首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Summary The molecular conformation of the basic pancreatic trypsin inhibitor (BPTI) is known in considerable detail from both X-ray studies in single crystals and NMR studies in solution. The NMR experiments showed that the aromatic rings of the phenylalanyl and tyrosyl residues can undergo rapid rotational motions about the C-C bond. The present paper describes a model investigation of the mechanistic aspects of these intramolecular rotational motions. From calculations of the conformational energies for molecular species derived from the X-ray structure by rotations of individual aromatic rings, it was apparent that the rotational motions of the aromatics could only be understood in a flexible structure. Flexibility was simulated by allowing the protein to relax to an energetically favorable conformation for each of the different rotation states of the aromatic rings. It was then of particular interest to investigate how the perturbations caused by different rotation states of the aromatic rings were propagated in the protein structure. It was found that the rotation axes C-C were only slightly affected ( 120°). The most sizeable perturbations are caused by through space interactions with nearby atoms, which move away from the ring center and thus release the steric hindrance opposing the rotational motions. The values for the energy barriers obtained from the energy minimization are of the same order of magnitude as those measured by NMR.  相似文献   

6.
7.
The reactions of free radicals produced by ionizing radiation with pepsin have been studied by steady-state inactivation measurements and by pulse radiolysis. In de-aerated solutions thehydroxyl radical has been found to be the most efficient of the primary free radicals generated from water in causing inactivation. The reactions of the more selective oxidizing inorganic radical anions Br2-. and (SCN)2-., with pepsin have also beenexamined. In the case of the thiocyanate radical anion (SCN)2-., the inactivation efficiency is found to depend on SCN- concentration, an effect shown to arise from a reversible redox reaction involving the tryptophan and (SCN)2-. radicals. The results demonstrate that tryptophan residue plays an essential role in the enzyme activity of pepsin.  相似文献   

8.
Transfer RNA (Gm18) methyltransferase (TrmH) catalyzes the methyl transfer from S-adenosyl-L-methionine (AdoMet) to the 2'-OH group of the G18 ribose in tRNA. To identify amino acid residues responsible for the tRNA recognition, we have carried out the alanine substitution mutagenesis of the basic amino acid residues that are conserved only in TrmH enzymes and not in the other SpoU proteins. We analyzed the mutant proteins by S-adenosyl-L-homocysteine affinity column chromatography, gel mobility shift assay, and kinetic assay of the methyl transfer reaction. Based on these biochemical studies and the crystal structure of TrmH, we found that the conserved residues can be categorized according to their role (i) in the catalytic center (Arg-41), (ii) in the initial site of tRNA binding (Lys-90, Arg-166, Arg-168, and Arg-176), (iii) in the tRNA binding site required for continuation the catalytic cycle (Arg-8, Arg-19, and Lys-32), (iv) in the structural element involved in release of S-adenosyl-L-homocysteine (Arg-11-His-71-Met-147 interaction), (v) in the assisted phosphate binding site (His-34), or (vi) in an unknown function (Arg-109). Furthermore, the difference between the Kd and Km values for tRNA suggests that the affinity for tRNA is enhanced in the presence of AdoMet. To confirm this idea, we carried out the kinetic studies, a gel mobility shift assay with a mutant protein disrupted in the catalytic center, and the analytical gel-filtration chromatography. Our experimental results clearly show that the enzyme has a semi-ordered sequential mechanism in which AdoMet both enhances the affinity for tRNA and induces formation of the tetramer structure.  相似文献   

9.
10.
11.
12.
13.
The chemical and kinetic mechanisms of the reaction catalyzed by the catalytic trimer of aspartate transcarbamoylase have been examined. The variation of the kinetic parameters with pH indicated that at least four ionizing amino acid residues are involved in substrate binding and catalysis. The pH dependence of K(ia) for carbamoyl phosphate and the K(i) for N-(phosphonoacetyl)-L- aspartate revealed that a protonated residue with a pK value of 9.0 is required for the binding of carbamoyl phosphate. However, the variation with pH of K(i) for succinate, a competitive inhibitor of aspartate, and for cysteine sulfinate, a slow substrate, showed that a single residue with a pK value of 7.3 must be protonated for binding these analogues and, by inference, aspartate. The profile of log V against pH displayed a decrease in reaction rate at low and high pH, suggesting that two groups associated with the Michaelis complex, a deprotonated residue with a pK value of 7.2 and a protonated group with a pK value of 9.5, are involved in catalysis. By contrast, the catalytically productive form of the enzyme-carbamoyl phosphate complex, as illustrated in the bell-shaped pH dependence of log (V/K)(asp), is one in which a residue with a pK value of 7.0 must be protonated while a group with a pK value of 9.1 is deprotonated. This interpretation is supported by the results from the temperature dependence of the V and V/K profiles and from the pH dependence of pK(i) for the aspartate analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
16.
1. Desmosine and isodesmosine were separated by ion-exchange and paper chromatography, after acid hydrolysis of purified elastin from beef ligamentum nuchae. The fractions obtained by ion-exchange chromatography were clearly mixtures of related compounds. The desmosine fraction could be resolved into seven compounds and the isodesmosine into four by paper chromatography. 2. Desmosine was maximally degraded by irradiation at 274 nm and isodesmosine at 285 nm. These wavelengths did not correspond to the absorption maxima of the cross links, but to shoulders of the main absorption peaks. 3. When irradiated at their optimum wavelengths, but at various pH, both desmosine and isodesmosine seemed quite stable at pH greater than 8.5. Between pH 8 and 5, the photolytic rate was maximum and decreased slightly at more acidic pH. Below pH 4.0, one of the products of photolysis was free lysine. 4. In analogy to the mechanism of the photolytic degradation of N-methyl pyridinium chloride, it appears that the (iso)desmosines were degraded via the formation of an open amino aldehyde, which was hydrolysed at acid pH to give free lysine and a substituted glutaconic aldehyde.  相似文献   

17.
The amino acid sequence of soybean trypsin inhibitor (Kunitz)   总被引:1,自引:0,他引:1  
  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号