首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Resequencing studies provide the ultimate resolution of genetic diversity because they identify all mutations in a gene that are present within the sampled individuals. We report a resequencing study of Persea americana, a subtropical tree species native to Meso- and Central America and the progenitor of cultivated avocado. The sample includes 21 wild accessions from Mexico, Costa Rica, Ecuador, and the Dominican Republic. Estimated levels of nucleotide polymorphism and linkage disequilibrium (LD) are obtained from fully resolved haplotype data from 4 nuclear loci that span 5960 nucleotide sites. Results show that, although avocado is a subtropical tree crop and a predominantly outcrossing plant, the overall level of genetic variation is not exceptionally high (nucleotide diversity at silent sites, pi(sil) = 0.0102) compared with available estimates from temperate plant species. Intralocus LD decays rapidly to half the initial value within about 1 kb. Estimates of recombination rate (based on the sequence data) show that the rate is not exceptionally high when compared with annual plants such as wild barley or maize. Interlocus LD is significant owing to substantial population structure induced by mixing of the 3 botanical races of avocado.  相似文献   

2.
We employed a multilocus approach to examine the effects of population subdivision and natural selection on DNA polymorphism in 2 closely related wild tomato species (Solanum peruvianum and Solanum chilense), using sequence data for 8 nuclear loci from populations across much of the species' range. Both species exhibit substantial levels of nucleotide variation. The species-wide level of silent nucleotide diversity is 18% higher in S. peruvianum (pi(sil) approximately 2.50%) than in S. chilense (pi(sil) approximately 2.12%). One of the loci deviates from neutral expectations, showing a clinal pattern of nucleotide diversity and haplotype structure in S. chilense. This geographic pattern of variation is suggestive of an incomplete (ongoing) selective sweep, but neutral explanations cannot be entirely dismissed. Both wild tomato species exhibit moderate levels of population differentiation (average F(ST) approximately 0.20). Interestingly, the pooled samples (across different demes) exhibit more negative Tajima's D and Fu and Li's D values; this marked excess of low-frequency polymorphism can only be explained by population (or range) expansion and is unlikely to be due to population structure per se. We thus propose that population structure and population/range expansion are among the most important evolutionary forces shaping patterns of nucleotide diversity within and among demes in these wild tomatoes. Patterns of population differentiation may also be impacted by soil seed banks and historical associations mediated by climatic cycles. Intragenic linkage disequilibrium (LD) decays very rapidly with physical distance, suggesting high recombination rates and effective population sizes in both species. The rapid decline of LD seems very promising for future association studies with the purpose of mapping functional variation in wild tomatoes.  相似文献   

3.
Recombination and selection at Brassica self-incompatibility loci   总被引:1,自引:0,他引:1  
Awadalla P  Charlesworth D 《Genetics》1999,152(1):413-425
In Brassica species, self-incompatibility is controlled genetically by haplotypes involving two known genes, SLG and SRK, and possibly an as yet unknown gene controlling pollen incompatibility types. Alleles at the incompatibility loci are maintained by frequency-dependent selection, and diversity at SLG and SRK appears to be very ancient, with high diversity at silent and replacement sites, particularly in certain "hypervariable" portions of the genes. It is important to test whether recombination occurs in these genes before inferences about function of different parts of the genes can be made from patterns of diversity within their sequences. In addition, it has been suggested that, to maintain the relationship between alleles within a given S-haplotype, recombination is suppressed in the S-locus region. The high diversity makes many population genetic measures of recombination inapplicable. We have analyzed linkage disequilibrium within the SLG gene of two Brassica species, using published coding sequences. The results suggest that intragenic recombination has occurred in the evolutionary history of these alleles. This is supported by patterns of synonymous nucleotide diversity within both the SLG and SRK genes, and between domains of the SRK gene. Finally, clusters of linkage disequilibrium within the SLG gene suggest that hypervariable regions are under balancing selection, and are not merely regions of relaxed selective constraint.  相似文献   

4.
Saccharomyces paradoxus is the closest known relative of the well-known S. cerevisiae and an attractive model organism for population genetic and genomic studies. Here we characterize a set of 28 wild isolates from a 10-km(2) sampling area in southern England. All 28 isolates are homothallic (capable of mating-type switching) and wild type with respect to nutrient requirements. Nine wild isolates and two lab strains of S. paradoxus were surveyed for sequence variation at six loci totaling 7 kb, and all 28 wild isolates were then genotyped at seven polymorphic loci. These data were used to calculate nucleotide diversity and number of segregating sites in S. paradoxus and to investigate geographic differentiation, population structure, and linkage disequilibrium. Synonymous site diversity is approximately 0.3%. Extensive incompatibilities between gene genealogies indicate frequent recombination between unlinked loci, but there is no evidence of recombination within genes. Some localized clonal growth is apparent. The frequency of outcrossing relative to inbreeding is estimated at 1.1% on the basis of heterozygosity. Thus, all three modes of reproduction known in the lab (clonal replication, inbreeding, and outcrossing) have been important in molding genetic variation in this species.  相似文献   

5.
Hitchhiking phenomena and genetic recombination have important consequences for a variety of fields for which birds are model species, yet we know virtually nothing about naturally occurring rates of recombination or the extent of linkage disequilibrium in birds. We took advantage of a previously sequenced cosmid clone from Red-winged Blackbirds (Agelaius phoeniceus) bearing a highly polymorphic Mhc class II gene, Agph-DABI, to measure the extent of linkage disequilibrium across approximately 40 kb of genomic DNA and to determine whether non-coding nucleotide diversity was elevated as a result of physical proximity to a target of balancing selection. Application of coalescent theory predicts that the hitchhiking effect is enhanced by the larger effective population size of blackbirds compared with humans, despite the presumably higher rates of recombination in birds. We surveyed sequence polymorphism at three Mhc-linked loci occurring 1.5-40 kb away from Agph-DAB1 and found that nucleotide diversity was indistinguishable from that found at three presumably unlinked, non-coding introns (beta-actin intron 2, beta-fibrinogen intron 7 and rhodopsin intron 2). Linkage disequilibrium as measured by Lewontin's D' was found only across a few hundred base pairs within any given locus, and was not detectable among any Mhc-linked loci. Estimated rates of the per site recombination rate p derived from three different analytical methods suggest that the amounts of recombination in blackbirds are up to two orders of magnitude higher than in humans, a discrepancy that cannot be explained entirely by the higher effective population size of blackbirds relative to humans. In addition, the ratio of the number of estimated recombination events per mutation frequently exceeds 1, as in Drosophila, again much higher than estimates in humans. Although the confidence limits of the blackbird estimates themselves span an order of magnitude, these data suggest that in blackbirds the hitchhiking effect for this region is negligible and may imply that the per site per individual recombination rate is high, resembling those of Drosophila more than those of humans.  相似文献   

6.
Neighboring genes predictably share similar evolutionary histories to an extent delineated by recombination. This correlation should extend across multiple linked genes in a selfing species such as Arabidopsis thaliana due to its low effective recombination rate. To test this prediction, we performed a molecular population genetics analysis of nucleotide polymorphism and divergence in chromosomal regions surrounding four low-diversity loci. Three of these loci, At1g67140, At3g03700, and TERMINAL FLOWER1 (TFL1), have been previously implicated as targets of selection and we would predict stronger correlations in polymorphism between neighboring loci due to genetic hitchhiking around these loci. The remaining locus, At1g04300, was identified in a study of linkage disequilibrium surrounding the CRYPTOCHROME2 (CRY2) locus. Although we found broad valleys of reduced nucleotide variation around two of our focal genes, At1g67140 and At3g03700, all chromosomal regions exhibited extreme variation in the patterns of polymorphism and evolution between neighboring loci. Although three of our four regions contained potential targets of selection, application of the composite-likelihood-ratio test of selection in conjunction with a goodness-of-fit test supports the selection hypothesis only for the region containing At3g03700. The degree of discordance in evolutionary histories between linked loci within each region generally correlated with estimates of recombination and linkage disequilibrium for that region, with the exception of the region containing At1g04300. We discuss the implications of these data for future population genetics analyses and genomics studies in A. thaliana. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Meiotic recombination is a biological process of key importance in breeding, to generate genetic diversity and develop novel or agronomically relevant haplotypes. In crop tomato, recombination is curtailed as manifested by linkage disequilibrium decay over a longer distance and reduced diversity compared with wild relatives. Here, we compared domesticated and wild populations of tomato and found an overall conserved recombination landscape, with local changes in effective recombination rate in specific genomic regions. We also studied the dynamics of recombination hotspots resulting from domestication and found that loss of such hotspots is associated with selective sweeps, most notably in the pericentromeric heterochromatin. We detected footprints of genetic changes and structural variants, among them associated with transposable elements, linked with hotspot divergence during domestication, likely causing fine-scale alterations to recombination patterns and resulting in linkage drag.  相似文献   

8.
Bamboos are one of the most beautiful and useful plants on Earth. The genetic background and population structure of bamboos are well known, which helps accelerate the process of artificial domestication of bamboo. Partial sequences of six genes involved in nitrogen use efficiency in 32 different bamboo species were analyzed for occurrence of single nucleotide polymorphisms (SNPs). The nucleotide diversity θw and total nucleotide polymorphisms πT of the sequenced DNA regions was 0.05137 and 0.03332, respectively. Both πnonsyn /πsyn and Ka/Ks values were <1. The nucleotide sequences of these six genes were inferred to be relatively conserved, and the haplotype diversity was relatively high. The results of evolutionary neutrality tests showed that the six genes were in line with neutral evolution, and that the NRT2.1 and AMT2.1 gene sequences may have experienced negative selection. An inter-SNP recombination event at the NRT2.1 gene in the all pooled sample, of all 32 bamboo species was the lowest at 0.0645, whereas the AMT gene recombination events were all >0.1. Estimation and analysis of linkage disequilibrium of five genes revealed that with the increase in nucleotide sequence length, the degree of SNP linkage disequilibrium decreased rapidly. We inferred the population genetic structure of 32 bamboo species based on the SNP loci of six genes with frequencies >18%. 32 bamboo species were divided into five categories, which indicated that the combined population of all bamboo species had obvious multivariate characteristics and was heterogeneous; red (Group 1) and green (Group 2) were the main groups.  相似文献   

9.
The MHC class II loci encoding cell surface antigens exhibit extremely high allelic polymorphism. There is considerable uncertainty in the literature over the relative roles of recombination and de novo mutation in generating this diversity. We studied class II sequence diversity and allelic polymorphism in two populations of Peromyscus maniculatus, which are among the most widespread and abundant mammals of North America. We find that intragenic recombination (or gene conversion) has been the predominant mode for the generation of allelic polymorphism in this species, with the amount of population recombination per base pair exceeding mutation by at least an order of magnitude during the history of the sample. Despite this, patchwork motifs of sites with high linkage disequilibrium are observed. This does not appear to be consistent with the much larger amount of recombination versus mutation in the history of the sample, unless the recombination rate is highly non-uniform over the sequence or selection maintains certain sites in linkage disequilibrium. We conclude that selection is most likely to be responsible for preserving sequence motifs in the presence of abundant recombination.  相似文献   

10.
Storz JF  Kelly JK 《Genetics》2008,180(1):367-379
An important goal of population genetics is to elucidate the effects of natural selection on patterns of DNA sequence variation. Here we report results of a study to assess the joint effects of selection, recombination, and gene flow in shaping patterns of nucleotide variation at genes involved in local adaptation. We first describe a new summary statistic, Z(g), that measures the between-sample component of linkage disequilibrium (LD). We then report results of a multilocus survey of nucleotide diversity and LD between high- and low-altitude populations of deer mice, Peromyscus maniculatus. The multilocus survey included two closely linked alpha-globin genes, HBA-T1 and HBA-T2, that underlie adaptation to different elevational zones. The primary goals were to assess whether the alpha-globin genes exhibit the hallmarks of spatially varying selection that are predicted by theory (i.e., sharply defined peaks in the between-population components of nucleotide diversity and LD) and to assess whether peaks in diversity and LD may be useful for identifying specific sites that distinguish selectively maintained alleles. Consistent with theoretical expectations, HBA-T1 and HBA-T2 were characterized by highly elevated levels of diversity between populations and between allele classes. Simulation and empirical results indicate that sliding-window analyses of Z(g) between allele classes may provide an effective means of pinpointing causal substitutions.  相似文献   

11.
Cutter AD  Baird SE  Charlesworth D 《Genetics》2006,174(2):901-913
The common ancestor of the self-fertilizing nematodes Caenorhabditis elegans and C. briggsae must have reproduced by obligate outcrossing, like most species in this genus. However, we have only a limited understanding about how genetic variation is patterned in such male-female (gonochoristic) Caenorhabditis species. Here, we report results from surveying nucleotide variation of six nuclear loci in a broad geographic sample of wild isolates of the gonochoristic C. remanei. We find high levels of diversity in this species, with silent-site diversity averaging 4.7%, implying an effective population size close to 1 million. Additionally, the pattern of polymorphisms reveals little evidence for population structure or deviation from neutral expectations, suggesting that the sampled C. remanei populations approximate panmixis and demographic equilibrium. Combined with the observation that linkage disequilibrium between pairs of polymorphic sites decays rapidly with distance, this suggests that C. remanei will provide an excellent system for identifying the genetic targets of natural selection from deviant patterns of polymorphism and linkage disequilibrium. The patterns revealed in this obligately outcrossing species may provide a useful model of the evolutionary circumstances in C. elegans' gonochoristic progenitor. This will be especially important if self-fertilization evolved recently in C. elegans history, because most of the evolutionary time separating C. elegans from its known relatives would have occurred in a state of obligate outcrossing.  相似文献   

12.
Testing models of selection and demography in Drosophila simulans   总被引:8,自引:0,他引:8  
Wall JD  Andolfatto P  Przeworski M 《Genetics》2002,162(1):203-216
We analyze patterns of nucleotide variability at 15 X-linked loci and 14 autosomal loci from a North American population of Drosophila simulans. We show that there is significantly more linkage disequilibrium on the X chromosome than on chromosome arm 3R and much more linkage disequilibrium on both chromosomes than expected from estimates of recombination rates, mutation rates, and levels of diversity. To explore what types of evolutionary models might explain this observation, we examine a model of recurrent, nonoverlapping selective sweeps and a model of a recent drastic bottleneck (e.g., founder event) in the demographic history of North American populations of D. simulans. The simple sweep model is not consistent with the observed patterns of linkage disequilibrium nor with the observed frequencies of segregating mutations. Under a restricted range of parameter values, a simple bottleneck model is consistent with multiple facets of the data. While our results do not exclude some influence of selection on X vs. autosome variability levels, they suggest that demography alone may account for patterns of linkage disequilibrium and the frequency spectrum of segregating mutations in this population of D. simulans.  相似文献   

13.
14.
Recombination rate and linkage disequilibrium, the latter a function of population genomic processes, are the critical parameters for mapping by linkage and association, and their patterns in Caenorhabditis elegans are poorly understood. We performed high-density SNP genotyping on a large panel of recombinant inbred advanced intercross lines (RIAILs) of C. elegans to characterize the landscape of recombination and, on a panel of wild strains, to characterize population genomic patterns. We confirmed that C. elegans autosomes exhibit discrete domains of nearly constant recombination rate, and we show, for the first time, that the pattern holds for the X chromosome as well. The terminal domains of each chromosome, spanning about 7% of the genome, exhibit effectively no recombination. The RIAILs exhibit a 5.3-fold expansion of the genetic map. With median marker spacing of 61 kb, they are a powerful resource for mapping quantitative trait loci in C. elegans. Among 125 wild isolates, we identified only 41 distinct haplotypes. The patterns of genotypic similarity suggest that some presumed wild strains are laboratory contaminants. The Hawaiian strain, CB4856, exhibits genetic isolation from the remainder of the global population, whose members exhibit ample evidence of intercrossing and recombining. The population effective recombination rate, estimated from the pattern of linkage disequilibrium, is correlated with the estimated meiotic recombination rate, but its magnitude implies that the effective rate of outcrossing is extremely low, corroborating reports of selection against recombinant genotypes. Despite the low population, effective recombination rate and extensive linkage disequilibrium among chromosomes, which are techniques that account for background levels of genomic similarity, permit association mapping in wild C. elegans strains.  相似文献   

15.
Although linkage maps are important tools in evolutionary biology, their availability for wild populations is limited. The population of song sparrows (Melospiza melodia) on Mandarte Island, Canada, is among the more intensively studied wild animal populations. Its long‐term pedigree data, together with extensive genetic sampling, have allowed the study of a range of questions in evolutionary biology and ecology. However, the availability of genetic markers has been limited. We here describe 191 new microsatellite loci, including 160 high‐quality polymorphic autosomal, 7 Z‐linked and 1 W‐linked markers. We used these markers to construct a linkage map for song sparrows with a total sex‐averaged map length of 1731 cM and covering 35 linkage groups, and hence, these markers cover most of the 38–40 chromosomes. Female and male map lengths did not differ significantly. We then bioinformatically mapped these loci to the zebra finch (Taeniopygia guttata) genome and found that linkage groups were conserved between song sparrows and zebra finches. Compared to the zebra finch, marker order within small linkage groups was well conserved, whereas the larger linkage groups showed some intrachromosomal rearrangements. Finally, we show that as expected, recombination frequency between linked loci explained the majority of variation in gametic phase disequilibrium. Yet, there was substantial overlap in gametic phase disequilibrium between pairs of linked and unlinked loci. Given that the microsatellites described here lie on 35 of the 38–40 chromosomes, these markers will be useful for studies in this species, as well as for comparative genomics studies with other species.  相似文献   

16.
Theory predicts that partially asexual organisms may make the “best of both worlds”: for the most part, they avoid the costs of sexual reproduction, while still benefiting from an enhanced efficiency of selection compared to obligately asexual organisms. There is, however, little empirical data on partially asexual organisms to test this prediction. Here we examine patterns of nucleotide diversity at eight nuclear loci in continentwide samples of two species of cyclically parthenogenetic Daphnia to assess the effect of partial asexual reproduction on effective population size and amount of recombination. Both species have high nucleotide diversities and show abundant evidence for recombination, yielding large estimates of effective population sizes (300,000–600,000). This suggests that selection will act efficiently even on mutations with small selection coefficients. Divergence between the two species is less than one-tenth of previous estimates, which were derived using a mitochondrial molecular clock. As the two species investigated are among the most distantly related species of the genus, this suggests that the genus Daphnia may be considerably younger than previously thought. Daphnia has recently received increased attention because it is being developed as a model organism for ecological and evolutionary genomics. Our results confirm the attractiveness of Daphnia as a model organism, because the high nucleotide diversity and low linkage disequilibrium suggest that fine-scale mapping of genes affecting phenotypes through association studies should be feasible.  相似文献   

17.
The centromeric region of the X chromosome in humans experiences low rates of recombination over a considerable physical distance. In such a region, the effects of selection may extend to linked sites that are far away. To investigate the effects of this recombinational environment on patterns of nucleotide variability, we sequenced 4581 bp at Msn and 4697 bp at Alas2, two genes situated on either side of the X chromosome centromere, in a worldwide sample of 41 men, as well as in one common chimpanzee and one orangutan. To investigate patterns of linkage disequilibrium (LD) across the centromere, we also genotyped several informative sites from each gene in 120 men from sub-Saharan Africa. By studying X-linked loci in males, we were able to recover haplotypes and study long-range patterns of LD directly. Overall patterns of variability were remarkably similar at these two loci. Both loci exhibited (i) very low levels of nucleotide diversity (among the lowest seen in the human genome); (ii) a strong skew in the distribution of allele frequencies, with an excess of both very-low and very-high-frequency derived alleles in non-African populations; (iii) much less variation in the non-African than in the African samples; (iv) very high levels of population differentiation; and (v) complete LD among all sites within loci. We also observed significant LD between Msn and Alas2 in Africa, despite the fact that they are separated by approximately 10 Mb. These observations are difficult to reconcile with a simple demographic model but may be consistent with positive and/or purifying selection acting on loci within this large region of low recombination.  相似文献   

18.
Andolfatto P  Przeworski M 《Genetics》2000,156(1):257-268
We analyze nucleotide polymorphism data for a large number of loci in areas of normal to high recombination in Drosophila melanogaster and D. simulans (24 and 16 loci, respectively). We find a genome-wide, systematic departure from the neutral expectation for a panmictic population at equilibrium in natural populations of both species. The distribution of sequence-based estimates of 2Nc across loci is inconsistent with the assumptions of the standard neutral theory, given the observed levels of nucleotide diversity and accepted values for recombination and mutation rates. Under these assumptions, most estimates of 2Nc are severalfold too low; in other words, both species exhibit greater intralocus linkage disequilibrium than expected. Variation in recombination or mutation rates is not sufficient to account for the excess of linkage disequilibrium. While an equilibrium island model does not seem to account for the data, more complicated forms of population structure may. A proper test of alternative demographic models will require loci to be sampled in a more consistent fashion.  相似文献   

19.
Curtis Strobeck 《Genetics》1983,103(3):545-555
The expected value of the squared linkage disequilibrium is derived for a neutral locus associated with a chromosomal arrangement that is maintained in the population by strong balancing selection. For a given value of recombination, the expected squared linkage disequilibrium is shown to decrease as the intensity of selection maintaining the arrangement increases. The transient behavior of the expected square linkage disequilibrium is also derived. This theory applies to loci that are closely linked to inversions in Drosophila species and to loci closely linked to the differential segments of the translocation complexes in ring-forming species of Oenothera. In both cases the strong linkage disequilibria that have been observed in natural populations can be explained by random drift.  相似文献   

20.
Jing R  Johnson R  Seres A  Kiss G  Ambrose MJ  Knox MR  Ellis TH  Flavell AJ 《Genetics》2007,177(4):2263-2275
Sequence diversity of 39 dispersed gene loci was analyzed in 48 diverse individuals representative of the genus Pisum. The different genes show large variation in diversity parameters, suggesting widely differing levels of selection and a high overall diversity level for the species. The data set yields a genetic diversity tree whose deep branches, involving wild samples, are preserved in a tree derived from a polymorphic retrotransposon insertions in an identical sample set. Thus, gene regions and intergenic "junk DNA" share a consistent picture for the genomic diversity of Pisum, despite low linkage disequilibrium in wild and landrace germplasm, which might be expected to allow independent evolution of these very different DNA classes. Additional lines of evidence indicate that recombination has shuffled gene haplotypes efficiently within Pisum, despite its high level of inbreeding and widespread geographic distribution. Trees derived from individual gene loci show marked differences from each other, and genetic distance values between sample pairs show high standard deviations. Sequence mosaic analysis of aligned sequences identifies nine loci showing evidence for intragenic recombination. Lastly, phylogenetic network analysis confirms the non-treelike structure of Pisum diversity and indicates the major germplasm classes involved. Overall, these data emphasize the artificiality of simple tree structures for representing genomic sequence variation within Pisum and emphasize the need for fine structure haplotype analysis to accurately define the genetic structure of the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号