共查询到20条相似文献,搜索用时 0 毫秒
1.
Maxadilan and its truncated variant, M65, are agonist and antagonist specific, respectively, for the PAC1 receptor. PAC1 is the specific receptor for the pituitary adenylate cyclase-activating peptide (PACAP), which is not shared by vasoactive intestinal peptide (VIP). PACAP is a ubiquitous peptide of the glucagon superfamily that is involved in glucose homeostasis and regulation of insulin secretion. This study employed the recombinant maxadilan and M65 to evaluate the PAC1 receptor-mediated effects on energy metabolism using NIH mice. First, the acute effect of maxadilan-induced hyperglycemia was blocked by M65. In long-term studies, NIH mice were given daily intraperitoneal injections with maxadilan, M65, or vehicle for 21 days. Maxadilan suppressed feeding and enhanced water intake significantly for the first several days. After that period, maxadilan treatment continued to promote food and water intake. Long-term administration of maxadilan led to an increase in body weight (P<0.01), decrease in body fat (P<0.01), down-regulation of basal plasma glucose (P<0.01), upregulation of basal plasma insulin (P<0.01) and improved glucose tolerance (P<0.01) and insulin sensitivity (P<0.01). An elevation in plasma LDL (P<0.01) was also observed in the maxadilan group. However, M65 displayed no significant adverse effects on the aforementioned parameters except basal plasma glucose (P<0.05). The significant changes induced by maxadilan indicate that the PAC1 receptor plays multiple key roles in carbohydrate metabolism, lipid metabolism and energy homeostasis in mice. 相似文献
2.
Linagliptin (TRADJENTA?) is a selective dipeptidyl peptidase-4 (DPP-4) inhibitor. DPP-4 inhibition attenuates insulin resistance and improves peripheral glucose utilization in humans. However, the effects of chronic DPP-4 inhibition on insulin sensitivity are not known. The effects of long-term treatment (3-4 weeks) with 3 mg/kg/day or 30 mg/kg/day linagliptin on insulin sensitivity and liver fat content were determined in diet-induced obese C57BL/6 mice. Chow-fed animals served as controls. DPP-4 activity was significantly inhibited (67-89%) by linagliptin (P<0.001). Following an oral glucose tolerance test, blood glucose concentrations (measured as area under the curve) were significantly suppressed after treatment with 3 mg/kg/day (-16.5% to -20.3%; P<0.01) or 30 mg/kg/day (-14.5% to -26.4%; P<0.05) linagliptin (both P<0.01). Liver fat content was significantly reduced by linagliptin in a dose-dependent manner (both doses P<0.001). Diet-induced obese mice treated for 4 weeks with 3 mg/kg/day or 30 mg/kg/day linagliptin had significantly improved glycated hemoglobin compared with vehicle (both P<0.001). Significant dose-dependent improvements in glucose disposal rates were observed during the steady state of the euglycemic-hyperinsulinemic clamp: 27.3 mg/kg/minute and 32.2 mg/kg/minute in the 3 mg/kg/day and 30 mg/kg/day linagliptin groups, respectively; compared with 20.9 mg/kg/minute with vehicle (P<0.001). Hepatic glucose production was significantly suppressed during the clamp: 4.7 mg/kg/minute and 2.1 mg/kg/minute in the 3 mg/kg/day and 30 mg/kg/day linagliptin groups, respectively; compared with 12.5 mg/kg/minute with vehicle (P<0.001). In addition, 30 mg/kg/day linagliptin treatment resulted in a significantly reduced number of macrophages infiltrating adipose tissue (P<0.05). Linagliptin treatment also decreased liver expression of PTP1B, SOCS3, SREBP1c, SCD-1 and FAS (P<0.05). Other tissues like muscle, heart and kidney were not significantly affected by the insulin sensitizing effect of linagliptin. Long-term linagliptin treatment reduced liver fat content in animals with diet-induced hepatic steatosis and insulin resistance, and may account for improved insulin sensitivity. 相似文献
3.
Young-Sil Lee Byung-Yoon Cha Sun-Sil Choi Bong-Keun Choi Takayuki Yonezawa Toshiaki Teruya Kazuo Nagai Je-Tae Woo 《The Journal of nutritional biochemistry》2013,24(1):156-162
Nobiletin (NOB) is a polymethoxylated flavone present in citrus fruits and has been reported to have antitumor and anti-inflammatory effects. However, little is known about the effects of NOB on obesity and insulin resistance. In this study, we examined the effects of NOB on obesity and insulin resistance, and the underlying mechanisms, in high-fat diet (HFD)-induced obese mice. Obese mice were fed a HFD for 8 weeks and then treated without (HFD control group) or with NOB at 10 or 100 mg/kg. NOB decreased body weight gain, white adipose tissue (WAT) weight and plasma triglyceride. Plasma glucose levels tended to decrease compared with the HFD group and improved plasma adiponectin levels and glucose tolerance. Furthermore, NOB altered the expression levels of several lipid metabolism-related and adipokine genes. NOB increased the mRNA expression of peroxisome proliferator-activated receptor (PPAR)-γ, sterol regulatory element-binding protein-1c, fatty acid synthase, stearoyl-CoA desaturase-1, PPAR-α, carnitine palmitoyltransferase-1, uncoupling protein-2 and adiponectin, and decreased the mRNA expression of tumor necrosis factor-α and monocyte chemoattractant protein-1 in WAT. NOB also up-regulated glucose transporter-4 protein expression and Akt phosphorylation and suppressed IκBα degradation in WAT. Taken together, these results suggest that NOB improves adiposity, dyslipidemia, hyperglycemia and insulin resistance. These effects may be elicited by regulating the expression of lipid metabolism-related and adipokine genes, and by regulating the expression of inflammatory makers and activity of the insulin signaling pathway. 相似文献
4.
5.
Md. Wasim Khan Medha Priyadarshini Jose Cordoba-Chacon Thomas C. Becker Brian T. Layden 《生物化学与生物物理学报:疾病的分子基础》2019,1865(3):678-687
Hexokinase domain containing 1, a recently discovered putative fifth hexokinase, is hypothesized to play key roles in glucose metabolism. Specifically, during pregnancy in a recent genome wide association study (GWAS), a strong correlation between HKDC1 and 2-h plasma glucose in pregnant women from different ethnic backgrounds was shown. Our earlier work also reported diminished glucose tolerance during pregnancy in our whole body HKDC1 heterozygous mice. Therefore, we hypothesized that HKDC1 plays important roles in gestational metabolism, and designed this study to assess the role of hepatic HKDC1 in whole body glucose utilization and insulin action during pregnancy. We overexpressed human HKDC1 in mouse liver by injecting a human HKDC1 adenoviral construct; whereas, for the liver-specific HKDC1 knockout model, we used AAV-Cre constructs in our HKDC1fl/fl mice. Both groups of mice were subjected to metabolic testing before and during pregnancy on gestation day 17–18. Our results indicate that hepatic HKDC1 overexpression during pregnancy leads to improved whole-body glucose tolerance and enhanced hepatic and peripheral insulin sensitivity while hepatic HKDC1 knockout results in diminished glucose tolerance. Further, we observed reduced gluconeogenesis with hepatic HKDC1 overexpression while HKDC1 knockout led to increased gluconeogenesis. These changes were associated with significantly enhanced ketone body production in HKDC1 overexpressing mice, indicating that these mice shift their metabolic needs from glucose reliance to greater fat oxidation and ketone utilization during fasting. Taken together, our results indicate that hepatic HKDC1 contributes to whole body glucose disposal, insulin sensitivity, and aspects of nutrient balance during pregnancy. 相似文献
6.
Meakin PJ Harper AJ Hamilton DL Gallagher J McNeilly AD Burgess LA Vaanholt LM Bannon KA Latcham J Hussain I Speakman JR Howlett DR Ashford ML 《The Biochemical journal》2012,441(1):285-296
Insulin resistance and impaired glucose homoeostasis are important indicators of Type?2 diabetes and are early risk factors of AD (Alzheimer's disease). An essential feature of AD pathology is the presence of BACE1 (β-site amyloid precursor protein-cleaving enzyme 1), which regulates production of toxic amyloid peptides. However, whether BACE1 also plays a role in glucose homoeostasis is presently unknown. We have used transgenic mice to analyse the effects of loss of BACE1 on body weight, and lipid and glucose homoeostasis. BACE1-/- mice are lean, with decreased adiposity, higher energy expenditure, and improved glucose disposal and peripheral insulin sensitivity than wild-type littermates. BACE1-/- mice are also protected from diet-induced obesity. BACE1-deficient skeletal muscle and liver exhibit improved insulin sensitivity. In a skeletal muscle cell line, BACE1 inhibition increased glucose uptake and enhanced insulin sensitivity. The loss of BACE1 is associated with increased levels of UCP1 (uncoupling protein 1) in BAT (brown adipose tissue) and UCP2 and UCP3 mRNA in skeletal muscle, indicative of increased uncoupled respiration and metabolic inefficiency. Thus BACE1 levels may play a critical role in glucose and lipid homoeostasis in conditions of chronic nutrient excess. Therefore strategies that ameliorate BACE1 activity may be important novel approaches for the treatment of diabetes. 相似文献
7.
Bradley RL Jeon JY Liu FF Maratos-Flier E 《American journal of physiology. Endocrinology and metabolism》2008,295(3):E586-E594
Exercise promotes weight loss and improves insulin sensitivity. However, the molecular mechanisms mediating its beneficial effects are not fully understood. Obesity correlates with increased production of inflammatory cytokines, which in turn, contributes to systemic insulin resistance. To test the hypothesis that exercise mitigates this inflammatory response, thereby improving insulin sensitivity, we developed a model of voluntary exercise in mice made obese by feeding of a high fat/high sucrose diet (HFD). Over four wk, mice fed chow gained 2.3 +/- 0.3 g, while HFD mice gained 6.8 +/- 0.5 g. After 4 wk, mice were subdivided into four groups: chow-no exercise, chow-exercise, HFD-no exercise, HFD-exercise and monitored for an additional 6 wk. Chow-no exercise and HFD-no exercise mice gained an additional 1.2 +/- 0.3 g and 3.3 +/- 0.5 g respectively. Exercising mice had higher food consumption, but did not gain additional weight. As expected, GTT and ITT showed impaired glucose tolerance and insulin resistance in HFD-no exercise mice. However, glucose tolerance improved significantly and insulin sensitivity was completely normalized in HFD-exercise animals. Furthermore, expression of TNF-alpha, MCP-1, PAI-1 and IKKbeta was increased in adipose tissue from HFD mice compared with chow mice, whereas exercise reversed the increased expression of these inflammatory cytokines. In contrast, expression of these cytokines in liver was unchanged among the four groups. These results suggest that exercise partially reduces adiposity, reverses insulin resistance and decreases adipose tissue inflammation in diet-induced obese mice, despite continued consumption of HFD. 相似文献
8.
Jeoung NH Harris RA 《American journal of physiology. Endocrinology and metabolism》2008,295(1):E46-E54
The effect of pyruvate dehydrogenase kinase-4 (PDK4) deficiency on glucose homeostasis was studied in mice fed a high-fat diet. Expression of PDK4 was greatly increased in skeletal muscle and diaphragm but not liver and kidney of wild-type mice fed the high-fat diet. Wild-type and PDK4(-/-) mice consumed similar amounts of the diet and became equally obese. Insulin resistance developed in both groups. Nevertheless, fasting blood glucose levels were lower, glucose tolerance was slightly improved, and insulin sensitivity was slightly greater in the PDK4(-/-) mice compared with wild-type mice. When the mice were killed in the fed state, the actual activity of the pyruvate dehydrogenase complex (PDC) was higher in the skeletal muscle and diaphragm but not in the liver and kidney of PDK4(-/-) mice compared with wild-type mice. When the mice were killed after overnight fasting, the actual PDC activity was higher only in the kidney of PDK4(-/-) mice compared with wild-type mice. The concentrations of gluconeogenic substrates were lower in the blood of PDK4(-/-) mice compared with wild-type mice, consistent with reduced formation in peripheral tissues. Diaphragms isolated from PDK4(-/-) mice oxidized glucose faster and fatty acids slower than diaphragms from wild-type mice. Fatty acid oxidation inhibited glucose oxidation by diaphragms from wild-type but not PDK4(-/-) mice. NEFA, ketone bodies, and branched-chain amino acids were elevated more in PDK4(-/-) mice, consistent with slower rates of oxidation. These findings show that PDK4 deficiency lowers blood glucose and slightly improves glucose tolerance and insulin sensitivity in mice with diet-induced obesity. 相似文献
9.
Kusakabe T Ebihara K Sakai T Miyamoto L Aotani D Yamamoto Y Yamamoto-Kataoka S Aizawa-Abe M Fujikura J Hosoda K Nakao K 《American journal of physiology. Endocrinology and metabolism》2012,302(8):E924-E931
Leptin enhances insulin sensitivity in addition to reducing food intake and body weight. Recently, amylin, a pancreatic β-cell-derived hormone, was shown to restore a weight-reducing effect of leptin in leptin-resistant diet-induced obesity. However, whether amylin improves the effect of leptin on insulin sensitivity in diet-induced obesity is unclear. Diet-induced obese (DIO) mice were infused with either saline (S), leptin (L; 500 μg·kg?1·day?1), amylin (A; 100 μg·kg?1·day?1), or leptin plus amylin (L/A) for 14 days using osmotic minipumps. Food intake, body weight, metabolic parameters, tissue triglyceride content, and AMP-activated protein kinase (AMPK) activity were examined. Pair-feeding and weight-matched calorie restriction experiments were performed to assess the influence of food intake and body weight reduction. Continuous L/A coadministration significantly reduced food intake, increased energy expenditure, and reduced body weight, whereas administration of L or A alone had no effects. L/A coadministration did not affect blood glucose levels during ad libitum feeding but decreased plasma insulin levels significantly (by 48%), suggesting the enhancement of insulin sensitivity. Insulin tolerance test actually showed the increased effect of insulin in L/A-treated mice. In addition, L/A coadministration significantly decreased tissue triglyceride content and increased AMPKα2 activity in skeletal muscle (by 67%). L/A coadministration enhanced insulin sensitivity more than pair-feeding and weight-matched calorie restriction. In conclusion, this study demonstrates the beneficial effect of L/A coadministration on glucose and lipid metabolism in DIO mice, indicating the possible clinical usefulness of L/A coadministration as a new antidiabetic treatment in obesity-associated diabetes. 相似文献
10.
11.
12.
Isolated pancreatic islets exposed to 100 mM acetazolamide (AZM) and low glucose concentration exhibited increased insulin release, whereas those subjected to AZM and high glucose concentration exhibited decreased secretion of insulin. A slight transient hyperglycaemia was found 24 h after administration of 1.5 g/kg b.wt. of AZM to fed mice, whereas no such response was seen in starved mice. The serum insulin concentration was increased in the 24 h after AZM injection. Pretreatment with AZM caused decreased glucose tolerance and protection against alloxan toxicity. Inhibited carbonic anhydrase activity and ionic alterations might have played a role in the development of these effects of AZM in mice. 相似文献
13.
Naples M Baker C Lino M Iqbal J Hussain MM Adeli K 《American journal of physiology. Gastrointestinal and liver physiology》2012,302(9):G1043-G1052
Ezetimibe is a cholesterol uptake inhibitor that targets the Niemann-Pick C1-like 1 cholesterol transporter. Ezetimibe treatment has been shown to cause significant decreases in plasma cholesterol levels in patients with hypercholesterolemia and familial hypercholesterolemia. A recent study in humans has shown that ezetimibe can decrease the release of atherogenic postprandial intestinal lipoproteins. In the present study, we evaluated the mechanisms by which ezetimibe treatment can lower postprandial apoB48-containing chylomicron particles, using a hyperlipidemic and insulin-resistant hamster model fed a diet rich in fructose and fat (the FF diet) and fructose, fat, and cholesterol (the FFC diet). Male Syrian Golden hamsters were fed either chow or the FF or FFC diet ± ezetimibe for 2 wk. After 2 wk, chylomicron production was assessed following intravenous triton infusion. Tissues were then collected and analyzed for protein and mRNA content. FFC-fed hamsters treated with ezetimibe showed improved glucose tolerance, decreased fasting insulin levels, and markedly reduced circulating levels of TG and cholesterol in both the LDL and VLDL fractions. Examination of triglyceride (TG)-rich lipoprotein (TRL) fractions showed that ezetimibe treatment reduced postprandial cholesterol content in TRL lipoproteins as well as reducing apoB48 content. Although ezetimibe did not decrease TRL-TG levels in FFC hamsters, ezetimibe treatment in FF hamsters resulted in decreases in TRL-TG. Jejunal apoB48 protein expression was lower in ezetimibe-treated hamsters. Reductions in jejunal protein levels of scavenger receptor type B-1 (SRB-1) and fatty acid transport protein 4 were also observed. In addition, ezetimibe-treated hamsters showed significantly lower jejunal mRNA expression of a number of genes involved in lipid synthesis and transport, including srebp-1c, sr-b1, ppar-γ, and abcg1. These data suggest that treatment with ezetimibe not only inhibits cholesterol uptake, but may also alter intestinal function to promote improved handling of dietary lipids and reduced chylomicron production. These, in turn, promote decreases in fasting and postprandial lipid levels and improvements in glucose homeostasis. 相似文献
14.
Marchionne EM Diamond-Stanic MK Prasonnarong M Henriksen EJ 《American journal of physiology. Regulatory, integrative and comparative physiology》2012,302(1):R137-R142
We have demonstrated previously that overactivity of the renin-angiotensin system (RAS) is associated with whole body and skeletal muscle insulin resistance in obese Zucker (fa/fa) rats. Moreover, this obesity-associated insulin resistance is reduced by treatment with angiotensin-converting enzyme inhibitors or angiotensin receptor (type 1) blockers. However, it is currently unknown whether specific inhibition of renin itself, the rate-limiting step in RAS functionality, improves insulin action in obesity-associated insulin resistance. Therefore, the present study assessed the effect of chronic, selective renin inhibition using aliskiren on glucose tolerance, whole body insulin sensitivity, and insulin action on the glucose transport system in skeletal muscle of obese Zucker rats. Obese Zucker rats were treated for 21 days with either vehicle or aliskiren (50 mg/kg body wt ip). Renin inhibition was associated with a significant lowering (10%, P < 0.05) of resting systolic blood pressure and induced reductions in fasting plasma glucose (11%) and free fatty acids (46%) and homeostatic model assessment for insulin resistance (13%). Glucose tolerance (glucose area under the curve) and whole body insulin sensitivity (inverse of the glucose-insulin index) during an oral glucose tolerance test were improved by 15% and 16%, respectively, following chronic renin inhibition. Moreover, insulin-stimulated glucose transport activity in isolated soleus muscle of renin inhibitor-treated animals was increased by 36% and was associated with a 2.2-fold greater Akt Ser(473) phosphorylation. These data provide evidence that chronic selective inhibition of renin activity leads to improvements in glucose tolerance and whole body insulin sensitivity in the insulin-resistant obese Zucker rat. Importantly, chronic renin inhibition is associated with upregulation of insulin action on skeletal muscle glucose transport, and it may involve improved Akt signaling. These data support the strategy of targeting the RAS to improve both blood pressure regulation and insulin action in conditions of insulin resistance. 相似文献
15.
Stocker CJ Wargent E O'Dowd J Cornick C Speakman JR Arch JR Cawthorne MA 《American journal of physiology. Regulatory, integrative and comparative physiology》2007,292(5):R1810-R1818
Absence of leptin is known to disrupt the development of energy balance regulatory mechanisms. We investigated whether administration of leptin to normally nourished rats affects energy balance in their offspring. Leptin (2 mg.kg(-1).day(-1)) was administered from day 14 of pregnancy and throughout lactation. Male and female offspring were fed either on chow or on high-fat diets that elicited similar levels of obesity in the sexes from 6 wk to 15 mo of age. Treatment of the dams with leptin prevented diet-induced increases in the rate of weight gain, retroperitoneal fat pad weight, area under the intraperitoneal glucose tolerance curve, and fasting plasma insulin concentration in female offspring. In the male offspring, the diet-induced increase in weight gain was prevented and increased fat pad weight was reduced. Energy intake per rat was higher in response to the obesogenic diet in male offspring of saline-treated but not leptin-treated dams. A similar trend was seen in 3-mo-old female offspring. Energy expenditure at 3 mo of age was higher for a given body weight in female offspring of leptin-treated compared with saline-treated dams when these animals were fed on the obesogenic diet. A similar trend was seen for male rats fed on the obesogenic diet. Thus leptin levels during pregnancy and lactation can affect the development of energy balance regulatory systems in their offspring. 相似文献
16.
Fall in rectal temperature (Tre) and survival time was determined on exposure to–20°C in adult normoglycemic and diabetic (streptozotocin treated) rats and 1 h following glucose feeding or insulin administration or both and on exposure to–10°C in young rats with and without glucose feeding. The susceptibility to frostbite was determined by exposure of the limbs to freezing mixture of–19°C or–23°C. The rate of fall of Tre was less and the survival time more in glucose and insulin plus glucose treated animals. On the other hand, the rate of fall of Tre was more and the survival time less, in dia betic and insulin-treated animals. The rectal temperature at which the animal died was the same in the control and the treated animals. The susceptibility to frost bite was more in insulin treated and diabetic animals and less in glucose-fed animals. Exposure to cold during the second h after glucose or glucose plus insulin injection did not alter the blood glucose from that obtained at room temperature. In insulin-treated animals the rate of rise of blood glucose during the second h was much higher at low temperature than at room temperature. The rise in blood glucose in diabetic animals was much higher than in normoglycemic animals exposed to cold. 相似文献
17.
Rise in rectal temperature (Tre) and survival time was determined on exposure to 38°C in adult normoglycemic and diabetic (streptozotocin treated) rats and 1 h following glucose feeding or insulin administration or both, and in young rats with and without glucose feeding or insulin treatment. The heat tolerance of adult animals treated with streptozotocin and insulin plus glucose and of adult and young animals treated with glucose feeding or insulin was less than that of their respective normoglycemic controls. The rectal temperature on exposure to heat in the treated animals was significantly higher than that of controls in the adult, but not in young rats. Exposure to heat of the normoglycemic and glucose-fed animals resulted in a rise in blood glucose in the adults and a fall in the young. The already raised blood glucose level in the streptozotocin-treated animals rose further on exposure to heat. The rate of recovery of the blood glucose was not significantly altered by exposure of the animals to heat 60 min after administration of insulin or insulin plus glucose. 相似文献
18.
Ryan AS Ortmeyer HK Sorkin JD 《American journal of physiology. Endocrinology and metabolism》2012,302(1):E145-E152
Our objective was to compare the effects of in vivo insulin on skeletal muscle glycogen synthase (GS) activity in normal (NGT) vs. impaired glucose-tolerant (IGT) obese postmenopausal women and to determine whether an increase in insulin activation of GS is associated with an improvement in insulin sensitivity (M) following calorie restriction (CR) and/or aerobic exercise plus calorie restriction (AEX + CR) in women with NGT and IGT. We did a longitudinal, clinical intervention study of CR compared with AEX + CR. Overweight and obese women, 49-76 yr old, completed 6 mo of CR (n = 46) or AEX + CR (n = 50) with Vo(2?max), body composition, and glucose tolerance testing. Hyperinsulinemic euglycemic (80 mU·m(-2)·min(-1)) clamps (n = 73) and skeletal muscle biopsies (before and during clamp) (n = 58) were performed before and after the interventions (n = 50). After 120 min of hyperinsulinemia during the clamp, GS fractional activity and insulin's effect to increase GS fractional activity (insulin - basal) were significantly lower in IGT vs. NGT (P < 0.01) at baseline. GS total activity increased during the clamp in NGT (P < 0.05), but not IGT, at baseline. CR and AEX + CR resulted in a significant 8% weight loss with reductions in total fat mass, visceral fat, subcutaneous fat, and intramuscular fat. Overall, M increased (P < 0.01), and the change in M (postintervention - preintervention) was associated with the change in insulin-stimulated GS fractional activity (partial r = 0.44, P < 0.005). In IGT, the change (postintervention - preintervention) in insulin-stimulated GS total activity was greater following AEX + CR than CR alone (P < 0.05). In IGT, insulin-stimulated GS-independent (P < 0.005) and fractional activity (P = 0.06) increased following AEX + CR. We conclude that the greatest benefits at the whole body and cellular level (insulin activation of GS) in older women at highest risk for diabetes are derived from a lifestyle intervention that includes exercise and diet. 相似文献
19.
Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone that potentiates glucose-stimulated insulin secretion during a meal. Since GIP has also been shown to exert β-cell prosurvival and adipocyte lipogenic effects in rodents, both GIP receptor agonists and antagonists have been considered as potential therapeutics in type 2 diabetes (T2DM). In the present study, we tested the hypothesis that chronically elevating GIP levels in a transgenic (Tg) mouse model would increase adipose tissue expansion and exert beneficial effects on glucose homeostasis. In contrast, although GIP Tg mice demonstrated enhanced β-cell function, resulting in improved glucose tolerance and insulin sensitivity, they exhibited reduced diet-induced obesity. Adipose tissue macrophage infiltration and hepatic steatosis were both greatly reduced, and a number of genes involved in lipid metabolism/inflammatory signaling pathways were found to be down-regulated. Reduced adiposity in GIP Tg mice was associated with decreased energy intake, involving overexpression of hypothalamic GIP. Together, these studies suggest that, in the context of over-nutrition, transgenic GIP overexpression has the potential to improve hepatic and adipocyte function as well as glucose homeostasis. 相似文献
20.