首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The propensities of peptides that contain the Asn‐Gly segment to form β‐turn and β‐hairpin structures were explored using the density functional methods and the implicit solvation model in CH2Cl2 and water. The populations of preferred β‐turn structures varied depending on the sequence and solvent polarity. In solution, β‐hairpin structures with βI′ turn motifs were most preferred for the heptapeptides containing the Asn‐Gly segment regardless of the sequence of the strands. These preferences in solution are consistent with the corresponding X‐ray structures. The sequence, H‐bond strengths, solvent polarity, and conformational flexibility appeared to interact to determine the preferred β‐hairpin structure of each heptapeptide, although the β‐turn segments played a role in promoting the formation of β‐hairpin structures and the β‐hairpin propensity varied. In the heptapeptides containing the Asn‐Gly segment, the β‐hairpin formation was enthalpically favored and entropically disfavored at 25°C in water. The calculated results for β‐turns and β‐hairpins containing the Asn‐Gly segment imply that these structural preferences may be useful for the design of bioactive macrocyclic peptides containing β‐hairpin mimics and the design of binding epitopes for protein–protein and protein–nucleic acid recognitions. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 653–664, 2016.  相似文献   

2.
Rational design of proteins with novel binding specificities and increased affinity is one of the major goals of computational protein design. Epitope‐scaffolds are a new class of antigens engineered by transplanting viral epitopes of predefined structure to protein scaffolds, or by building protein scaffolds around such epitopes. Epitope‐scaffolds are of interest as vaccine components to attempt to elicit neutralizing antibodies targeting the specified epitope. In this study we developed a new computational protocol, MultiGraft Interface, that transplants epitopes but also designs additional scaffold features outside the epitope to enhance antibody‐binding specificity and potentially influence the specificity of elicited antibodies. We employed MultiGraft Interface to engineer novel epitope‐scaffolds that display the known epitope of human immunodeficiency virus 1 (HIV‐1) neutralizing antibody 2F5 and that also interact with the functionally important CDR H3 antibody loop. MultiGraft Interface generated an epitope‐scaffold that bound 2F5 with subnanomolar affinity (KD = 400 pM) and that interacted with the antibody CDR H3 loop through computationally designed contacts. Substantial structural modifications were necessary to engineer this antigen, with the 2F5 epitope replacing a helix in the native scaffold and with 15% of the native scaffold sequence being modified in the design stage. This epitope‐scaffold represents a successful example of rational protein backbone engineering and protein–protein interface design and could prove useful in the field of HIV vaccine design. MultiGraft Interface can be generally applied to engineer novel binding partners with altered specificity and optimized affinity. Proteins 2014; 82:2770–2782. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
There is growing interest in the design of synthetic molecules that mimic the structures and functions of epitopes found on the surface of peptides and proteins. Epitope mimetics can provide valuable tools to probe complex biological processes, as well as interesting leads for drug and vaccine discovery. One application of epitope mimetics is reviewed here, focusing on mimetics of the cationic antimicrobial peptides that form part of the innate immune response to microbial and viral infection in many organisms. Mimetics of these naturally occurring peptides and proteins may be useful to explore mechanisms of antimicrobial and immunomodulatory action, and as a potential source of new antibiotics to address one of the most pressing current threats to human health.  相似文献   

4.
DNA‐based vaccine is a promising candidate for immunization and induction of a T‐cell‐focused protective immune response against infectious pathogens such as Mycobacterium tuberculosis (M. tb). To induce multi‐functional T response against multi‐TB antigens, a multi‐epitope DNA vaccine and a ‘protein backbone grafting’ design method is adopted to graft five discontinuous T‐cell epitopes into HSP65 scaffold protein of M. tb for enhancement of epitope processing and immune presentation. A DNA plasmid with five T‐cell epitopes derived from ESAT‐6, Ag85B, MTB10.4, PPE25 and PE19 proteins of H37Rv strain of M. tb genetically inserted into HSP65 backbone was constructed and designated as pPES. After confirmation of its in vitro expression efficiency, pPES DNA was i.m. injected into C57BL/6 mice with four doses of 50 µg DNA followed by mycobacterial challenge 4 weeks after the final immunization. It was found that pPES DNA injection maintained the ability of HSP65 backbone to induce specific serum IgG. ELISPOT assay demonstrated that pPES epitope‐scaffold construct was significantly more potent to induce IFN‐γ+ T response to five T‐cell epitope proteins than other DNA constructs (with epitopes alone or with epitope series connected to HSP65), especially in multi‐functional‐CD4+ T response. It also enhanced granzyme B+ CTL and IL‐2+ CD8+ T response. Furthermore, significantly improved protection against Mycobacterium bovis BCG challenge was achieved by pPES injection compared to other DNA constructs. Taken together, HSP65 scaffold grafting strategy for multi‐epitope DNA vaccine represents a successful example of rational protein backbone engineering design and could prove useful in TB vaccine design.  相似文献   

5.
Chlamydia trachomatis is one of the most prevalent sexually transmitted pathogens. There is currently no commercially available vaccine against C. trachomatis. Chlamydial translocated actin‐recruiting phosphoprotein (Tarp) can induce cellular and humoral immune responses in murine models and has been regarded as a potential vaccine candidate. In this report, the amino acid sequence of Tarp was analyzed using computer‐assisted techniques to scan B‐cell epitopes, and six possible linear B‐cell epitopes peptides (aa80–95, aa107–123, aa152–170, aa171–186, aa239–253 and aa497–513) with high predicted antigenicity and high conservation were investigated. Sera from mice immunized with these potential immunodominant peptides was analyzed by ELISA, which showed that epitope 152–170 elicited serum immunoglobulin G (IgG) response and epitope 171–186 elicited both serum IgG and mucosal secretory immunoglobulin A response. The response of immune sera of epitope 171–186 to endogenous Tarp antigen obtained from the Hela229 cells infected with C. trachomatis was confirmed by Western blot and indirect fluorescence assay. In addition, binding of the antibodies against epitope 171–186 to endogenous Tarp was further confirmed by competitive ELISA. Our results demonstrated that the putative epitope (aa171–186) was an immunodominant B‐cell epitope of Tarp. If proven protective and safe, this epitope, in combination with other well‐documented epitopes, might be included into a candidate epitope‐based vaccine against C. trachomatis. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
Alzheimer's disease is characterized by two pathological hallmarks, the intracellular deposition of hyperphosphorylated Tau protein and the extracellular deposition of Aβ1–40/42, both being targets for immunotherapy. This study evaluates the immunogenic properties of three AD‐specific B‐cell epitopes (Tau229–237[pT231/pS235], pyroGluAβ3–8, and Aβ37/38–42/43) linked to five foreign T‐cell epitopes (MVFP, TT, TBC Ag85B, PvT19, and PvT53) by immunizing inbred C57BL/6J (H‐2b), SJL/J (H‐2s2), and C3H/HeN (H‐2k) mice. Two promising candidates with respect to MHC II restriction were selected, and two transgenic mouse models of AD, P301S (H‐2b/k) and Tg2576 (H‐2b/s) animals, were immunized with one B‐cell epitope in combination with two T‐cell epitopes. Responders displayed an enhanced immune response compared with wild‐type animals, which supports the vaccine design and the vaccination strategy. The immune response was also characterized by specific IgG subtype titers, which revealed a strong polarization toward the humoral pathway for immunization of phospho‐Tau, whereas for both Aβ vaccines, a mixed cellular/humoral pathway response was observed. Despite the diversity and unpredictability of the immunogenicity of the peptide vaccines, all three peptide vaccine formulations appear to be promising constructs for future evaluation of their therapeutic properties. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Stable peptides have been explored as epitope mimics for protein–protein and protein–nucleic acid interactions; however, presentation of a regular structure is critical. Aromatic interactions are ubiquitous and are competent at stabilizing a β‐hairpin fold. The greatest stabilization has been reported from pairs of tryptophan side chains. Naphthylalanine residues are often used as tryptophan replacements, but it is not clear if 1‐naphthylalanine or 2‐naphthylalanine is adequate at replicating the geometry and stability observed with tryptophan aromatic interactions. Herein, a 12‐residue peptide has been constructed with laterally disposed aromatic amino acids. A direct comparison is made between tryptophan and other bicyclic, unnatural amino acids. Significant stabilization is gained from all bicyclic amino acids; however, geometric analysis shows that only 1‐naphthylalanine adopts a similar edge to face geometry as tryptophan, whereas the 2‐naphthylalanine appears most similar to a substituted phenylalanine. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Conformational preferences for the turn and β‐hairpin structures of Ala‐based peptides [Ac‐Alan‐(R)‐Nip‐(S)‐Nip‐Alan‐X (n = 0–2; X = NHMe or NMe2)] containing nipecotic acid (Nip) residues were carried out using the density functional M06‐2X and the implicit solvation model SMD in CH2Cl2 and/or water. The turn structure of the (R)‐Nip‐(S)‐Nip segment with a C10 H‐bond between two terminal groups was found to be most preferred (populated at 98.9%) in CH2Cl2; this structure is consistent with IR and 1H NMR results. The stabilities of the β‐hairpins containing the (R)‐Nip‐(S)‐Nip segment as a turn motif relative to the extended structures increased with peptide sequence length. The relative strengths of the H‐bonds between the carbonyl oxygen and the amide hydrogen appeared to be responsible for stabilizing the turn and β‐hairpin structures in CH2Cl2. In addition, the (R)‐Nip‐(S)‐Nip segment exhibited the capability to be incorporated into one of the two β‐turn motifs of gramicidin S (GS). The structure of this GS derivative (GS‐Nip2) was generally similar to the native peptide but was less hydrophobic and it is therefore expected to exhibit lower hemolytic activity; however, further experiments are needed to evaluate its antimicrobial activity. The structure of GS‐Nip2 was somewhat more flexible than GS in solvents of higher polarity. Thus, our calculated results regarding the turn and β‐hairpin motifs of the (R)‐Nip‐(S)‐Nip segment indicate that this structure might be useful for the design of bioactive macrocyclic peptides containing β‐hairpin mimics as well as binding epitopes in protein–protein and protein–nucleic acid recognitions. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 609–617, 2015.  相似文献   

9.
The construction of novel functional proteins has been a key area of protein engineering. However, there are few reports of functional proteins constructed from artificial scaffolds. Here, we have constructed a genetic library encoding α3β3 de novo proteins to generate novel scaffolds in smaller size using a binary combination of simplified hydrophobic and hydrophilic amino acid sets. To screen for folded de novo proteins, we used a GFP‐based screening system and successfully obtained the proteins from the colonies emitting the very bright fluorescence as a similar intensity of GFP. Proteins isolated from the very bright colonies (vTAJ) and bright colonies (wTAJ) were analyzed by circular dichroism (CD), 8‐anilino‐1‐naphthalenesulfonate (ANS) binding assay, and analytical size‐exclusion chromatography (SEC). CD studies revealed that vTAJ and wTAJ proteins had both α‐helix and β‐sheet structures with thermal stabilities. Moreover, the selected proteins demonstrated a variety of association states existing as monomer, dimer, and oligomer formation. The SEC and ANS binding assays revealed that vTAJ proteins tend to be a characteristic of the folded protein, but not in a molten‐globule state. A vTAJ protein, vTAJ13, which has a packed globular structure and exists as a monomer, was further analyzed by nuclear magnetic resonance. NOE connectivities between backbone signals of vTAJ13 suggested that the protein contains three α‐helices and three β‐strands as intended by its design. Thus, it would appear that artificially generated α3β3 de novo proteins isolated from very bright colonies using the GFP fusion system exhibit excellent properties similar to folded proteins and would be available as artificial scaffolds to generate functional proteins with catalytic and ligand binding properties.  相似文献   

10.
The Pictet–Spengler (PS) cyclizations of β3hTrp derivatives as arylethylamine substrates were performed with L‐α‐amino and D‐α‐amino aldehydes as carbonyl components. During the PS reaction, a new stereogenic center was created, and the mixture of cis/trans 1,3‐disubstituted 1,2,3,4‐tetrahydro‐β‐carbolines was obtained. The ratio of cis/trans diastereomers depends on the stereogenic centre of used amino aldehyde and the size of substituents. It was confirmed by 1H and 2D NMR (ROESY) spectra. The conformations of cyclic products were studied by 2D NMR ROESY spectra. Products of the PS condensation after removal of protecting group(s) can be incorporated into a peptide chain as tryptophan mimetics with the possibility of the β‐turn induction. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
An important nucleation event during the folding of staphylococcal nuclease involves the formation of a β‐hairpin by the sequence 21DTVKLMYKGQPMTFR35. Earlier studies show that the turn sequence ‘YKGQP’ has an important role in the folding of this β‐hairpin. To understand the active or passive nature of the turn sequence ‘YKGQP’ in the folding of the aforementioned β‐hairpin sequence, we studied glycine mutant peptides Ac‐2DTVKLMYGGQPMTFR16‐NMe (K9G:15), Ac‐2DTVKLMYKGGPMTFR16‐NMe (Q11G:15), Ac‐2DTVKLMYGGGPMTFR16‐NMe (K9G/Q11G:15), and Ac‐2DTVKLMGGGGGMTFR16‐NMe (penta‐G:15) by using molecular dynamics simulations, starting with two different unfolded states, polyproline II and extended conformational forms. Further, 5mer mutant turn peptides Ac‐2YGGQP6‐NMe (K3G:5), Ac‐2YKGGP6‐NMe (Q5G:5), Ac‐2YGGGP6‐NMe (K3G/Q5G:5), and Ac‐2GGGGG6‐NMe (penta‐G:5) were also studied individually. Our results show that an initial hydrophobic collapse and loop closure occurs in all 15mer mutants, but only K9G:15 mutant forms a stable native‐like β‐hairpin. In the other 15mer mutants, the hydrophobic collapsed state would not proceed to β‐hairpin formation. Of the different simulations performed for the penta‐G:15 mutant, in only one simulation a nonnative β‐hairpin conformation is sampled with highly flexible loop region (8GGGGG12), which has no specific conformational preference as a 5mer. While the sequence ‘YGGQP’ in the K3G:5 simulation shows relatively higher β‐turn propensity, the presence of this sequence in K9G:15 peptide seems to be driving the β‐hairpin formation. Thus, these results seem to suggest that for the formation of a stable β‐hairpin, the initial hydrophobic collapse is to be assisted by a turn propensity. Initial hydrophobic collapse alone is not sufficient to guide β‐hairpin formation. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
The oligomerization and fibrillation of β‐amyloid (Aβ) peptides are important events in the pathogenesis of Alzheimer's disease. However, the motifs within the Aβ sequence that contribute to oligomerization and fibrillation and the complex interplay among these short motifs are unclear. In this study, the oligomerization and fibrillation abilities of the Aβ variants Aβ1–28, Aβ1–36, Aβ11–42, Aβ17–42, Aβ1–40 and Aβ1–42 were examined by thioflavin T fluorescence, western blotting and transmission electron microscopy. Compared with two C‐terminal‐truncated peptides (i.e. Aβ1–28 and Aβ1–36), Aβ11–42, Aβ17–42 and Aβ1–42 had stronger abilities to form oligomers. This indicated that amino acids 37–42 strengthen the β‐hairpin structure of Aβ. Both Aβ1–42 and Aβ1–40 could form fibres, but Aβ17–42 formed irregular fibres, suggesting that amino acids 1–17 were essential for Aβ fibre formation. Aβ1–28 and Aβ1–36 exhibited weak oligomerization and fibrillation, implying that they formed an unstable β‐hairpin structure owing to the incomplete C‐terminal region. Intermediate peptides were likely to form a stable structure, consistent with previous results. This work explains the roles and interplay among motifs within Aβ during oligomerization and fibrillation. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
De novo design of peptides and proteins has recently surfaced as an approach for investigating protein structure and function. This approach vitally tests our knowledge of protein folding and function, while also laying the groundwork for the fabrication of proteins with properties not precedented in nature. The success relies heavily on the ability to design relatively short peptides that can espouse stable secondary structures. To this end, substitution with α,β‐didehydroamino acids, especially α,β‐didehydrophenylalanine (ΔzPhe), comes in use for spawning well‐defined structural motifs. Introduction of ΔPhe induces β‐bends in small and 310‐helices in longer peptide sequences. The present work aims to investigate the effect of nature and the number of amino acids interspersed between two ΔPhe residues in two model undecapeptides, Ac‐Gly‐Ala‐ΔPhe‐Ile‐Val‐ΔPhe‐Ile‐Val‐ΔPhe‐Ala‐Gly‐NH2 (I) and Boc‐Val‐ΔPhe‐Phe‐Ala‐Phe‐ΔPhe‐Phe‐Leu‐Ala‐ΔPhe‐Gly‐OMe (II). Peptide I was synthesized using solid‐phase chemistry and characterized using circular dichroism spectroscopy. Peptide II was synthesized using solution‐phase chemistry and characterized using circular dichroism and nuclear magnetic resonance spectroscopy. Peptide I was designed to examine the effect of incorporating β‐strand‐favoring residues like valine and isoleucine as spacers between two ΔPhe residues on the final conformation of the resulting peptide. Circular dichroism studies on this peptide have shown the existence of a 310‐helical conformation. Peptide II possesses three amino acids as spacers between ΔPhe residues and has been reported to adopt a mixed 310/α‐helical conformation using circular dichroism and nuclear magnetic resonance spectroscopy studies. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
N‐formylated sugars have been observed on the O‐antigens of such pathogenic Gram‐negative bacteria as Campylobacter jejuni and Francisella tularensis. Until recently, however, little was known regarding the overall molecular architectures of the N‐formyltransferases that are required for the biosynthesis of these unusual sugars. Here we demonstrate that the protein encoded by the wbtj gene from F. tularensis is an N‐formyltransferase that functions on dTDP‐4‐amino‐4,6‐dideoxy‐d ‐glucose as its substrate. The enzyme, hereafter referred to as WbtJ, demonstrates a strict requirement for N10‐formyltetrahydrofolate as its carbon source. In addition to the kinetic analysis, the three‐dimensional structure of the enzyme was solved in the presence of dTDP‐sugar ligands to a nominal resolution of 2.1 Å. Each subunit of the dimeric enzyme is dominated by a “core” domain defined by Met 1 to Ser 185. This core motif harbors the active site residues. Following the core domain, the last 56 residues fold into two α‐helices and a β‐hairpin motif. The hairpin motif is responsible primarily for the subunit:subunit interface, which is characterized by a rather hydrophobic pocket. From the study presented here, it is now known that WbtJ functions on C‐4′ amino sugars. Another enzyme recently investigated in the laboratory, WlaRD, formylates only C‐3′ amino sugars. Strikingly, the quaternary structures of WbtJ and WlaRD are remarkably different. In addition, there are several significant variations in the side chains that line their active site pockets, which may be important for substrate specificity. Details concerning the kinetic and structural properties of WbtJ are presented.  相似文献   

15.
This work shows that a deep‐sea protein, 3LEZ, with known in vitro β‐lactamase activity, proved stable, substantially in the conformation detected by X‐ray diffraction of the crystal, when subjected to molecular‐dynamics (MD) simulations under conditions compatible with shallow seas. Docking simulations showed that the β‐lactamase active site S85 of 3LEZ (S70 in Ambler numbering) is the preferential binding pocket for not only β‐lactam antibiotics and inhibitors, but, surprisingly, also for a wide variety of other biologically active compounds in various chemical classes, including marine metabolites. In line with the in vitro β‐lactamase activity, a) affinities on docking β‐lactam antibiotics and inhibitors onto 3LEZ were found to roughly parallel published Km and Ki values, obtained from Michaelis? Menten kinetics under room conditions, and b) DFT calculations agreed with experiments that the irreversible reaction of the β‐lactamase inhibitor clavulanic acid with the whole S85 catalytic center of 3LEZ is spontaneous. These observations must be viewed in the light that a) the compounds in other chemical classes showed comparable affinities, and, in some cases, even higher than β‐lactams, for the S85 active site, b) Km and Ki data are not available at the high hydrostatic pressure of the deep sea, where 3LEZ is believed to have evolved, c) an inverse order of affinities for the β‐lactams, with respect to both experimentation and simulations at room conditions, was observed from comparative docking simulations with 3LEZ derived from MD under high hydrostatic pressure. Although MD requires a general assessment for high hydrostatic pressure before c) above is given the same weight as all other observations, this work questions the conclusion that the in vitro determined β‐lactamase activity represents the ecological role of 3LEZ.  相似文献   

16.
The FK506‐binding protein (FKBP) family consists of proteins with a variety of protein–protein interaction domains and versatile cellular functions. It is assumed that all members are peptidyl‐prolyl cis–trans isomerases with the enzymatic function attributed to the FKBP domain. Six members of this family localize to the mammalian endoplasmic reticulum (ER). Four of them, FKBP22 (encoded by the FKBP14 gene), FKBP23 (FKBP7), FKBP60 (FKBP9), and FKBP65 (FKBP10), are unique among all FKBPs as they contain the EF‐hand motifs. Little is known about the biological roles of these proteins, but emerging genetics studies are attracting great interest to the ER resident FKBPs, as mutations in genes encoding FKBP10 and FKBP14 were shown to cause a variety of matrix disorders. Although the structural organization of the FKBP‐type domain as well as of the EF‐hand motif has been known for a while, it is difficult to conclude how these structures are combined and how it affects the protein functionality. We have determined a unique 1.9 Å resolution crystal structure for human FKBP22, which can serve as a prototype for other EF hand‐containing FKBPs. The EF‐hand motifs of two FKBP22 molecules form a dimeric complex with an elongated and predominantly hydrophobic cavity that can potentially be occupied by an aliphatic ligand. The FKBP‐type domains are separated by a cleft and their putative active sites can catalyze isomerazation of two bonds within a polypeptide chain in extended conformation. These structural results are of prime interest for understanding biological functions of ER resident FKBPs containing EF‐hand motifs.  相似文献   

17.
Molecules capable of mimicking protein binding and/or functional sites present useful tools for a range of biomedical applications, including the inhibition of protein–ligand interactions. Such mimics of protein binding sites can currently be generated through structure‐based design and chemical synthesis. Computational protein design could be further used to optimize protein binding site mimetics through rationally designed mutations that improve intermolecular interactions or peptide stability. Here, as a model for the study, we chose an interaction between human acetylcholinesterase (hAChE) and its inhibitor fasciculin‐2 (Fas) because the structure and function of this complex is well understood. Structure‐based design of mimics of the hAChE binding site for Fas yielded a peptide that binds to Fas at micromolar concentrations. Replacement of hAChE residues known to be essential for its interaction with Fas with alanine, in this peptide, resulted in almost complete loss of binding to Fas. Computational optimization of the hAChE mimetic peptide yielded a variant with slightly improved affinity to Fas, indicating that more rounds of computational optimization will be required to obtain peptide variants with greatly improved affinity for Fas. CD spectra in the absence and presence of Fas point to conformational changes in the peptide upon binding to Fas. Furthermore, binding of the optimized hAChE mimetic peptide to Fas could be inhibited by hAChE, providing evidence for a hAChE‐specific peptide–Fas interaction. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
Synthetic polycarboxamide minor groove binders (MGB) consisting of N‐methylpyrrole (Py), N‐methylimidazole (Im), N‐methyl‐3‐hydroxypyrrole (Hp) and β‐alanine (β) show strong and sequence‐specific interaction with the DNA minor groove in side‐by‐side antiparallel or parallel orientation. Two MGB moieties covalently linked to the same terminal phosphate of one DNA strand stabilize DNA duplexes formed by this strand with a complementary one in a sequence‐specific manner, similarly to the corresponding mono‐conjugated hairpin structures. The series of conjugates with the general formula Oligo‐(L‐MGB‐R)m was synthesized, where m = 1 or 2, L = linker, R = terminal charged or neutral group, MGB = –(Py)n–, –(Im)n– or –[(Py/Im)n–(CH2)3CONH–(Py/Im)n–] and 1 < n < 5. Using thermal denaturation, we studied effects of structural factors such as m and n, linker L length, nature and orientation of the MGB monomers, the group R and the backbone (DNA or RNA), etc. on the stability of the duplexes. Structural factors are more important for linear and hairpin monophosphoroamidates than for parallel bis‐phosphoroamidates. No more than two oligocarboxamide strands can be inserted into the duplex minor groove. Attachment of the second sequence‐specific parallel ligand [–L(Py)4R] to monophosphoroamidate conjugate CGTTTATT–L(Py)4R leads to the increase of the duplex Tm, whereas attachment of [–L(Im)4R] leads to its decrease. The mode of interaction between oligonucleotide duplex and attached ligands could be different (stacking with the terminal A:T pair of the duplex or its insertion into the minor groove) depending on the length and structure of the MGB.  相似文献   

19.
20.
Protein–protein interactions are thought to be mediated by domains, which are autonomous folding units of proteins. Recently, a second type of interaction has been suggested, mediated by short segments termed linear motifs, which are related to recognition elements of intrinsically disordered regions. Here, we propose a third kind of protein–protein recognition mechanism, mediated by disordered regions longer than 20–30 residues. Bioinformatics predictions and well‐characterized examples, such as the kinase‐inhibitory domain of Cdk inhibitors and the Wiskott–Aldrich syndrome protein (WASP)‐homology domain 2 of actin‐binding proteins, show that these disordered regions conform to the definition of domains rather than motifs, i.e., they represent functional, evolutionary, and structural units. Their functions are distinct from those of short motifs and ordered domains, and establish a third kind of interaction principle. With these points, we argue that these long disordered regions should be recognized as a distinct class of biologically functional protein domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号