首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We report here the synthesis of the first selenocysteine SPPS derivatives which bear TFA‐labile sidechain protecting groups. New compounds Fmoc‐Sec(Xan)‐OH and Fmoc‐Sec(Trt)‐OH are presented as useful and practical alternatives to the traditional Fmoc‐Sec‐OH derivatives currently available to the peptide chemist. From a bis Fmoc‐protected selenocystine precursor, multiple avenues of diselenide reduction were attempted to determine the most effective method for subsequent attachment of the protecting group electrophiles. Our previously reported one‐pot reduction methodology was ultimately chosen as the optimal approach toward the synthesis of these novel building blocks, and both were easily obtained in high yield and purity. Fmoc‐Sec(Xan)‐OH was discovered to be bench‐stable for extended timeframes while the corresponding Fmoc‐Sec(Trt)‐OH derivative appeared to detritylate slowly when not stored at ?20 °C. Both Sec derivatives were incorporated into single‐ and multiple‐Sec‐containing test peptides in order to ascertain the peptides' deprotection behavior and final form upon TFA cleavage. Single‐Sec‐containing test peptides were always isolated as their corresponding diselenide dimers, while dual‐Sec‐containing peptide sequences were afforded exclusively as their intramolecular diselenides. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
The 4‐methoxybenzyloxymethyl (MBom) group was introduced at the Nπ‐position of the histidine (His) residue by using a regioselective procedure, and its utility was examined under standard conditions used for the conventional and the microwave (MW)‐assisted solid phase peptide synthesis (SPPS) with 9‐fluorenylmethyoxycarbonyl (Fmoc) chemistry. The Nπ‐MBom group fulfilling the requirements for the Fmoc strategy was found to prevent side‐chain‐induced racemization during incorporation of the His residue even in the case of MW‐assisted SPPS performed at a high temperature. In particular, the MBom group proved to be a suitable protecting group for the convergent synthesis because it remains attached to the imidazole ring during detachment of the protected His‐containing peptide segments from acid‐sensitive linkers by treatment with a weak acid such as 1% trifluoroacetic acid in dichloromethane. We also demonstrated the facile synthesis of Fmoc‐His(π‐MBom)‐OH with the aid of purification procedure by crystallization to effectively remove the undesired τ‐isomer without resorting to silica gel column chromatography. This means that the present synthetic procedure can be used for large‐scale production without any obstacles. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
Here we report the synthesis of new PNA monomers for pseudocomplementary PNA (pcPNA) that are fully compatible with standard Fmoc chemistry. The thiocarbonyl group of the 2-thiouracil (sU) monomer was protected with the 4-methoxy-2-methybenzyl group (MMPM), while the exocyclic amino groups of diaminopurine (D) were protected with Boc groups. The newly synthesized monomers were incorporated into a 10-mer PNA oligomer using standard Fmoc chemistry for solid-phase synthesis. Oligomerization proceeded smoothly and the HPLC and MALDI-TOF MS analyses indicated that there was no remaining MMPM on the sU nucleobase. The new PNA monomers reported here would facilitate a wide range of applications, such as antigene PNAs and DNA nanotechnologies.  相似文献   

4.
Parallel PNA:PNA duplexes were synthesized and conjugated with meso‐tris(pyridyl)phenylporphyrin carboxylic acid at the N‐terminus. The introduction of one porphyrin unit was shown to affect slightly the stability of the PNA:PNA parallel duplex, whereas the presence of two porphyrin units at the same end resulted in a dramatic increase of the melting temperature, accompanied by hysteresis between melting and cooling curves. The circular dichroism (CD) profile of the Soret band and fluorescence quenching strongly support the occurrence of a face‐to‐face interaction between the two porphyrin units. Introduction of a L‐lysine residue at the C‐terminal of one strand of the parallel duplex induced a left‐handed helical structure in the PNA:PNA duplex if the latter contains only one or no porphyrin moiety. The left‐handed helicity was revealed by nucleobase CD profile at 240–280 nm and by the induced‐CD observed in the presence of the DiSC2(5) cyanine dye at ~500–550 nm. Surprisingly, the presence of two porphyrin units led to the disappearance of the nucleobase CD signal and the absence of CD exciton coupling within the Soret band region. In addition, a dramatic decrease of induced CD of DiSC2(5) was observed. These results are in agreement with a model where the porphyrin–porphyrin interactions cause partial loss of chirality of the PNA:PNA parallel duplex, forcing it to adopt a ladder‐like conformation. Chirality 27:864–874, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
To prevent aspartimide formation and related side products in Asp‐Xaa, particularly Asp‐Gly‐containing peptides, usually the 2‐hydroxy‐4‐methoxybenzyl (Hmb) backbone amide protection is applied for peptide synthesis according to the Fmoc‐protocols. In the present study, the usefulness of the recently proposed acid‐labile dicyclopropylmethyl (Dcpm) protectant was analyzed. Despite the significant steric hindrance of this bulky group, N‐terminal H‐(Dcpm)Gly‐peptides are quantitatively acylated by potent acylating agents, and alternatively the dipeptide Fmoc‐Asp(OtBu)‐(Dcpm)Gly‐OH derivative can be used as a building block. In contrast to the Hmb group, Dcpm is inert toward acylations, but is readily removed in the acid deprotection and resin‐cleavage step. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
2‐(4‐Nitrophenyl)sulfonylethoxycarbonyl (Nsc) is an alternative base‐labile Nα‐protecting group to 9‐fluorenylmethoxycarbonyl (Fmoc) for amino acids. The UV spectrum of the Nsc group exhibits moderate absorption at 380 nm which is excellent for real‐time monitoring of the deprotection process. It also decreases the rearrangement of X‐Asp, which can be a serious problem in SPPS. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
AegPNA and aepPNA monomeric units bearing the N7-guanine nucleobase as a substitute for C+ have been demonstrated to bind to a GC base-pair of a duplex in a pH-independent manner when placed in the third strand. The aepPNA backbone exerts a preference for binding in the antiparallel Hoogsteen mode over the parallel Hoogsteen mode.  相似文献   

8.
In contrast to the large number of sidechain protecting groups available for cysteine derivatives in solid phase peptide synthesis, there is a striking paucity of analogous selenocysteine Se‐protecting groups in the literature. However, the growing interest in selenocysteine‐containing peptides and proteins requires a corresponding increase in availability of synthetic routes into these target molecules. It therefore becomes important to design new sidechain protection strategies for selenocysteine as well as multiple and novel deprotection chemistry for their removal. In this paper, we outline the synthesis of two new Fmoc selenocysteine derivatives [Fmoc‐Sec(Meb) and Fmoc‐Sec(Bzl)] to accompany the commercially available Fmoc‐Sec(Mob) derivative and incorporate them into two model peptides. Sec‐deprotection assays were carried out on these peptides using 2,2′‐dithiobis(5‐nitropyridine) (DTNP) conditions previously described by our group. The deprotective methodology was further evaluated as to its suitability towards mediating concurrent diselenide formation in oxytocin‐templated target peptides. Sec(Mob) and Sec(Meb) were found to be extremely labile to the DTNP conditions whether in the presence or absence of thioanisole, whereas Sec(Bzl) was robust to DTNP in the absence of thioanisole but quite labile in its presence. In multiple Sec‐containing model peptides, it was shown that bis‐Sec(Mob)‐containing systems spontaneously cyclize to the diselenide using 1 eq DTNP, whereas bis‐Sec(Meb) and Sec(Bzl) models required additional manipulation to induce cyclization. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
The use of Boc as a nucleobase‐protecting group in the synthesis of sugar‐modified thymidine analogs is reported. Boc was easily inserted at N(3) by a simple and high‐yielding reaction and found to be stable to standard treatments for the removal of Ac and tBuMe2Si (TBDMS) groups, as well as to ZnBr2‐mediated 4,4′‐dimethoxytrityl (DMTr) deprotection. Boc Protection proved to be completely resistant to the strong basic conditions required to regioselectively achieve O‐alkylation, therefore, providing synthetic access to a variety of sugar‐alkylated nucleoside analogs. To demonstrate the feasibility of this approach, two 3′‐O‐alkylated thymidine analogs have been synthesized in high overall yields and fully characterized.  相似文献   

10.
Protected dinucleoside‐2′,5′‐monophosphate has been prepared to develop a prodrug strategy for 2‐5A. The removal of enzymatically and thermally labile 4‐(acetylthio)‐2‐(ethoxycarbonyl)‐3‐oxo‐2‐methylbutyl phosphate protecting group and enzymatically labile 3′‐O‐pivaloyloxymethyl group was followed at pH 7.5 and 37 °C by HPLC from the fully protected dimeric adenosine‐2′,5′‐monophosphate 1 used as a model compound for 2‐5A. The desired unprotected 2′,3′‐O‐isopropylideneadenosine‐2′,5′‐monophosphate ( 9 ) was observed to accumulate as a major product. Neither the competitive isomerization of 2′,5′‐ to a 3′,5′‐linkage nor the P–O5′ bond cleavage was detected. The phosphate protecting group was removed faster than the 3′‐O‐protection and, hence, the attack of the neighbouring 3′‐OH on phosphotriester moiety did not take place.  相似文献   

11.
Grassland productivity in response to climate change and land use is a global concern. In order to explore the effects of climate change and land use on net primary productivity (NPP), NPP partitioning [fBNPP, defined as the fraction of belowground NPP (BNPP) to NPP], and rain‐use efficiency (RUE) of NPP, we conducted a field experiment with warming (+3 °C), altered precipitation (double and half), and annual clipping in a mixed‐grass prairie in Oklahoma, USA since July, 2009. Across the years, warming significantly increased BNPP, fBNPP, and RUEBNPP by an average of 11.6%, 2.8%, and 6.6%, respectively. This indicates that BNPP was more sensitive to warming than aboveground NPP (ANPP) since warming did not change ANPP and RUEANPP much. Double precipitation stimulated ANPP, BNPP, and NPP but suppressed RUEANPP, RUEBNPP, and RUENPP while half precipitation decreased ANPP, BNPP, and NPP but increased RUEANPP, RUEBNPP, and RUENPP. Clipping interacted with altered precipitation in impacting RUEANPP, RUEBNPP, and RUENPP, suggesting land use could confound the effects of precipitation changes on ecosystem processes. Soil moisture was found to be a main factor in regulating variation in ANPP, BNPP, and NPP while soil temperature was the dominant factor influencing fBNPP. These findings suggest that BNPP is critical point to future research. Additionally, results from single‐factor manipulative experiments should be treated with caution due to the non‐additive interactive effects of warming with altered precipitation and land use (clipping).  相似文献   

12.
In this study, a novel N‐acetyl‐glucosaminylated asparagine derivative was developed. This derivative carried TFA‐sensitive protecting groups and was derived from commercially available compounds only in three steps. It was applicable to the ordinary 9‐fluorenylmethoxycarbonyl (Fmoc)‐based solid‐phase peptide synthesis (SPPS) method, and the protecting groups on the carbohydrate moiety could be removed by a single step of TFA cocktail treatment generally used for the final deprotection step in Fmoc‐SPPS. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
Synthetic collagen peptides containing larger numbers of Gly‐Pro‐Hyp repeats are difficult to purify by standard chromatographic procedures. Therefore, efficient strategies are required for the synthesis of higher molecular weight collagen‐type peptides. Applying the Fmoc/tBu chemistry, a comparative analysis of the standard stepwise chain elongation procedure on solid support with the procedure based on the use of the synthons Fmoc‐Gly‐Pro‐Hyp(tBu)‐OH and Fmoc‐Pro‐Hyp‐Gly‐OH was performed. The crude products resulting from the stepwise elongation procedure and from the use of Fmoc‐Gly‐Pro‐Hyp(tBu)‐OH clearly revealed large amounts of microheterogeneities that result from incomplete imino acid acylation as well as from diketopiperazine formation with cleavage of Gly‐Pro units from the growing peptide chain. Conversely, by the use of the Fmoc‐Pro‐Hyp‐Gly‐OH synthon, the quality of the crude products was significantly improved; moreover, protection of the Hyp side chain hydroxyl function is not required using the Fmoc/tBu strategy. With this optimized synthetic procedure, relatively large collagen‐type peptides were obtained in satisfactory yields as highly homogeneous compounds. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
Phosphonium and uronium salt‐based reagents enable efficient and effective coupling reactions and are indispensable in peptide chemistry, especially in machine‐assisted SPPS. However, after the activating and coupling steps with these reagents in the presence of tertiary amines, Fmoc derivatives of Cys are known to be considerably racemized during their incorporation. To avoid this side reaction, a coupling method mediated by phosphonium/uronium reagents with a weaker base, such as 2,4,6‐trimethylpyridine, than the ordinarily used DIEA or that by carbodiimide has been recommended. However, these methods are appreciably inferior to the standard protocol applied for SPPS, that is, a 1 min preactivation procedure of coupling with phosphonium or uronium reagents/DIEA in DMF, in terms of coupling efficiency, and also the former method cannot reduce racemization of Cys(Trt) to an acceptable level (<1.0%) even when the preactivation procedure is omitted. Here, the 4,4′‐dimethoxydiphenylmethyl and 4‐methoxybenzyloxymethyl groups were demonstrated to be acid‐labile S‐protecting groups that can suppress racemization of Cys to an acceptable level (<1.0%) when the respective Fmoc derivatives are incorporated via the standard SPPS protocol of phosphonium or uronium reagents with the aid of DIEA in DMF. Furthermore, these protecting groups significantly reduced the rate of racemization compared to the Trt group even in the case of microwave‐assisted SPPS performed at a high temperature. © 2013 The Authors. European Peptide Society published by John Wiley & Sons, Ltd.  相似文献   

15.
This work reports an efficient Lewis acid catalysed N‐methylation procedure of lipophilic α‐amino acid methyl esters in solution phase. The developed methodology involves the use of the reagent system AlCl3/diazomethane as methylating agent and α‐amino acid methyl esters protected on the amino function with the (9H‐fluoren‐9‐yl)methanesulfonyl (Fms) group. The removal of Fms protecting group is achieved under the same conditions to those used for Fmoc removal. Thus the Fms group can be interchangeable with the Fmoc group in the synthesis of N‐methylated peptides using standard Fmoc‐based strategies. Finally, the absence of racemization during the methylation reaction and the removal of Fms group were demonstrated by synthesising a pair of diastereomeric dipeptides. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
A series of Fmoc‐Phe(4‐aza‐C60)‐OH of fullerene amino acid derived peptides have been prepared by solid phase peptide synthesis, in which the terminal amino acid, Phe(4‐aza‐C60)‐OH, is derived from the dipolar addition to C60 of the Fmoc‐Nα‐protected azido amino acids derived from phenylalanine: Fmoc‐Phe(4‐aza‐C60)‐Lys3‐OH ( 1 ), Fmoc‐Phe(4‐aza‐C60)‐Pro‐Hyp‐Lys‐OH ( 2 ), and Fmoc‐Phe(4‐aza‐C60)‐Hyp‐Hyp‐Lys‐OH ( 3 ). The inhibition constant of our fullerene aspartic protease PRIs utilized FRET‐based assay to evaluate the enzyme kinetics of HIV‐1 PR at various concentrations of inhibitors. Simulation of the docking of the peptide Fmoc‐Phe‐Pro‐Hyp‐Lys‐OH overestimated the inhibition, while the amino acid PRIs were well estimated. The experimental results show that C60‐based amino acids are a good base structure in the design of protease inhibitors and that their inhibition can be improved upon by the addition of designer peptide sequences. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Obtaining homogenous aspartyl‐containing peptides via Fmoc/tBu chemistry is often an insurmountable obstacle. A generic solution for this issue utilising an optimised side‐chain protection strategy that minimises aspartimide formation would therefore be most desirable. To this end, we developed the following new derivatives: Fmoc‐Asp(OEpe)‐OH (Epe = 3‐ethyl‐3‐pentyl), Fmoc‐Asp(OPhp)‐OH (Php = 4‐n‐propyl‐4‐heptyl) and Fmoc‐Asp(OBno)‐OH (Bno = 5‐n‐butyl‐5‐nonyl). We have compared their effectiveness against that of Fmoc‐Asp(OtBu)‐OH and Fmoc‐Asp(OMpe)‐OH in the well‐established scorpion toxin II model peptide variants H‐Val‐Lys‐Asp‐Asn/Arg‐Tyr‐Ile‐OH by treatments of the peptidyl resins with the Fmoc removal reagents containing piperidine and DBU at both room and elevated temperatures. The new derivatives proved to be extremely effective in minimising aspartimide by‐products in each application. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
The Association of Biomolecular Resource Facilities (ABRF) Peptide Synthesis Research Group (PSRG) proposed for their annual study that laboratory members prepare cyclo(Tyr-Glu-Ala-Ala-Arg-DPhe-Pro-Glu-Asp-Asn) according to the following synthetic pathway: (i) side-chain anchoring Fmoc-Asp(OH)-ODmab to a Rink amide resin; (ii) linear assembly; (iii) Dmab and Fmoc removal, respectively; (iv) on-resin cyclization with an uronium-based coupling reagent; (v) final cleavage/deprotection with TFA. Based upon this protocol, a variety of side-products were identified:(i) N-terminal guanidine formation; (ii) C-terminal piperidyl amide formation; and (iii) a novel C-terminal benzyl amide-guanidine derivative that formed due to a chemical reaction between the Dmab protecting group and the uronium-based coupling agent. The elemental composition and subsequent structure determination of this unexpected derivative was established by tandem mass spectrometry, i.e. low energy collision-induced dissociation experiments with fragment mass determination within 5 ppm.  相似文献   

19.
Summary The Association of Biomolecular Resource Facilities (ABRF) Peptide Synthesis Research Group (PSRG) proposed for their annual study that laboratory members preparecyclo(Tyr-Glu-Ala-Ala-Arg-DPhe-Pro-Glu-Asp-Asn) according to the following synthetic pathway: (i) side-chain anchoring Fmoc-Asp(OH)-ODmab to a Rink amide resin; (ii) linear assembly; (iii) Dmab and Fmoc removal, respectively; (iv) on-resin cyclization with an uronium-based coupling reagent; (v) final cleavage/deprotection with TFA. Based upon this protocol, a variety of side-products were identified: (i)N-terminal guanidine formation; (ii)C-terminal piperidyl amide formation; and (iii) a novelC-terminal benzyl amide-guanidine derivative that formed due to a chemical reaction between the Dmab protecting group and the uronium-based coupling agent. The elemental composition and subsequent structure determination of this unexpected derivative was established by tandem mass spectrometry, i.e. low energy collision-induced dissociation experiments with fragment mass determination within 5 ppm.  相似文献   

20.
The design and efficient synthesis of N‐Fmoc‐phosphothreonine protected by a mono‐(pivaloyloxy)methyl (POM) moiety at its phosphoryl group (Fmoc‐Thr[PO(OH)(OPOM)]‐OH, 1 , is reported. This reagent is suitable for solid‐phase syntheses employing acid‐labile resins and Fmoc‐based protocols. It allows the preparation of phosphothreonine (pThr)‐containing peptides bearing bis‐POM‐phosphoryl protection. The methodology allows the first reported synthesis of pThr‐containing polypeptides having bioreversible prodrug protection, and as such it should be useful in a variety of biological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号