR/CD3, and CD4 molecules inhibited the SEA-dependent interaction between monocytes and T cells as indicated by significant decreases in the rise of calcium levels observed in monocytes. Anti-CD8 and anti-class I antibodies did not affect the interaction between the monocytes and the T cells and failed to alter the calcium response. Taken together, these results suggest that the SEA-induced, T cell-dependent calcium mobilization in monocytes requires physical interactions between SEA-MHC class II, TCR/CD3, and CD4 molecules. The ability to mediate a T cell-dependent calcium increase in monocytes was shared by several enterotoxins including staphylococcal enterotoxin B and toxic shock syndrome toxin-1. The characteristics of the SEA-mediated calcium mobilization in monocytes strongly support the hypothesis that this response is an integral part of the signal transducing machinery linked to MHC class II molecules.  相似文献   

5.
Staphylococcal enterotoxins are responsible for food poisoning and toxic shock syndrome due to their superantigen activity on T cells. Although their activity necessarily involves passage through the intestinal epithelium, little is known about this critical step. In the present study, we compared the in vitro transport of staphylococcal enterotoxin A through human intestinal absorptive and M cells. We found that the transport of the toxin through M cells was polarized and temperature-sensitive, in contrast with the less efficient transport of the toxin by absorptive cells. These data suggest the involvement of M cells in the intestinal absorption of staphylococcal enterotoxins.  相似文献   

6.
The staphylococcal enterotoxins and related microbial T cell mitogens stimulate T cells by cross-linking variable parts of the T cell receptor (TCR) with MHC class II molecules on accessory or target cells. We have used cloned human T cells and defined tumor cells as accessory cells (AC) to study the requirements for T cell activation by these toxins. On AC expressing high levels of CD54 (intercellular adhesion molecule-1, ICAM-1) and CD58 (lymphocyte function-associated antigen-3, LFA-3), mAb to CD2 were relatively ineffective in inhibiting the response to the toxins and antibodies to the lymphocyte function-associated antigen-1 (LFA-1) did not inhibit at all. If added together, however, these mAb inhibited the response completely. Similar results were obtained using antibodies to the target structures of CD2 and LFA-1. In contrast, on cells expressing low levels of LFA-3, mAb to LFA-1 but not to CD2 were strongly inhibitory. The same pattern of inhibition was found when these same cells were used as presenters of specific antigen to the T cells. These data show that adhesions via CD2 or LFA-1 are alternatively required for the stimulation of the T cells by superantigenic toxins and demonstrate another similarity between T cell stimulation by superantigens and by specific antigen recognition.  相似文献   

7.
The capacity of staphylococcal enterotoxins to stimulate all T cells bearing certain T cell receptors has recently generated a great deal of interest. These toxins are believed to bind directly both to the TCR:CD4 complex via its V beta domains and to class II MHC molecules on accessory cells prior to T cell activation. Previous studies from this laboratory have demonstrated that staphylococcal enterotoxin B (SEB) is capable of inducing multiple T suppressor cell populations which can inhibit in vitro antibody responses. Additional studies have demonstrated that the suppressive activity of these cells is mediated, at least in part, by an I-J-restricted suppressor factor. Efforts to characterize the inhibitory activity of this factor have demonstrated that the suppressive element is capable of activating both early and late acting suppressor cell populations in vitro. Analysis by both positive and negative selection shows that cells bearing the Lyt1-2+ surface marker phenotype are active early, whereas Lyt1+2+ cells are active both early and late in the antibody response. Additional experiments using various strains of mice as sources of suppressor factor and of naive splenocyte populations have demonstrated that activation of suppressor-effector cells by this suppressor factor is restricted at the I-J, but not Igh, gene locus. These studies suggest that this SEB-induced suppressor factor alone provides the signals necessary for the induction and activation of suppressor-effector cell activity.  相似文献   

8.
The capacity of the staphylococcal enterotoxins to stimulate all T cells bearing certain (but not all) TCR has generated a great deal of interest. This stimulation appears to involve specific binding of the toxin to class II Ags and subsequent stimulation via the TCR. Previous studies from this laboratory have demonstrated that staphylococcal enterotoxin B (SEB) induces multiple T suppressor cell populations that inhibit both primary and secondary plaque-forming cell responses. Efforts to characterize these suppressor cell populations have demonstrated that the suppressor population active early in the antibody response expresses the Lyt-1-2+ cell surface phenotype, whereas depletion analysis suggests that the population active late in an ongoing response bears the Lyt-1+2+ cell-surface markers. In the present study, enrichment for this late acting effector population with the use of sequential panning with anti-Lyt mAb reveals significant suppressive activity at both the initiation and effector phases of a 5-day Mishell-Dutton coculture. Additional experiments using I-J disparate strains of mice have demonstrated a genetic restriction at the "I-J" gene locus between the cells mediating SEB-induced suppression and their target. Depletion of SEB-primed splenocytes with anti-I-J mAb suggests that both the early and late effector cells bear I-J molecules on their surface. Taken together, these results show that SEB induces suppressor cell populations with properties similar to those exhibited by Ag-specific cell circuits.  相似文献   

9.
Staphylococcal enterotoxins are bacterial products that display superantigen activity in vitro as well as in vivo. For instance, staphylococcal enterotoxin B (SEB) polyclonally activates T cells that bear the Vbeta8 gene segment of the TCR. SEB-activated T cells undergo a burst of proliferation that is followed by apoptosis. Using an in vivo adaptation of a fluorescent cell division monitoring technique, we show here that SEB-activated T cells divide asynchronously, and that apoptosis of superantigen-activated T cells is preferentially restricted to cells which have undergone a discrete number of cell divisions. Collectively, our data suggest that superantigen-activated T cells are programmed to undergo a fixed number of cell divisions before undergoing apoptosis. A delayed death program may provide a mechanistic compromise between effector functions and homeostasis of activated T cells.  相似文献   

10.
Comparative structural analysis of staphylococcal enterotoxins A and E   总被引:1,自引:0,他引:1  
Structural analysis of staphylococcal enterotoxins A and E, two functionally and serologically related proteins, has been carried out using circular dichroism, and tryptophan fluorescence quantum yield and quenching. Secondary structures derived from the far-UV circular dichroic spectra revealed that both enterotoxins are in predominantly beta-sheets/beta-turn structures (80-85%). Staphylococcal enterotoxin A has significantly higher alpha-helical content (10.0%) than staphylococcal enterotoxin E (6.5%). Tryptophan fluorescence spectra of both enterotoxins showed maxima at approximately 342 nm, indicating that the fluorescent tryptophan residues are in polar environments. However, the tryptophan fluorescence quantum yields indicated that tryptophan residues are approximately 41% more fluorescent in staphylococcal enterotoxin A than in staphylococcal enterotoxin E. Tryptophan fluorescence quenching by a surface quencher, I-, and a neutral quencher, acrylamide, indicated that at least 1 of the 2 tryptophan residues in both staphylococcal enterotoxins A and E is located on the outer surface of the proteins. This tryptophan residue is in significantly different environments in the two enterotoxins. Six antigenic sites are predicted from the hydrophilicity and secondary structure information; at least four sites are identical. In general, staphylococcal enterotoxins A and E have some structural similarities which are compatible with their common biological activities.  相似文献   

11.
Staphylococcal enterotoxin microbial superantigens   总被引:21,自引:0,他引:21  
Staphylococcal enterotoxins are a family of structurally related proteins that are produced by Staphylococcus aureus. In addition to their role in the pathogenicity of food poisoning, these microbial superantigens have profound effects on the immune system, which makes them useful tools for understanding its mechanism of action. These molecules (24-30 kDa) are highly hydrophilic and exhibit low alpha helix and high beta pleated sheet content, suggesting a flexible, accessible structure. Staphylococcal enterotoxins are among the most potent activators of T lymphocytes known. The receptors for staphylococcal enterotoxins on antigen-presenting cells are major histocompatibility complex (MHC) class II molecules. Further, the alpha-helical regions of the class II molecule are essential for function and appear to interact directly with the NH2-terminal region of staphylococcal enterotoxins such as SEA. Recent studies have shown that a complex of staphylococcal enterotoxin and MHC class II molecules is required for binding to the V beta region of the T cell antigen receptor. Staphylococcal enterotoxin mitogenic activity is dependent on induction of interleukin 2, which may be intimately involved in the mechanism of toxicity. The mouse minor lymphocyte stimulating (M1s) "endogenous" self-superantigen has been shown to be a retroviral gene product, so this too is apparently a microbial superantigen. An understanding of the mechanisms of action of these microbial superantigens has implications for normal and pathological immune functions.  相似文献   

12.
Regulation of helper T cell responses to staphylococcal superantigens   总被引:6,自引:0,他引:6  
Staphylococcal superantigens (sAgs) including toxic shock syndrome toxin-1 (TSST-1) and related enterotoxins are exoproteins with unique immunobiological properties. They bind to major histocompatibility complex (MHC) class II molecules of antigen-presenting cells outside the peptide groove, and induce massive proliferation of T cells bearing specific V beta determinants. This tri-molecular interaction leads to uncontrolled release of various proinflammatory cytokines especially interferon-gamma (IFN-gamma) and tumor necrosis factor-a (TNF-alpha), the key cytokines causing sAg-mediated shock. The effector T cells involved in this hyper-immune response are predominantly of the T helper-1 (Th1) phenotype. There is also some evidence that polarization to a Th2 response with the production of classical anti-inflammatory cytokines (such as interleukins IL-4 and IL-6) also occurs. Moreover, the emergence of a novel regulatory T cell (Tr1) subset, producing mainly IL-10 but little or no IL-2 and IL-4, has recently been described following repeated sAg stimulation. In this review, the current knowledge regarding the regulation of T helper cell subsets in response to staphylococcal sAgs is critically evaluated, and the role of various cytokines which directly influence T cell differentiation and polarization is summarized. Particular emphasis is directed towards pro-inflammatory as well as anti-inflammatory and regulatory effector functions during toxic shock. Based on this review, we propose that a delayed production of IL-10 by Tr1 cells may be the most prominent driving force in the down-regulation of the Th1 hyper-immune response, and the critical determinant for the eventual recovery of the host.  相似文献   

13.
Polyclonal plaque-forming cell (PFC) responses in murine spleen cells induced by Staphylococcus aureus and S. epidermidis were studied. Injection of Balb/c mice with S. aureus strain 248βH resulted in the generation of anti-trinitrophenyl (TNP) and anti-sheep red blood cell PFC in their spleens. Cultures of Balb/c spleen cells in the presence of S. aureus 248βH, Cowan I, or a protein A-deficient mutant yielded many anti-TNP PFC. The larger the number of organisms that were added to the cultures, the better was the PFC response. Both living and killed organisms, were capable of inducing the response, but an excess of living 248βH organisms in the cultures abrogated the response. All of the organisms (12 strains of S. aureus and 11 strains of S. epidermidis) freshly isolated from patients had the ability to induce the polyclonal PFC response in cell cultures. These organisms stimulated cultured C3H/HeJ mouse spleen cells, which were unresponsive to bacterial lipopolysaccharide (LPS). Cultured cells from the spleens of athymic nu/nu mice also responded to these organisms, and the number of PFC in nu/nu cell cultures was always greater than that in nu/+ cells prepared from a haired litter mate. Moreover, the responses of nu/nu spleen cell cultures to which nylon wool column-filtered splenic nu/+ T cells were added were lower than expected. These findings suggest that the polyclonal PFC response to staphylococci is thymus independent, but that the magnitude of the response is regulated by mature T cells. Cultures of macrophage-depleted spleen cells responded to the organisms to an extent similar to that of the control. The 248βH organisms were less capable of stimulating spleen cells of 2-week-old mice (i.e., early maturing B cells) than LPS. However, spleen cells from adult (7-week-old) and aged (9-month-old) mice responded well to both the organisms and LPS. Previous sensitization with the organisms in vivo did not affect any polyclonal responses of spleen cells in vitro to either the organisms or LPS. The role of staphylococcal protein A in the polyclonal PFC response to staphylococci is discussed.  相似文献   

14.
The enterotoxins produced by Staphylococcus aureus are the most potent mitogens known. They belong to a group of distantly related mitogenic toxins that differ in other biologic activities. In this study we have compared the molecular mechanisms by which these mitogens activate human T lymphocytes. We used the staphylococcal enterotoxins A to E, the staphylococcal toxic shock syndrome toxin, the streptococcal erythrogenic toxins A and C (scarlet fever toxins, erythrogenic toxins (ET)A, ETC), and the soluble mitogen produced by Mycoplasma arthritidis. We found that all these toxins can activate both CD4+ and CD8+ T cells and require MHC class II expression on accessory and target cells. However, T cells could be activated in the absence of class II molecules if the toxins ETA or SEB were co-cross-linked on beads together with anti-CD8 or anti-CD2 antibodies. Enterotoxins, toxic shock syndrome toxin and scarlet toxins stimulate a major fraction of human T cells, and show preferential, but not exclusive, stimulation of T cells carrying certain TCR V beta. In contrast, the mitogen of M. arthritidis, a pathogen for rodents stimulates only a minority of human T cells but activates a major fraction of murine T cells. Analysis of human T cell clones expressing V beta 5 or V beta 8 TCR showed that these clones responded also to those toxins that did not stimulate V beta 5+ and V beta 8+ T cells in bulk cultures. These results indicate that different TCR bind to these toxins with different affinities and that the specificity of the TCR-V beta-toxin interaction is quantitative rather than qualitative in nature. Taken together our findings suggest that these toxins use a common mechanism of T cell activation. They are functionally bivalent proteins crosslinking MHC class II molecules with variable parts of the TCR. Besides V beta, other parts of the TCR must be involved in this binding. The finding that murine T cells responded more weakly to the toxins produced by the human-pathogenic bacteria than to the Mycoplasma mitogen could indicate that the toxins have been adapted to the host's immune system in evolution.  相似文献   

15.
Toxic shock syndrome toxin-1 (TSST-1) and staphylococcal enterotoxins (SE) A, B, and C were studied on binding to rabbit spleen cells. The toxins showed remarkable mitogenic effects on the cells. Among them, SEA and TSST-1 had much stronger mitogenic activities than SEB and SEC. Binding study showed that labeled TSST-1 and SEA bound considerably to cells, but that labeled SEB or SEC was not observed to bind at a detectable level under the same conditions as TSST-1 and SEA. Competitive binding analysis between toxins to cells proved that TSST-1 and SEA clearly competed with each other in binding. Scatchard plots for TSST-1 and SEA in binding were linear at the doses used. The Scatchard analysis for TSST-1 and SEA gave a dissociation constant of 2.5 X 10(-9) M and 7.6 X 10(-8) M and the number of binding sites per cell of 5.3 X 10(3) and 1.0 X 10(5), respectively.  相似文献   

16.
Summary Activation of lymphocytes by interleukin-2 (IL-2) induces lymphokine-activated killer (LAK) cells that show promising effects on tumour growth in clinical trials. We examined the effect of the superantigen staphylococcal enterotoxin A (SEA) on anti-tumour activity of freshly prepared human lymphocytes. Picomolar amounts of SEA rapidly induced cytotoxic activity against K562 and Raji cells as well as some natural-killer(NK)-resistant tumour cell lines. Cytotoxic activity was not dependent on target cell expression of either major histocompatibility complex (MHC) class I or II antigens as shown using mutated cell lines. Cell-sorting experiments showed that the activity was expressed by NK (CD5CD56+) as well as T (CD5+) cells, although the former contained the majority of cytotoxic activity. NK cells could not be directly activated by SEA. In contrast, SEA activated purified T cells to the same extent as in bulk cultures. It is suggested that SEA activation of NK cells is secondary to that brought about by lymphokines produced by T cells. Activation of LAK cells with SEA was comparable in magnitude as well as target cell spectrum to that of IL-2. In addition to the LAK-like cytotoxic activity induced by SEA, a superimposed cytotoxicity towards target cells expressing MHC class II antigens coated with SEA was observed. This staphylococcal-enterotoxin-dependent cell-mediated cytotoxicity (SDCC) was exclusively mediated by T cells. It is well established that MHC class II antigens function as receptors for staphylococcal enterotoxins on mammalian cells and that the complex between MHC class II antigen and — SEA apparently functions as a target structure for activated T cells with target cell lysis as a consequence. Activation of T lymphocytes with IL-2 also resulted in the capability to mediate SDCC. Staphylococcal enterotoxins represent a novel way of inducing anti-tumour activity in human lymphocytes, which could be of value in therapeutic applications.  相似文献   

17.
Various strains of Staphylococcus aureus bacteria produce bicomponent toxins such as leukocidin LukE/LukD consisting of two subunits S (LukE) and F (LukD). The toxin subunits bind to leukocyte cell membrane inducing transmembrane pore formation and subsequent cell lysis. There is a lack of data on the effects of staphylococcal leukocidin LukE/LukD on fish immunocompetent cells in vitro. The purpose of the study was to determine the influence of leukocidin LukE/LukD on the proliferative ability of T and B lymphocytes isolated from head kidney and spleen of common carp (Cyprinus carpio L.). The response of T and B lymphocytes was stimulated with concanavalin A (ConA) and lypopolysaccharide (LPS) respectively and measured by the MTT test. The results revealed the modulatory influence of staphylococcal leukocidin LukE/LukD on the proliferative ability of fish T and B lymphocytes. The highest concentrations (5000-25000 ng ml(-1) of medium) of complete leukocidin LukE/LukD and its subunit LukE induced statistically significant suppression of both head kidney and splenic T and B lymphocyte proliferation. On the other hand, the lowest concentrations of the complete toxin (0.32-1.6 ng ml(-1) of medium) caused slight but statistically significant stimulation of both head kidney and splenic T and B lymphocyte proliferative ability. No modulatory effects were observed at any concentration of subunit LukD used in the experiment. There is a need for further studies concerning the susceptibility of other immune cell populations isolated from fish to different types of staphylococcal leukocidin.  相似文献   

18.
The immunomodulating effects of staphylococcal enterotoxins on in vivo immune responses in C57BL/6 mice were examined. Of the five serological types A (SEA), B, C, D, and E (SEE), only SEA and SEE markedly suppressed the antibody response to sheep red blood cells (SRBC) when injected 1 day before or on the day of immunization with SRBC. Further study of SEA revealed that it did not affect the antibody response to a thymus-independent antigen, salmonella flagella, but did affect the T-cell-mediated immune response. Contact sensitivity to dinitrofluorobenzene (DNFB) was suppressed when SEA was injected before sensitization or before challenge with DNFB, indicating that SEA affected both the afferent and efferent phases of DNFB contact sensitivity. As the suppression of DNFB contact sensitivity could be transferred by anti-Thy-1.2 antibody-sensitive spleen cells of SEA injected donors into normal or DNFB-sensitized recipients, the suppression was thought to be an active one. However, SEA could augment the DNFB contact sensitivity when injected on the third day after sensitization with DNFB. These results indicate that the immunomodulating effects of SEA can be mediated by the T-cell function.  相似文献   

19.
Soluble staphylococcal protein A (SpA) in the form of high m.w. complexes with IgG has been shown to significantly inhibit the growth of Meth A fibrosarcomas in BALB/c mice. Although SpA reportedly is a potent T cell mitogen that can induce immune cell proliferation and production of humoral factors with anti-tumor activity, it has been suggested that mitogenic enterotoxin contaminants might be responsible for these effects. The purpose of the present study was to investigate the nature of SpA-induced cell proliferation and the relationship between mitogenicity and the anti-tumor effect that we observed in our mouse model. SpA stimulated the proliferation of a mixed population of splenic B and T cells from BALB/c mice, but activity did not require the presence of IgG in the culture medium. Furthermore, mitogenic activity could be inhibited completely by anti-SEA plus anti-SEB, but was unaffected by anti-SpA. HPLC-purified SpA was inactive while the mitogenic factor(s) had the same retention time as authentic enterotoxin and its activity was inhibited by anti-SEA and anti-SEB, but not by anti-SpA. Enterotoxin-free rSpA produced in Escherichia coli had the same IgG binding capacity as the staphylococcal product but was not mitogenic. These data indicate that SEA and SEB completely account for mitogenicity in SpA preparations. In contrast, we found that optimal concentrations of rSpA as well as crude and HPLC purified staphylococcal SpA were equally effective in inhibiting the growth of established Meth A fibrosarcomas demonstrating that SpA is responsible for antitumor activity without any apparent role for enterotoxins.  相似文献   

20.
The enterotoxins produced by Staphylococcus aureus cause a gastrointestinal intoxication probably via their action on intramucosal neuronal cells. Staphylococcal enterotoxins are also the most powerful mitogens known, activating CD3+ T lymphocytes of several species in a clonally variable and MHC class II-dependent fashion. We examined a possible relationship between enterotoxic and mitogenic activity of staphylococcal enterotoxin serotype B (SEB). We used a monoclonal anti-Id directed against the combining site of an anti-SEB mAb. This anti-Id failed to elicit an enteric response by itself but could block the enteric response in monkeys to a 6000-fold excess of SEB. The anti-Id was mitogenic, however, for human and monkey T cells, triggering a fraction of CD4+ and CD8+ T cells. Not all SEB-reactive T cells were activated by the anti-Id. The anti-Id bound to T cells with a similarly low affinity as did SEB. Additional evidence for a separation of enterotoxic and mitogenic activity comes from studies with carboxymethylated SEB. Although this modified SEB had lost its enterotoxic activity, it was as mitogenic as the unmodified molecule. These results support the notion that the enteric reaction to SEB is not mediated via its effect on T lymphocytes. We conclude that SEB and anti-Id might bind to a common structure of different receptors on T cells and target cells in the intestinal mucosa, probably peripheral sensory neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号