共查询到20条相似文献,搜索用时 0 毫秒
1.
Brauer, D., Schubert C. and Tu, S,-I. 1990. Characterization of a Ca2+ -translocating ATPase from corn root microsomes. - Physiol. Plant. 78: 335-344.
The existence of a Ca2+ -translocating ATPase in microsomes from maize ( Zea mays L. cv, WF9 × Mo17) roots was evaluated using assays to follow Ca2+ -stimulation of ATP hydrolysis and Ca2+ transport by changes in the fluorescence of chlorotetracycline, ATP hydrolysis by microsomes was stimulated by the addition of Ca2+ and further enhanced by the Ca ionophore A23187 and bovine brain calmodulin only in the presence of Ca2+ , Stimulation by these agents was additive and sensitive to vanadate. These results were consistent with the presence of a Ca2+ -translocating ATPase in microsomal membranes. The fluorescence of chlorotetracycline in the presence of microsomes and Ca2+ increased upon the addition of ATP, indicating the transport of Ca2+ , The initial rate and extent of change in fluorescence were stimulated by calmodulin and quenched by the addition of either A23187 or EGTA, but not by protonophores. Changes in chlorotetracycline fluorescence were prevented by vanadate. Therefore, results using chlorotetracycline also indicated the presence of a Ca2+ -translocating ATPase, Localization experiments indicated that the majority of the Ca2+ -translocating ATPase was on the endoplasmic reticulum. 相似文献
The existence of a Ca
2.
The role of natural and synthetic auxins in regulation of ion transport and ATPase activity was studied in rice roots (Oryza sativa L. cv. Dunghan Shah). In vivo treatment of seedlings with 2,4-dichlorophenoxyacetic acid at 2 × 10?6M for a short period enhanced subsequent Ca2+ stimulated K+ influx and ATPase activity, while a longer treatment diminished both K+ influx and ATPase activity. Indoleacetic acid at 10?10–10?8M induced ATPase activity. In in vitro experiments both 2,4-dichloro phenoxyacetic acid and indoleacetic acid (10?10–10?8M) stimulated Ca2+, K+-ATPase activity of a plasmalemma rich micro somal fraction from the roots. Acetone extracted ATPase preparations lost their activity. The enzyme regained its activity and its sensitivity towards ions (Ca2++ K+) when reconstituted with phosphatidyl choline. Addition of auxins also indicated that the presence of the lipid was necessary in the interaction between the ATPase and auxins. Auxins and ions probably interact with the intact ATPase lipoprotein complex, which may possess a receptor site for the auxins, possibly as a sub unit. 相似文献
3.
Kinetic studies of a microsomal, dithiotreitol treated, homogenate from sugar beet roots led to the following conclusions about its ATPase activity: (1) MgATP in complex appears to be the primary substrate for the reaction. The reciprocal equilibrium constant for the binding to the enzyme is estimated to be approximately 0.2 × 10?3M. (2) Free ATP acts as a competitive inhibitor of the MgATP. The binding constant is about twice as high as for MgATP. Consequently the enzyme has less affinity for ATP than for MgATP. (3) Free Mg2+ has little influence on the velocity, as the binding affinity of the enzyme for Mg2+ is almost negligible. 相似文献
4.
SYLVIA LINDBERG 《Physiologia plantarum》1976,36(2):139-144
Kinetic studies of a dithiothreitol treated membrane ATPase fraction from sugar beet roots led to the following conclusions: 1) In the presence of MgATP, Na+ and K+ stimulate the ATPase activity in different ways following simple Michaelis-Menten kinetics. Thus separate sites for Na+ and K+ are suggested. 2) In the absence of K+, Na+ acts as an uncompetitive modifier raising the apparent Km and Vmax for MgATP. 3) In the absence of Na+, K+ activates non-competitively with respect to MgATP. Thus K+ increases Vmax but does not affect the apparent affinity constant. 4) K+ and Na+ double the rate constants. 5) In the presence of Na+ or K+, Mg2+ in excess acts as a weak inhibitor to Na+ and/or K+ activity. 6) The temperature-activity dependence in the 5–40°C interval shows biphasic Arrhenius plots with the transition point between 15–18°C. The activation energy is lowered at temperatures > 18°C. 相似文献
5.
The equal rates of water vapour absorption by both bi- and trinucleate pollen indicate that their widely-differing rates of respiration have an intrinsic, biochemical basis. This was investigated with various metabolic inhibitors that were previously introduced into dry pollen via anhydrous acetone. The uncoupler, carbonyl cyanide m-chlorophenyl hydrazone, inhibited the O2 uptake of rapidly respiring pollen and stimulated that of slowly respiring types to similar absolute values, that probably reflect the rates of substrate transport across the mitochondrial membranes. The extent of inhibition of the O2 uptake by oligomycin, dicyclohexyl carbodiimide, antimycin A, and salicyl hydroxamic acid, alone and in combinations, indicates that hardly any oxidative phosphorylation and anabolic activities occur in slowly respiring, binucleate pollen species, having low-developed mitochondria and high energy charge values. The presence of the alternative pathway was insignificant. In other binucleate pollen species, characterized by recognizable mitochondria and low energy charge values, a limited ATP synthesis was established. The low energy charge values point to imbalance between phosphorylative and anabolic activities. In rapidly respiring, trinucleate pollen, containing well-developed mitochondria, a significant activity of the alternative oxidase was found. The energy charge values were high notwithstanding the large demand for ATP, mounting to 1.7 μmol h?1 (mg pollen)?1. In some pollen species, oligomycin highly stimulated the flow of electrons through the cytochrome pathway, which made an estimation of the ATP synthesis impossible. 相似文献
6.
Steady state kinetics were used to examine the influence of Cd2+ both on K+ stimulation of a membrane-bound ATPase from sugar beet roots (Beta vulgaris L. cv. Monohill) and on K+(86Rb+) uptake in intact or excised beet roots. The in vitro effect of Cd2+ was studied both on a 12000–25000 g root fraction of the (Na++K++Mg2+)ATPase and on the ATPase when further purified by an aqueous polymer two-phase system. The observed data can be summarized as follows: 1) Cd2+ at high concentrations (>100 μM) inhibits the MgATPase activity in a competitive way, probably by forming a complex with ATP. 2) Cd2+ at concentrations <100 μM inhibits the specific K+ activation at both high and low affinity sites for K+. The inhibition pattern appears to be the same in the two ATPase preparations of different purity. In the presence of the substrate MgATP, and at K+ <5 mM, the inhibition by Cd2+ with respect to K+ is uncompetitive. In the presence of MgATP and K+ >10 μM, the inhibition by Cd2+ is competitive. 3) At the low concentrations of K+, Cd2+ also inhibits the 2,4-dinitrophenol(DNP)-sensitive (metabolic) K+(86Rb+) uptake uncompetitively both in excised roots and in roots of intact plants. 4) The DNP-insensitive (non metabolic) K+(86Rb+) uptake is little influenced by Cd2+. As Cd2+ inhibits the metabolic uptake of K+(86Rb+) and the K+ activation of the ATPase in the same way at low concentrations of K+, the same binding site is probably involved. Therefore, under field conditions, when the concentration of K+ is low, the presence of Cd2+ could be disadvantageous. 相似文献
7.
Klotz, M. G. and Erdei, L. 1988. Effect of tentoxin on K+ transport in winter wheat seedlings of different K+-status. The influence of the phytoeffective mycotoxin, tentoxin, [cyclo-(L-leucyl-N-methyltrans-dehydronhenyl-alanyl-glycyl-N-methyl-L-alanyl)] (in K+ uptake and on translocation of K+ from roots to shoot was studied in 14-day-old winter wheat plants (Triticum aestivum L. cv. Martonvásári-8) grown at different levels of K+ supply. For comparison, the effects of 2,4-dinilrophcnol and valinomycin were also investigated. In I-h experiments I pM tentoxin reduced K+ influx in the routs over the external K+ concentration range 0.1 to 1 mM (low-K+ plants), whereas stimulation was observed al lower and higher K+ concentrations. On the other hand, in plants grown at 0.3 mM K+, tentoxin stimulated the translocation of K+ from roots to shoots in 5-h experiments. Valinomycin affected K+ transport only al high K+-status (slight stimulation). In low-K+ plants 2,4-dinitrophenol (DNP) caused drastic inhibition of K+ uptake, but in high-K+ plants uptake was only slightly inhibited and translocation slightly stimulated, It is concluded that the opposite effects of tentoxin on K+ uptake and translocation agree1 with the directions of the H+-ATPases pumping H+ towards the apoplast and located at the cortex plasmalemma and the xylem parenchyma plasma-membrane, respectively. These effects should probably be attributed to the interaction between tentoxin and the K+-carrier protein rather than to a direct influence of tentoxin on H+-ATPase. 相似文献
8.
We report on the interactions of Li+, a congener of K+ with the (Na+ + K+)-ATPase from E Electricus as measured by their effects on the rate of [3H]-ouabain binding to this enzyme. Like K+, Li+ slows ouabain binding under both Type I (Na+ + ATP) and Type II (P1) conditions, but with lower affinity. In contrast to K+, the Li+ inhibition curve is hyperbolic, suggesting interaction at an uncoupled site. Also differing from the complete inhibition by high K+, a residual ouabain-binding rate persists at high Li+. The interactions of Li+ and K+ are synergistic: the apparent K+ affinity increases 3 to 4-fold in presence of Li+. These results are consistent with the conclusion that Li+ interacts with only one of the two K+ sites and may be of interest in interpreting lithium pharmacology. 相似文献
9.
SYLVIA LINDBERG 《Physiologia plantarum》1980,48(1):65-70
A microsomal (Na++ K++ Mg2+)ATPase preparation from sugar beet roots was used. The activation by simultaneous addition of Na+ and K+ at different levels was examined in terms of steady state kinetics. The observed data can be summarized in the following way: 1. The apparent affinity between the enzyme and the substrate MgATP depends on the ratio between Na+ and K+. At low Na+ concentration (below 5 mM), the apparent Km decreases with increasing concentrations of K+ (1–20 mM). At 5 mM Na+, the K+ level does not change the apparent Km, while at Na+ levels above 10 mM, the apparent Km between enzyme and substrate increases with increasing concentration of K+. 2. When the MgATP concentration is kept constant, homotropic cooperativity (concerning one type of ligand) and heterotropic cooperativity (concerning different types of ligands) exist in the activation by Na+ and K+. The Na+ binding is cooperative with different Km values and Hill coefficients (n) in the presence of low and high concentration of K+. At low Na+ level (< 5 mM). a negative cooperativity exists for Na+ (nNa < 1) which is more pronounced in the presence of high [K+]. When the concentration of Na+ is raised the negative cooperativity disappears and turns into a positive one (nNa > 1). Only K+ binding in the presence of low [Na+] shows cooperativity with a Hill coefficient that reflects changes from negative to positive homotropic cooperativity with increasing concentrations of K+ (nK < 1 → nK > 1). In the presence of [Na+] > 10 mM, the changes in nk are insignificant. 3. A model is proposed in which one or two different K sites and one or two Na sites control the catalytic activity, with multiple interactions between Na+, K+ and MgATP. 4. In the presence of Na+ (< 10 mM), K+ is probably bound to two K sites, one of which translocates K+ through the membrane by an antiport Na+/K+ mechanism. This could be connected with an elevated K+ uptake in the presence of Na+ and could therefore explain some field properties of sugar beets. 相似文献
10.
H. K. Kimelberg 《Journal of neurochemistry》1974,22(6):971-976
—The ouabain-sensitive K+ uptake and ATPase activities of cultured glioma and neuroblastoma cells were studied. Both cell lines showed ouabain-sensitive K+ uptake which correlated with the level of [Na++ K+]ATPase activity found in the respective total cell homogenate. The glioma cells had a 2.1-fold higher rate of K+ uptake than neuroblastoma cells, and a 2.4-fold higher [Na++ K+]ATPase activity. In the presence of ouabain neuroblastoma cells released K+ and took up Na+ in a 1:1 ratio. These results are compared and contrasted with similar studies on brain tissue and isolated cells. It is suggested that the cultured cell lines may serve as good models for the cation transport properties of their tissue counterparts. 相似文献
11.
Sune Pettersson 《Physiologia plantarum》1981,52(4):431-436
Passive fluxes of K+ (86 Rb) into roots of sunflower ( Helianthus annuus L. cv. Uniflorus) were determined at low K+ concentration (0.1 and 1.0 mM K+ ) in the ambient solution. Metabolic uptake of K+ was inhibited by 10−4 M 2,4-dinitrophenol (DNP). K+ (86 Rb) fluxes were studied both continuously and by time differentiation of uptake. In high K+ roots passive uptake was directly proportional to the K+ concentration of the uptake solution, indicating free diffusion. This assumption was supported by the fact that passive Rb+ uptake was not affected by high K+ concentrations. In low K+ roots the passive uptake of K+ was higher than in high K+ roots. The increase was possibly due to carrier-mediated K+ transport. As K+ effluxes were quantitatively similar to influxes, it is suggested that passive K+ fluxes represent exchange diffusion without relation to net K+ transport. 相似文献
12.
R. H. Jongbloed J. M. A. M. Clement G. W. F. H. Borst-Pauwels 《Physiologia plantarum》1991,83(3):427-432
NH4+ and K+ uptake experiments have been conducted with 3 ectomycorrhizal fungi, originating from Douglas fir (Pseudotsuga menziesii (Mirb.] Franco) stands. At concentrations up to 250 μM, uptake of both NH4+ and K+ follow Michaelis-Menten kinetics. Laccaria bicolor (Maire) P. D. Orton, Lactarius rufus (Scop.) Fr. and Lactarius hepaticus Plowr. ap. Boud. exhibit Km values for NH4+ uptake of 6, 35, and 55 μM, respectively, and Km values for K+ uptake of 24, 18, and 96 μM, respectively. Addition of 100 μM NH4+ raises the Km of K+ uptake by L. bicolor to 35 μM, while the Vmax remains unchanged. It is argued that the increase of Km is possibly caused by depolarization of the plasma membrane. It is not due to a competitive inhibition of K+ by NH4+ since the apparent inhibitor constant is much higher than the Km, for NH4+ uptake. The possibility that NH4+ and K+ are taken up by the same carrier can be excluded. The Km, values for K+ uptake in the two other fungi are not significantly affected by 100 μM NH4+. Except for a direct effect of NH4+ on influx of K+ into the cells, there may also be an indirect effect after prolonged incubation of the cells in the presence of 100 μM NH4+. 相似文献
13.
The carboxanilide systemic fungicide 2-iodobenzanilide (2-IB) after 2 h pretreatment at 0.25 m M inhibited K+ and SO4 2- uptake by excised corn roots ( Zea mays L., cv. Dekalb 342) up to ca 70 and 40%, respectively. Proton extrusion from corn roots was also reduced by ca 50% after 1 h contact, and the microsomal K+ -stimulated ATPase activity from corn roots and pea stems ( Pisum sativum L., cv. Alaska) inhibited by 50 and 72%, respectively. In contrast, the Mg2+ -ATPase activities of microsomes and mitochondria at pH 6.0 and 8.7, respectively, were unaffected. After 2 h of preincubation with 0.25 m M 2-IB, O2 consumption by corn roots and pea stems was inhibited by 12 and 18%, respectively. ATP content of corn roots was not altered by 2-IB treatment. Therefore, energy availability "in vivo" was unaffected and the primary effect on corn roots is suggested to be at the plasmalemma ATPase which forms the proton gradient.
With isolated pea stem mitochondria, 0.25 m M 2-IB inhibited O2 consumption by ca 60% when NADH or malate plus pyruvate were added as substrates; when succinate was used O2 consumption was unaffected. The mode of action on isolated mitochondria was different from that shown for carboxin and also formerly attributed to the whole class of carboxanilide fungicides. 相似文献
With isolated pea stem mitochondria, 0.25 m M 2-IB inhibited O
14.
15.
16.
Continuous measurements of CO2-release from intact roots of Lolium multiflorum growing in nutrient solution were carried out during 3–7 weeks. Periods of days with high level of irradiance and periods with low level alternated. Root respiration rate was found to depend on photosynthesis. The change in root respiration, induced by change in photosynthesis, was delayed. The root respiration rate showed diurnal fluctuations with two characteristic peaks occurring 4–6 and 14–16 hours after onset of the photoperiod. The amplitudes increased with increasing photosynthesis. The frequencies were independent of the length of photoperiod, when this varied between 8 and 16 hours. The fluctuations are discussed in relation to diurnal fluctuations in protein synthesis. 相似文献
17.
18.
Ouabain Binding, ATP Hydrolysis, and Na+ ,K+ -Pump Activity During Chemical Modification of Brain and Muscle Na+ ,K+ -ATPase 总被引:1,自引:0,他引:1
J. Teisinger H. Zemková P. Svoboda E. Amler F. Vyskoil 《Journal of neurochemistry》1992,58(3):1066-1072
The effects of 16 group-specific, amino acid-modifying agents were tested on ouabain binding, catalytical activity of membrane-bound (rat brain microsomal), sodium dodecyl sulfate-treated Na+,K(+)-ATPase, and Na+,K(+)-pump activity in intact muscle cells. With few exceptions, the potency of various tryptophan, tyrosine, histidine, amino, and carboxy group-oriented drugs to suppress ouabain binding and Na+,K(+)-ATPase activity correlated with inhibition of the Na+,K(+)-pump electrogenic effect. ATP hydrolysis was more sensitive to inhibition elicited by chemical modification than ouabain binding (membrane-bound or isolated enzyme) and than Na+,K(+)-pump activity. The efficiency of various drugs belonging to the same "specificity" group differed markedly. Tyrosine-oriented tetranitromethane was the only reagent that interfered directly with the cardiac receptor binding site as its inhibition of ouabain binding was completely protected by ouabagenin preincubation. The inhibition elicited by all other reagents was not, or only partially, protected by ouabagenin. It is surprising that agents like diethyl pyrocarbonate (histidine groups) or butanedione (arginine groups), whose action should be oriented to amino acids not involved in the putative ouabain binding site (represented by the -Glu-Tyr-Thr-Trp-Leu-Glu- sequence), are equally effective as agents acting on amino acids present directly in the ouabain binding site. These results support the proposal of long-distance regulation of Na+,K(+)-ATPase active sites. 相似文献
19.
Paul Jensén 《Physiologia plantarum》1982,56(3):259-265
Effects of interrupted K+ supply on different parameters of growth and mineral cation nutrition were evaluated for spring wheat (Triticum aestivum L. cv. Svenno). K+ (2.0 mM) was supplied to the plants during different periods in an otherwise complete nutrient solution. Shoot growth was reduced before root growth after interruption in K+ supply. Root structure was greatly affected by the length of the period in K+ -free nutrient solution. Root length was minimal, and root branching was maximal within a narrow range of K+ status of the roots. This range corresponded to cultivation for the last 1 to 3 days, of 11 in total, in K+ -free nutrient solution, or to continuous cultivation in solution containing 0.5 to 2 mM K+. In comparison, both higher and lower internal/external K+ concentrations had inhibitory effects on root branching. However, the differing root morphology probably had no significant influence on the magnitude of Ca2+, Mg2+ and Na+ uptake. Uptake of Ca2+ and especially Mg2+ significantly increased after K+ interruption, while Na+ uptake was constant in the roots and slowly increased in the shoots. The two divalent cations could replace K+ in the cells and maintain electroneutrality down to a certain minimal range of K+ concentrations. This range was significantly higher in the shoot [110 to 140 μmol (g fresh weight)?1] than in the root [20 to 30 μmol (g fresh weight)?1]. It is suggested that the critical K+ values are a measure of the minimal amount of K+ that must be present for physiological activity in the cells. At the critical levels, K+ (86Rb) influx and Ca2+ and Mg2+ concentrations were maximal. Below the critical K+ values, growth was reduced, and Ca2+ and Mg2+ could no longer substitute for K+ for electrostatic balance. In a short-term experiment, the ability of Ca2+ to compete with K+ in maintaining electroneutrality in the cells was studied in wheat seedlings with different K+ status. The results indicate that K+, which was taken up actively and fastest at the external K+ concentration used (2.0 mM), partly determines the size of Ca2+ influx. 相似文献
20.
The effects of cadmium and lead on the internal concentrations of Ca2+ and K+, as well as on the uptake and translocation of K(86Rb+) were studied in winter wheat (Triticum aestivum L. a. MV-8) grown hydroponically at 2 levels of K+ (100 uM and 10 mM). Cd2+ and Pb2+ were applied in the nutrient solution in the range of 0.3 to 1000 u.M. Growth was more severely inhibited by Cd2+ and in the high-K+ plants as compared to Pbz+ and low-K+ plants. Ions of both heavy metals accumulated in the roots and shoots, but the K+ status influenced their levels. Ca2+ accumulation was increased by low concentrations of Cd2+ mainly in low-K+ shoots, whereas it was less influenced by Pb2+. The distribution of Cd2+ and Ca2+ in the plant and in the growth media indicated high selectivity for Cd2+ in the root uptake, while Ca2+ was preferred in the radial and/or xylem transport. Cd2+ strongly inhibited net K+ accumulation in high-K+ plants but caused stimulation at low K+ supply. In contrast, the metabolis-dependent influx of K+(86Rb+) was inhibited in low-K+ plants, while the passive influx in high-K+ plants was stimulated. Translocation of K+ from the roots to the shoots was inhibited by Cd2+ but less influenced in Pb2+-treated plants. It is concluded that the effects of heavy metals depend upon the K+-status of the plants. 相似文献