首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paternal genome loss (PGL) during early embryogenesis is caused by two different genetic elements in the parasitoid wasp, Nasonia vitripennis. Paternal sex ratio (PSR) is a paternally inherited supernumerary chromosome that disrupts condensation of the paternal chromosomes by the first mitotic division of fertilized eggs. Bacteria belonging to the genus Wolbachia are present in Nasonia eggs and also disrupt paternal chromosome condensation in crosses between cytoplasmically incompatible strains. Cytoplasmic incompatibility Wolbachia are widespread in insects, whereas PSR is specific to this wasp. PGL results in production of male progeny in Nasonia due to haplodiploid sex determination. The cytological events associated with PGL induced by the PSR chromosome and by Wolbachia were compared by fluorescent light microscopy using the fluorochrome Hoescht 33258. Cytological examination of eggs fertilized with PSR-bearing sperm revealed that a dense paternal chromatin mass forms prior to the first metaphase. Quantification of chromatin by epifluorescence indicates that this mass does undergo replication along with the maternal chromatin prior to the first mitotic division but does not replicate during later mitotic cycles. Contrary to previous reports using other staining methods, the paternal chromatin mass remains condensed during interphase and persists over subsequent mitotic cycles, at least until formation of the syncytial blastoderm and cellularization, at which time it remains near the center of the egg with the yolk nuclei. Wolbachia-induced PGL shows several marked differences. Most notable is that the paternal chromatin mass is more diffuse and tends to be fragmented during the first mitotic division, with portions becoming associated with the daughter nuclei. Nuclei containing portions of the paternal chromatin mass appear to be delayed in subsequent mitotic divisions relative to nuclei free of paternal chromatin. Crosses combining incompatibility with PSR were cytologically similar to Wolbachia-induced PGL, although shearing of the paternal chromatin mass was reduced. Wolbachia may, therefore, block an earlier stage of paternal chromatin processing in the fertilized eggs than does PSR. © 1995 Wiley-Liss, Inc.  相似文献   

2.

Background

about 15% to 30% of the DNA in human sperm is packed in nucleosomes and transmission of this fraction to the embryo potentially serves as a mechanism to facilitate paternal epigenetic programs during embryonic development. However, hitherto it has not been established whether these nucleosomes are removed like the protamines or indeed contribute to paternal zygotic chromatin, thereby potentially contributing to the epigenome of the embryo.

Results

to clarify the fate of sperm-derived nucleosomes we have used the deposition characteristics of histone H3 variants from which follows that H3 replication variants present in zygotic paternal chromatin prior to S-phase originate from sperm. We have performed heterologous ICSI by injecting human sperm into mouse oocytes. Probing these zygotes with an antibody highly specific for the H3.1/H3.2 replication variants showed a clear signal in the decondensed human sperm chromatin prior to S-phase. In addition, staining of human multipronuclear zygotes also showed the H3.1/H3.2 replication variants in paternal chromatin prior to DNA replication.

Conclusion

these findings reveal that sperm-derived nucleosomal chromatin contributes to paternal zygotic chromatin, potentially serving as a template for replication, when epigenetic information can be copied. Hence, the execution of epigenetic programs originating from transmitted paternal chromatin during subsequent embryonic development is a logical consequence of this observation.  相似文献   

3.
In the mouse, the paternal post-meiotic chromatin is assumed to be devoid of DNA repair after nuclear elongation and protamine-induced compaction. Hence, DNA lesions induced thereafter will have to be restored upon gamete fusion in the zygote. Misrepair of such lesions often results in chromosome type aberrations at the first cleavage division, suggesting that the repair event takes place prior to S-phase. During this stage of the zygotic cell cycle, the paternal chromatin transits from a protamine- to a nucleosome-based state. We addressed the question whether the canonical signalling pathway to DNA double strand breaks (DSBs), the phosphorylated form of histone H2AX (gammaH2AX) is active during chromatin restructuring of the male genetic complement in the zygote. Here, we describe the detailed characterization of gammaH2AX signalling in the early stages of zygotic development up to the appearance of the pronuclei. We have found the gammaH2AX signalling pathway to be already active during sperm chromatin remodelling after gamete fusion in a dose dependent manner, reflecting the amount of DSBs present in the sperm nucleus after in vivo male irradiation. Using DNA damaging compounds to induce lesions in the early zygote, differences in DSB sensitivity and gammaH2AX processing between paternal and maternal chromatin were found, suggesting differences in DNA repair capacity between the parental chromatin sets.  相似文献   

4.
Grenier L  Robaire B  Hales BF 《PloS one》2011,6(11):e27600
Paternal exposures to cancer chemotherapeutics or environmental chemicals may have adverse effects on progeny outcome that are manifested in the preimplantation embryo. The objectives of this study were to determine the impact of paternal exposure to cyclophosphamide, an anticancer alkylating agent, on the formation, chromatin origin and function of micronuclei in cleavage stage rat embryos. Male Sprague-Dawley rats were gavaged with saline or cyclophosphamide (6 mg/kg/day) for 4 weeks and mated to naturally cycling females to collect pronuclear zygotes and 2 to 8 cell embryos. Micronuclear chromatin structure was characterized using confocal microscopy to detect immunoreactivities for H3K9me3, a marker for maternal chromatin, and lamin B, a nuclear membrane marker. DNA synthesis was monitored using EdU (5-ethynyl-2'-deoxyuridine) incorporation. Fertilization by cyclophosphamide-exposed spermatozoa led to a dramatic elevation in micronuclei in cleavage stage embryos (control embryos: 1% to 5%; embryos sired by treated males: 70%). The formation of micronuclei occurred during the first zygotic division and was associated with a subsequent developmental delay. The absence of H3K9me3 indicated that these micronuclei were of paternal origin. The micronuclei had incomplete peri-nuclear and peri-nucleolar lamin B1 membrane formation but incorporated EdU into DNA to the same extent as the main nucleus. The formation of micronuclei in response to the presence of a damaged paternal genome may play a role in increasing the rate of embryo loss that is associated with the use of assisted reproductive technologies, parenthood among cancer survivors, and paternal aging.  相似文献   

5.
6.
We have investigated the molecular mechanism by which the proto-oncogene protein DEK, an abundant chromatin-associated protein, changes the topology of DNA in chromatin in vitro. Band-shift assays and electron microscopy revealed that DEK induces both intra- and intermolecular interactions between DNA molecules. Binding of the DEK protein introduces constrained positive supercoils both into protein-free DNA and into DNA in chromatin. The induced change in topology is reversible after removal of the DEK protein. As shown by sedimentation analysis and electron microscopy, the DEK-induced positive supercoiling causes distinct structural changes of DNA and chromatin. The observed direct effects of DEK on chromatin folding help to understand the function that this major chromatin protein performs in the nucleus.  相似文献   

7.
Chromatin organization has a fundamental impact on the whole spectrum of genomic functions. Quantitative characterization of the chromatin structure, particularly at submicron length scales where chromatin fractal globules are formed, is critical to understanding this structure-function relationship. Such analysis is currently challenging due to the diffraction-limited resolution of conventional light microscopy. We herein present an optical approach termed inverse spectroscopic optical coherence tomography to characterize the mass density fractality of chromatin, and we apply the technique to observe chromatin decompaction in live cells. The technique makes it possible for the first time, to our knowledge, to sense intracellular morphology with length-scale sensitivity from ∼30 to 450 nm, thus primarily probing the higher-order chromatin structure, without resolving the actual structures. We used chromatin decompaction due to inhibition of histone deacytelases and measured the subsequent changes in the fractal dimension of the intracellular structure. The results were confirmed by transmission electron microscopy and confocal fluorescence microscopy.  相似文献   

8.
We recently demonstrated that mouse spermatozoa contain a mechanism to degrade their DNA into loop-sized fragments of about 50 kb, mediated by topoisomerase IIB, termed sperm chromatin fragmentation (SCF). SCF is often followed by a more complete digestion of the DNA with a sperm nuclease. When SCF-induced spermatozoa are injected into oocytes, the paternal pronuclei degrade their DNA after the initiation of DNA synthesis, but the maternal pronuclei are unaffected and replicate normally. Here, we tested whether the nuclease activity changes in spermatozoa of different maturation stages, and whether there is a functional relationship between the initiation of DNA synthesis and paternal DNA degradation induced by SCF in the zygote. We found that spermatozoa from the vas deferens have a much higher level of SCF activity than those from the cauda epididymis, suggesting that spermatozoa may acquire this activity in the vas deferens. Furthermore, paternal pronuclei formed in zygotes from injecting oocytes with SCF-induced vas deferens spermatozoa degraded their DNA, but this degradation could be inhibited by the DNA synthesis inhibitor, aphidicolin. Upon release from a 4 h aphidicolin-induced arrest, DNA synthesis was initiated in maternal pronuclei, while the paternal pronuclei degraded their DNA. Longer aphidicolin arrest resulted in the paternal pronuclei replicating their DNA, suggesting that delaying the initiation of DNA synthesis allowed the paternal pronuclei to overcome the SCF-induced DNA degradation pathway. These results suggest that the paternal DNA degradation, in oocytes fertilized with SCF-induced spermatozoa, is coupled to the initiation of DNA synthesis in newly fertilized zygotes.  相似文献   

9.
The function of sperm is to safely transport the haploid paternal genome to the egg containing the maternal genome. The subsequent fertilization leads to transmission of a new unique diploid genome to the next generation. Before the sperm can set out on its adventurous journey, remarkable arrangements need to be made during the post-meiotic stages of spermatogenesis. Haploid spermatids undergo extensive morphological changes, including a striking reorganization and compaction of their chromatin. Thereby, the nucleosomal, histone-based structure is nearly completely substituted by a protamine-based structure. This replacement is likely facilitated by incorporation of histone variants, post-translational histone modifications, chromatin-remodeling complexes, as well as transient DNA strand breaks. The consequences of mutations have revealed that a protamine-based chromatin is essential for fertility in mice but not in Drosophila. Nevertheless, loss of protamines in Drosophila increases the sensitivity to X-rays and thus supports the hypothesis that protamines are necessary to protect the paternal genome. Pharmaceutical approaches have provided the first mechanistic insights and have shown that hyperacetylation of histones just before their displacement is vital for progress in chromatin reorganization but is clearly not the sole inducer. In this review, we highlight the current knowledge on post-meiotic chromatin reorganization and reveal for the first time intriguing parallels in this process in Drosophila and mammals. We conclude with a model that illustrates the possible mechanisms that lead from a histone-based chromatin to a mainly protamine-based structure during spermatid differentiation. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.  相似文献   

10.
Sexual reproduction involves epigenetic reprogramming comprising DNA methylation and histone modifications. In addition, dynamics of HISTONE3 (H3) variant H3.3 upon fertilization are conserved in animals, suggesting an essential role. In contrast to H3, H3.3 marks actively transcribed regions of the genome and can be deposited in a replication-independent manner. Although H3 variants are conserved in plants, their dynamics during fertilization have remained unexplored. We overcame technical limitations to live imaging of the fertilization process in Arabidopsis thaliana and studied dynamics of the male-gamete-specific H3.3 and the centromeric Histone Three Related 12 (HTR12). The double-fertilization process in plants produces the zygote and the embryo-nourishing endosperm. We show that the zygote is characterized by replication-independent removal of paternal H3.3 and homogeneous incorporation of parental chromatin complements. In the endosperm, the paternal H3.3 is passively diluted by replication while the paternal chromatin remains segregated apart from the maternal chromatin (gonomery). Hence epigenetic regulations distinguish the two products of fertilization in plants. H3.3-replication-independent dynamics and gonomery also mark the first zygotic divisions in animal species. We thus propose the convergent selection of parental epigenetic imbalance involving H3 variants in sexually reproducing organisms.  相似文献   

11.
In mouse zygotes, many post-translational histone modifications are asymmetrically present in male and female pronuclei. We investigated whether this principle could be used to determine the genetic composition of monopronuclear human zygotes in conventional IVF and ICSI. First we determined whether male female asymmetry is conserved from mouse to human by staining polypronuclear zygotes with antibodies against a subset of histone N-tail post-translational modifications. To analyze human monopronuclear zygotes, a modification, H3K9me3, was selected that is present in the maternal chromatin. After IVF a total of 45 monopronuclear zygotes were obtained. In 39 (87%) of zygotes a nonuniform staining pattern was observed, proof of a bi-parental origin and assumed to result into a diploid conception. Two zygotes showed no staining for the modification, indicating that the single pronucleus was of paternal origin. Four zygotes contained only maternally derived chromatin. ICSI-derived monopronuclear zygotes (n = 33) could also be divided into three groups based on the staining pattern of their chromatin: (1) of maternal origin (n = 15), (2) of paternal origin (n = 8) or (3) consisting of two chromatin domains as dominating in IVF (n = 10). Our data show that monopronuclear zygotes originating from IVF generally arise through fusion of parental chromatin after sperm penetration. Monopronuclear zygotes derived from ICSI in most cases contain uni-parental chromatin. The fact that chromatin was of paternal origin in 24% of ICSI and in 4% of the IVF zygotes confirms earlier results obtained by FISH on cleavage stages. Our findings are of clinical importance in IVF and ICSI practice.  相似文献   

12.
Complete uniparental chromosome elimination occurs in several interspecific hybrids of plants. We studied the mechanisms underlying selective elimination of the paternal chromosomes during the development of wheat (Triticum aestivum) x pearl millet (Pennisetum glaucum) hybrid embryos. All pearl millet chromosomes were eliminated in a random sequence between 6 and 23 d after pollination. Parental genomes were spatially separated within the hybrid nucleus, and pearl millet chromatin destined for elimination occupied peripheral interphase positions. Structural reorganization of the paternal chromosomes occurred, and mitotic behavior differed between the parental chromosomes. We provide evidence for a novel chromosome elimination pathway that involves the formation of nuclear extrusions during interphase in addition to postmitotically formed micronuclei. The chromatin structure of nuclei and micronuclei is different, and heterochromatinization and DNA fragmentation of micronucleated pearl millet chromatin is the final step during haploidization.  相似文献   

13.
14.
In mammalian fertilization, paternal chromatin is exhaustively remodeled, yet the maternal contribution to this process is unknown. To address this, we prevented the induction of meiotic exit by spermatozoa and examined sperm chromatin remodeling in metaphase II (mII) oocytes. Methylation of paternal H3-K4 and H3-K9 remained low, unlike maternal H3, although paternal H3-K4 methylation increased in zygotes. Thus, mII cytoplasm can sustain epigenetic asymmetry in a cell-cycle dependent manner. Paternal genomic DNA underwent oocyte-mediated cytosine demethylation and acquired maternally-derived K12-acetylated H4 (AcH4-K12) independently of microtubule assembly and maternal chromatin. AcH4-K12 persisted without typical maturation-associated deacetylation, irrespective of paternal pan-genomic cytosine methylation. Contrastingly, somatic cell nuclei underwent rapid H4 deacetylation; sperm and somatic chromatin exhibited asymmetric AcH4-K12 dynamics simultaneously within the same mII oocyte. Inhibition of somatic histone deacetylation revealed endogenous histone acetyl transferase activity. Oocytes thus specify the histone acetylation status of given nuclei by differentially targeting histone deacetylase and acetyl transferase activities. Asymmetric H4 acetylation during and immediately after fertilization was dispensable for development when both parental chromatin sets were hyperacetylated. These studies delineate non-zygotic chromatin remodeling and suggest a powerful model with which to study de novo genomic reprogramming.  相似文献   

15.
Bonnefoy E  Orsi GA  Couble P  Loppin B 《PLoS genetics》2007,3(10):1991-2006
In many animal species, the sperm DNA is packaged with male germ line–specific chromosomal proteins, including protamines. At fertilization, these non-histone proteins are removed from the decondensing sperm nucleus and replaced with maternally provided histones to form the DNA replication competent male pronucleus. By studying a point mutant allele of the Drosophila Hira gene, we previously showed that HIRA, a conserved replication-independent chromatin assembly factor, was essential for the assembly of paternal chromatin at fertilization. HIRA permits the specific assembly of nucleosomes containing the histone H3.3 variant on the decondensing male pronucleus. We report here the analysis of a new mutant allele of Drosophila Hira that was generated by homologous recombination. Surprisingly, phenotypic analysis of this loss of function allele revealed that the only essential function of HIRA is the assembly of paternal chromatin during male pronucleus formation. This HIRA-dependent assembly of H3.3 nucleosomes on paternal DNA does not require the histone chaperone ASF1. Moreover, analysis of this mutant established that protamines are correctly removed at fertilization in the absence of HIRA, thus demonstrating that protamine removal and histone deposition are two functionally distinct processes. Finally, we showed that H3.3 deposition is apparently not affected in Hira mutant embryos and adults, suggesting that different chromatin assembly machineries could deposit this histone variant.  相似文献   

16.
Fertilization triggers assembly of higher‐order chromatin structure from a condensed maternal and a naïve paternal genome to generate a totipotent embryo. Chromatin loops and domains have been detected in mouse zygotes by single‐nucleus Hi‐C (snHi‐C), but not bulk Hi‐C. It is therefore unclear when and how embryonic chromatin conformations are assembled. Here, we investigated whether a mechanism of cohesin‐dependent loop extrusion generates higher‐order chromatin structures within the one‐cell embryo. Using snHi‐C of mouse knockout embryos, we demonstrate that the zygotic genome folds into loops and domains that critically depend on Scc1‐cohesin and that are regulated in size and linear density by Wapl. Remarkably, we discovered distinct effects on maternal and paternal chromatin loop sizes, likely reflecting differences in loop extrusion dynamics and epigenetic reprogramming. Dynamic polymer models of chromosomes reproduce changes in snHi‐C, suggesting a mechanism where cohesin locally compacts chromatin by active loop extrusion, whose processivity is controlled by Wapl. Our simulations and experimental data provide evidence that cohesin‐dependent loop extrusion organizes mammalian genomes over multiple scales from the one‐cell embryo onward.  相似文献   

17.
18.
Protamines are unique sperm-specific proteins that package and protect paternal chromatin until fertilization. A subset of mammalian species expresses two protamines (PRM1 and PRM2), while in others PRM1 is sufficient for sperm chromatin packaging. Alterations of the species-specific ratio between PRM1 and PRM2 are associated with infertility. Unlike PRM1, PRM2 is generated as a precursor protein consisting of a highly conserved N-terminal domain, termed cleaved PRM2 (cP2), which is consecutively trimmed off during chromatin condensation. The carboxyterminal part, called mature PRM2 (mP2), interacts with DNA and together with PRM1, mediates chromatin-hypercondensation. The removal of the cP2 domain is believed to be imperative for proper chromatin condensation, yet, the role of cP2 is not yet understood. We generated mice lacking the cP2 domain while the mP2 is still expressed. We show that the cP2 domain is indispensable for complete sperm chromatin protamination and male mouse fertility. cP2 deficient sperm show incomplete protamine incorporation and a severely altered protamine ratio, retention of transition proteins and aberrant retention of the testis specific histone variant H2A.L.2. During epididymal transit, cP2 deficient sperm seem to undergo ROS mediated degradation leading to complete DNA fragmentation. The cP2 domain therefore seems to be a key aspect in the complex crosstalk between histones, transition proteins and protamines during sperm chromatin condensation. Overall, we present the first step towards understanding the role of the cP2 domain in paternal chromatin packaging and open up avenues for further research.  相似文献   

19.
Here, we summarize current knowledge about epigenetic reprogramming during mammalian preimplantation development, as well as the potential mechanisms driving these processes. We will particularly focus on changes taking place in the zygote, where the paternally derived DNA and chromatin undergo the most striking alterations, such as replacement of protamines by histones, histone modifications and active DNA demethylation. The putative mechanisms of active paternal DNA demethylation have been studied for over a decade, accumulating a lot of circumstantial evidence for enzymatic activities provided by the oocyte, protection of the maternal genome against such activities and possible involvement of DNA repair. We will discuss the various facets of dynamic epigenetic changes related to DNA methylation with an emphasis on the putative involvement of DNA repair in DNA demethylation.  相似文献   

20.
Meiotic recombination lies at the heart of sexual reproduction. It is essential for producing viable gametes with a normal haploid genomic content and its dysfunctions can be at the source of aneuploidies, such as the Down syndrome, or many genetic disorders. Meiotic recombination also generates genetic diversity that is transmitted to progeny by shuffling maternal and paternal alleles along chromosomes. Recombination takes place at non-random chromosomal sites called 'hotspots'. Recent evidence has shown that their location is influenced by properties of chromatin. In addition, many studies in somatic cells have highlighted the need for changes in chromatin dynamics to allow the process of recombination. In this review, we discuss how changes in the chromatin landscape may influence the recombination map, and reciprocally, how recombination events may lead to epigenetic modifications at sites of recombination, which could be transmitted to progeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号