首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We tested directly the differences in the aggregation kinetics of three important β amyloid peptides, the full‐length Aβ1‐42, and the two N‐terminal truncated and pyroglutamil modified Aβpy3‐42 and Aβpy11‐42 found in different relative concentrations in the brains in normal aging and in Alzheimer disease. By following the circular dichroism signal and the ThT fluorescence of the solution in phosphate buffer, we found substantially faster aggregation kinetics for Aβpy3‐42. This behavior is due to the particular sequence of this peptide, which is also responsible for the specific oligomeric aggregation states, found by TEM, during the fibrillization process, which are very different from those of Aβ1‐42, more prone to fibril formation. In addition, Aβpy3‐42 is found here to have an inhibitory effect on Aβ1‐42 fibrillogenesis, coherently with its known greater infective power. This is an indication of the important role of this peptide in the aggregation process of β‐peptides in Alzheimer disease. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 861–873, 2009. This article was originally published online as an accepted preprint. The “Published Online“ date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

2.
We have recently reported that a ~19‐kDa polypeptide, rPK‐4, is a protein kinase Cs inhibitor that is 89% homologous to the 1171–1323 amino acid region of the 228‐kDa human pericentriolar material‐1 (PCM‐1) protein (Chakravarthy et al. 2012). We have now discovered that rPK‐4 binds oligomeric amyloid‐β peptide (Aβ)1‐42 with high affinity. Most importantly, a PCM‐1‐selective antibody co‐precipitated Aβ and amyloid β precursor protein (AβPP) from cerebral cortices and hippocampi from AD (Alzheimer's disease) transgenic mice that produce human AβPP and Aβ1‐42, suggesting that PCM‐1 may interact with amyloid precursor protein/Aβ in vivo. We have identified rPK‐4′s Aβ‐binding domain using a set of overlapping synthetic peptides. We have found with ELISA, dot‐blot, and polyacrylamide gel electrophoresis techniques that a ~ 5 kDa synthetic peptide, amyloid binding peptide (ABP)‐p4‐5 binds Aβ1‐42 at nM levels. Most importantly, ABP‐p4‐5, like rPK‐4, appears to preferentially bind Aβ1‐42 oligomers, believed to be the toxic AD‐drivers. As expected from these observations, ABP‐p4‐5 prevented Aβ1‐42 from killing human SH‐SY5Y neuroblastoma cells via apoptosis. These findings indicate that ABP‐p4‐5 is a possible candidate therapeutic for AD.  相似文献   

3.
In this work we have probed the interactions of the amyloid Aβ(1–42) peptide with self‐assembled nanospheres. The nanospheres were formed by self‐assembly of a newly developed bolaamphiphile bis(N‐alpha‐amido‐methionine)‐1,8 octane dicarboxylate under aqueous conditions. It was found that the interactions of the Aβ(1–42) peptide with the nanospheres were concentration as well as pH dependent and the peptide largely adopts a random coil structure upon interacting with the nanospheres. Further, upon incorporation with the nanospheres, we observed a relative diminution in the aggregation of Aβ(1–42) at low concentrations of Aβ(1–42). The interactions between the nanospheres and the Aβ(1–42) peptide were investigated by atomic force microscopy, transmission electron microscopy, circular dichroism, FTIR and fluorescence spectroscopy, and the degree of fibrillation in the presence and absence of nanospheres was monitored by the Thioflavine T assay. We believe that the outcome from this work will help further elucidate the binding properties of Aβ peptide as well as designing nanostructures as templates for further investigating the nucleation and fibrillation process of Aβ‐like peptides. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
Immunization with an altered myelin‐derived peptide (MOG45D) improves recovery from acute CNS insults, partially via recruitment of monocyte‐derived macrophages that locally display a regulatory activity. Here, we investigated the local alterations in the cellular and molecular immunological milieu associated with attenuation of Alzheimer’s disease‐like pathology following immunotherapy. We found that immunization of amyloid precursor protein/presenilin 1 double‐transgenic mice with MOG45D peptide, loaded on dendritic cells, led to a substantial reduction of parenchymal and perivascular amyloid beta (Aβ)‐plaque burden and soluble Aβ(1–42) peptide levels as well as reduced astrogliosis and levels of a key glial scar protein (chondroitin sulphate proteoglycan). These changes were associated with a shift in the local innate immune response, manifested by increased Iba1+/CD45high macrophages that engulfed Aβ, reduced pro‐inflammatory (tumor necrosis factor‐α) and increased anti‐inflammatory (interleukin‐10) cytokines, as well as a significant increase in growth factors (IGF‐1 and TGFβ) in the brain. Furthermore, the levels of matrix metalloproteinase‐9, an enzyme shown to degrade Aβ and is associated with glial scar formation, were significantly elevated in the brain following immunization. Altogether, these results indicate that boosting systemic immune cells leads to a local immunomodulation manifested by elevated levels of anti‐inflammatory cytokines and metalloproteinases that contribute to ameliorating Alzheimer’s disease pathology.  相似文献   

5.
The amyloid hypothesis suggests that accumulation of amyloid β (Aβ) peptides in the brain is involved in development of Alzheimer's disease. We previously generated a small dimeric affinity protein that inhibited Aβ aggregation by sequestering the aggregation prone parts of the peptide. The affinity protein is originally based on the Affibody scaffold, but is evolved to a distinct interaction mechanism involving complex structural rearrangement in both the Aβ peptide and the affinity proteins upon binding. The aim of this study was to decrease the size of the dimeric affinity protein and significantly improve its affinity for the Aβ peptide to increase its potential as a future therapeutic agent. We combined a rational design approach with combinatorial protein engineering to generate two different affinity maturation libraries. The libraries were displayed on staphylococcal cells and high‐affinity Aβ‐binding molecules were isolated using flow‐cytometric sorting. The best performing candidate binds Aβ with a KD value of around 300 pM, corresponding to a 50‐fold improvement in affinity relative to the first‐generation binder. The new dimeric Affibody molecule was shown to capture Aβ1‐42 peptides from spiked E. coli lysate. Altogether, our results demonstrate successful engineering of this complex binder for increased affinity to the Aβ peptide.  相似文献   

6.
Genetic and biochemical studies suggest that Alzheimer's disease (AD) is caused by a series of events initiated by the production and subsequent aggregation of the Alzheimer's amyloid β peptide (Aβ), the so‐called amyloid cascade hypothesis. Thus, a logical approach to treating AD is the development of small molecule inhibitors that either block the proteases that generate Aβ from its precursor (β‐ and γ‐secretases) or interrupt and/or reverse Aβ aggregation. To identify potent inhibitors of Aβ aggregation, we have developed a high‐throughput screen based on an earlier selection that effectively paired the folding quality control feature of the Escherichia coli Tat protein export system with aggregation of the 42‐residue AD pathogenesis effecter Aβ42. Specifically, a tripartite fusion between the Tat‐dependent export signal ssTorA, the Aβ42 peptide and the β‐lactamase (Bla) reporter enzyme was found to be export incompetent due to aggregation of the Aβ42 moiety. Here, we reasoned that small, cell‐permeable molecules that inhibited Aβ42 aggregation would render the ssTorA‐Aβ42‐Bla chimera competent for Tat export to the periplasm where Bla is active against β‐lactam antibiotics such as ampicillin. Using a fluorescence‐based version of our assay, we screened a library of triazine derivatives and isolated four nontoxic, cell‐permeable compounds that promoted efficient Tat‐dependent export of ssTorA‐Aβ42‐Bla. Each of these was subsequently shown to be a bona fide inhibitor of Aβ42 aggregation using a standard thioflavin T fibrillization assay, thereby highlighting the utility of our bacterial assay as a useful screen for antiaggregation factors under physiological conditions.  相似文献   

7.
Several studies have shown that the accumulation of β‐amyloid peptides in the brain parenchyma or vessel wall generates an inflammatory environment. Some even suggest that there is a cause‐and‐effect relationship between inflammation and the development of Alzheimer's disease and/or cerebral amyloid angiopathy (CAA). Here, we studied the ability of wild‐type Aβ1‐40‐peptide (the main amyloid peptide that accumulates in the vessel wall in sporadic forms of CAA) to modulate the phenotypic transition of vascular smooth muscle cells (VSMCs) toward an inflammatory/de‐differentiated state. We found that Aβ1‐40‐peptide alone neither induces an inflammatory response, nor decreases the expression of contractile markers; however, the inflammatory response of VSMCs exposed to Aβ1‐40‐peptide prior to the addition of the pro‐inflammatory cytokine IL‐1β is greatly intensified compared with IL‐1β‐treated VSMCs previously un‐exposed to Aβ1‐40‐peptide. Similar conclusions could be drawn when tracking the decline of contractile markers. Furthermore, we found that the mechanism of this potentiation highly depends on an Aβ1‐40 preactivation of the PI3Kinase and possibly NFκB pathway; indeed, blocking the activation of these pathways during Aβ1‐40‐peptide treatment completely suppressed the observed potentiation. Finally, strengthening the possible in vivo relevance of our findings, we evidenced that endothelial cells exposed to Aβ1‐40‐peptide generate an inflammatory context and have similar effects than the ones described with IL‐1β. These results reinforce the idea that intraparietal amyloid deposits triggering adhesion molecules in endothelial cells, contribute to the transition of VSMCs to an inflammatory/de‐differentiated phenotype. Therefore, we suggest that acute inflammatory episodes may increase vascular alterations and contribute to the ontogenesis of CAA.  相似文献   

8.
Abnormal aggregation of β‐amyloid (Aβ) peptide plays an important role in the onset and progress of Alzheimer's disease (AD); hence, targeting Aβ aggregation is considered as an effective therapeutic strategy. Here, we studied the aromatic‐interaction‐mediated inhibitory effect of oligomeric polypeptides (K8Y8, K4Y8, K8W8) on Aβ42 fibrillization process. The polypeptides containing lysine as well as representative aromatic amino acids of tryptophan or tyrosine were found to greatly suppress the aggregation as evaluated by thioflavin T assay. Circular dichroism spectra showed that the β‐sheet formation of Aβ42 peptides decreased with the polypeptide additives. Molecular docking studies revealed that the oligomeric polypeptides could preferentially bind to Aβ42 through π–π stacking between aromatic amino acids and Phe19, together with hydrogen bonding. The cell viability assay confirmed that the toxicity of Aβ42 to SH‐SY5Y cells was markedly reduced in the presence of polypeptides. This study could be beneficial for developing peptide‐based inhibitory agents for amyloidoses. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
The aggregation of soluble amyloid‐beta (Aβ) peptide into oligomers/fibrils is one of the key pathological features in Alzheimer's disease (AD). The Aβ aggregates are considered to play a pivotal role in the pathogenesis of AD. Therefore, inhibiting Aβ aggregation and destabilizing preformed Aβ fibrils would be an attractive therapeutic target for prevention and treatment of AD. S14G‐humanin (HNG), a synthetic derivative of Humanin (HN), has been shown to be a strong neuroprotective agent against various AD‐related insults. Recent studies have shown that HNG can significantly improve cognitive deficits and reduce insoluble Aβ levels as well as amyloid plaque burden without affecting amyloid precursor protein processing and Aβ production in transgenic AD models. However, the potential mechanisms by which HNG reduces Aβ‐related pathology in vivo remain obscure. In the present study, we found that HNG could significantly inhibit monomeric Aβ1–42 aggregation into fibrils and destabilize preformed Aβ1–42 fibrils in a concentration‐dependent manner by Thioflavin T fluorescence assay. In transmission electron microscope study, we observed that HNG was effective in inhibiting Aβ1–42 fibril formation and disrupting preformed Aβ1–42 fibrils, exhibiting various types of amorphous aggregates without identifiable Aβ fibrils. Furthermore, HNG‐treated monomeric or fibrillar Aβ1–42 was found to significantly reduce Aβ1–42‐mediated cytotoxic effects on PC12 cells in a dose‐dependent manner by MTT assay. Collectively, our results demonstrate for the first time that HNG not only inhibits Aβ1–42 fibril formation but also disaggregates preformed Aβ1–42 fibrils, which provides the novel evidence that HNG may have anti‐Aβ aggregation and fibrillogenesis, and fibril‐destabilizing properties. Together with previous studies, we concluded that HNG may have promising therapeutic potential as a multitarget agent for the prevention and/or treatment of AD. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
Gamma‐secretase modulators (GSMs) include selected non‐steroidal anti‐inflammatory drugs such as flurbiprofen that selectively lowers the neurotoxic amyloid‐β peptide Aβ1–42. GSMs are attractive targets for Alzheimer’s disease, in contrast to ‘inverse GSMs,’ such as fenofibrate, which selectively increase the level of Aβ1–42. A methodology for screening of Aβ modulating drugs was developed utilizing an Aβ‐producing neuroblastoma cell line stably transfected with mutant human amyloid precursor protein, immunoprecipitation of Aβ peptides, and mass spectroscopic quantitation of Aβ1–37/Aβ1–38/Aβ1–40/Aβ1–42 using an Aβ internal standard. The unexpected conclusion of this work was that in this system, drug effects are independent of γ‐secretase. The methodology recapitulated reported results for modulation of Aβ by GSMs. However, control experiments in which exogenous Aβ1–40/Aβ1–42 was added (i) to drug‐treated wild‐type cells or (ii) to conditioned media from these wild‐type cells, gave comparable patterns of Aβ modulation. These results, suggesting that drugs modulate the ability of cell‐derived factors to degrade Aβ, was interrogated by adding protease inhibitors and performing molecular weight cut‐off fractionation. The results confirmed that modulation of Aβ1–40/Aβ1–42 was mediated by selective proteolysis. Treatment of N2a cells with flurbiprofen or fenofibric acid selectively enhanced Aβ1–42 clearance by extracellular proteolysis; treatment with HCT‐1026 or fenofibrate (esters of flurbiprofen and fenobric acid) inhibited clearance of Aβ1–40 and Aβ1–42.  相似文献   

11.
It has been proved that the principal component of senile plaques is aggregates of β‐amyloid peptide (Aβ) in cases of one of the most common forms of age‐related neurodegenerative disorders, Alzheimer's disease (AD). Although the synthetic methods for the synthesis of Aβ peptides have been developed since their first syntheses, Aβ[1‐42] is still problematic to prepare. The highly hydrophobic composition of Aβ[1‐42] results in aggregation between resin‐bound peptide chains or intrachain aggregation which leads to a decrease in the rates of deprotection and repetitive incomplete coupling reactions during 9‐flurenylmethoxycarbonyl (Fmoc) synthesis. In order to avoid aggregation and/or disrupt internal aggregation during stepwise Fmoc solid phase synthesis and to improve the quality of crude products, several attempts have been made. Since highly pure Aβ peptides in large quantities are used in biological experiments, we wanted to develop a method for a rational synthesis of human Aβ[1‐42] with high purity and adequate yield. This paper reports a convenient methodology with a novel solvent system for the synthesis of Aβ[1‐42], its N‐terminally truncated derivatives Aβ[4‐42] and Aβ[5‐42], and Aβ[1‐42] labeled with 7‐amino‐4‐methyl‐3‐coumarinylacetic acid (AMCA) at the N‐terminus using Fmoc strategy. The use of 10% anisole in Dimethylformamide/Dichloromethane (DMF/DCM) can substantially improve the purity and yield of crude Aβ[1‐42] and has been shown to be an optimal coupling condition for the synthesis of Aβ[1‐42]. Anisole is a cheap and simple aid in the synthesis of ‘difficult sequences’ where other solvents are less successful in the prevention of aggregation during the synthesis. Copyright © 2006 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
An increasing amount of evidence suggests that in several amyloid diseases, the fibril formation in vivo and the mechanism of toxicity both involve membrane interactions. We have studied Alzheimer's disease related amyloid beta peptide (Aβ). Recombinant Aβ(M1-40) and Aβ(M1-42) produced in Escherichia coli, allows us to carry out large scale kinetics assays with good statistics. The amyloid formation process is followed in means of thioflavin T fluorescence at relatively low (down to 380 nM) peptide concentration approaching the physiological range. The lipid membranes are introduced in the system as large and small unilamellar vesicles. The aggregation lagtime increases in the presence of lipid vesicles for all situations investigated and the phase behavior of the membrane in the vesicles has a large effect on the aggregation kinetics. By comparing vesicles with different membrane phase behavior we see that the solid gel phase dipalmitoylphosphatidylcholine bilayers cause the largest retardation of Aβ fibril formation. The membrane-induced retardation reaches saturation and is present when the vesicles are added during the lag time up to the nucleation point. No significant difference is detected in lag time when increasing amount of negative charge is incorporated into the membrane.  相似文献   

13.
Raloxifene, a selective estrogen receptor modulator, displays benefits for Alzheimer's disease (AD) prevention in postmenopausal women as hormonal changes during menopause have the potential to influence AD pathogenesis, but the underlying mechanism of its neuroprotection is not entirely clear. In this study, the effects of raloxifene on amyloid‐β (Aβ) amyloidogenesis were evaluated. The results demonstrated that raloxifene inhibits Aβ42 aggregation and destabilizes preformed Aβ42 fibrils through directly interacting with the N‐terminus and middle domains of Aβ42 peptides. Consequently, raloxifene not only reduces direct toxicity of Aβ42 in HT22 neuronal cells, but also suppresses expressions of tumor necrosis factor‐α and transforming growth factor‐β induced by Aβ42 peptides, and then alleviates microglia‐mediated indirect toxicity of Aβ42 to HT22 neuronal cells. Our results suggested an alternative possible explanation for the neuroprotective activity of raloxifene in AD prevention.  相似文献   

14.
Alzheimer's disease is a progressive neurodegenerative disease characterized by extracellular deposits of β‐amyloid (Aβ) plaques. Aggregation of the Aβ42 peptide leading to plaque formation is believed to play a central role in Alzheimer's disease pathogenesis. Anti‐Aβ monoclonal antibodies can reduce amyloid plaques and could possibly be used for immunotherapy. We have developed a monoclonal antibody C706, which recognizes the human Aβ peptide. Here we report the crystal structure of the antibody Fab fragment at 1.7 Å resolution. The structure was determined in two crystal forms, P21 and C2. Although the Fab was crystallized in the presence of Aβ16, no peptide was observed in the crystals. The antigen‐binding site is blocked by the hexahistidine tag of another Fab molecule in both crystal forms. The poly‐His peptide in an extended conformation occupies a crevice between the light and heavy chains of the variable domain. Two consecutive histidines (His4–His5) stack against tryptophan residues in the central pocket of the antigen‐binding surface. In addition, they form hydrogen bonds to the acidic residues at the bottom of the pocket. The mode of his‐tag binding by C706 resembles the Aβ recognition by antibodies PFA1 and WO2. All three antibodies recognize the same immunodominant B‐cell epitope of Aβ. By similarity, residues Phe–Arg–His of Aβ would be a major portion of the C706 epitope. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The mechanism by which a disordered peptide nucleates and forms amyloid is incompletely understood. A central domain of β‐amyloid (Aβ21–30) has been proposed to have intrinsic structural propensities that guide the limited formation of structure in the process of fibrillization. In order to test this hypothesis, we examine several internal fragments of Aβ, and variants of these either cyclized or with an N‐terminal Cys. While Aβ21–30 and variants were always monomeric and unstructured (circular dichroism (CD) and nuclear magnetic resonance spectroscopy (NMRS)), we found that the addition of flanking hydrophobic residues in Aβ16–34 led to formation of typical amyloid fibrils. NMR showed no long‐range nuclear overhauser effect (nOes) in Aβ21–30, Aβ16–34, or their variants, however. Serial 1H‐15N‐heteronuclear single quantum coherence spectroscopy, 1H‐1H nuclear overhauser effect spectroscopy, and 1H‐1H total correlational spectroscopy spectra were used to follow aggregation of Aβ16–34 and Cys‐Aβ16–34 at a site‐specific level. The addition of an N‐terminal Cys residue (in Cys‐Aβ16–34) increased the rate of fibrillization which was attributable to disulfide bond formation. We propose a scheme comparing the aggregation pathways for Aβ16–34 and Cys‐Aβ16–34, according to which Cys‐Aβ16–34 dimerizes, which accelerates fibril formation. In this context, cysteine residues form a focal point that guides fibrillization, a role which, in native peptides, can be assumed by heterogeneous nucleators of aggregation.  相似文献   

16.
The amyloid peptides Aβ40 and Aβ42 of Alzheimer's disease are thought to contribute differentially to the disease process. Although Aβ42 seems more pathogenic than Aβ40, the reason for this is not well understood. We show here that small alterations in the Aβ42:Aβ40 ratio dramatically affect the biophysical and biological properties of the Aβ mixtures reflected in their aggregation kinetics, the morphology of the resulting amyloid fibrils and synaptic function tested in vitro and in vivo. A minor increase in the Aβ42:Aβ40 ratio stabilizes toxic oligomeric species with intermediate conformations. The initial toxic impact of these Aβ species is synaptic in nature, but this can spread into the cells leading to neuronal cell death. The fact that the relative ratio of Aβ peptides is more crucial than the absolute amounts of peptides for the induction of neurotoxic conformations has important implications for anti‐amyloid therapy. Our work also suggests the dynamic nature of the equilibrium between toxic and non‐toxic intermediates.  相似文献   

17.
Alzheimer disease is a neurodegenerative disease affecting an increasing number of patients worldwide. Current therapeutic strategies are directed to molecules capable to block the aggregation of the β‐amyloid(1‐42) (Aβ) peptide and its shorter naturally occurring peptide fragments into toxic oligomers and amyloid fibrils. Aβ‐specific antibodies have been recently developed as powerful antiaggregation tools. The identification and functional characterization of the epitope structures of Aβ antibodies contributes to the elucidation of their mechanism of action in the human organism. In previous studies, the Aβ(4‐10) peptide has been identified as an epitope for the polyclonal anti‐Aβ(1‐42) antibody that has been shown capable to reduce amyloid deposition in a transgenic Alzheimer disease mouse model. To determine the functional significance of the amino acid residues involved in binding to the antibody, we report here the effects of alanine single‐site mutations within the Aβ‐epitope sequence on the antigen‐antibody interaction. Specific identification of the essential affinity preserving mutant peptides was obtained by exposing a Sepharose‐immobilized antibody column to an equimolar mixture of mutant peptides, followed by analysis of bound peptides using high‐resolution MALDI‐Fourier transform‐Ion Cyclotron Resonance mass spectrometry. For the polyclonal antibody, affinity was preserved in the H6A, D7A, S8A, and G9A mutants but was lost in the F4, R5, and Y10 mutants, indicating these residues as essential amino acids for binding. Enzyme‐linked immunosorbent assays confirmed the binding differences of the mutant peptides to the polyclonal antibody. In contrast, the mass spectrometric analysis of the mutant Aβ(4‐10) peptides upon affinity binding to a monoclonal anti‐Aβ(1‐17) antibody showed complete loss of binding by Ala‐site mutation of any residue of the Aβ(4‐10) epitope. Surface plasmon resonance affinity determination of wild‐type Aβ(1‐17) to the monoclonal Aβ antibody provided a binding constant KD in the low nanomolar range. These results provide valuable information in the elucidation of the binding mechanism and the development of Aβ‐specific antibodies with improved therapeutic efficacy.  相似文献   

18.
Recent mutagenesis studies using the hydrophobic segment of Aβ suggest that aromatic π‐stacking interactions may not be critical for fibril formation. We have tested this conjecture by probing the effect of Leu, Ile, and Ala mutation of the aromatic Phe residues at positions 19 and 20, on the double‐layer hexametric chains of Aβ fragment Aβ16–22 using explicit solvent all‐atom molecular dynamics. As these simulations rely on the accuracy of the utilized force fields, we first evaluated the dynamic and stability dependence on various force fields of small amyloid aggregates. These initial investigations led us to choose AMBER99SB‐ILDN as force field in multiple long molecular dynamics simulations of 100 ns that probe the stability of the wild‐type and mutants oligomers. Single‐point and double‐point mutants confirm that size and hydrophobicity are key for the aggregation and stability of the hydrophobic core region (Aβ16–22). This suggests as a venue for designing Aβ aggregation inhibitors the substitution of residues (especially, Phe 19 and 20) in the hydrophobic region (Aβ16–22) with natural and non‐natural amino acids of similar size and hydrophobicity.  相似文献   

19.
Little is known about the extent to which pathogenic factors drive the development of Alzheimer's disease (AD) at different stages of the long preclinical and clinical phases. Given that the aggregation of the β‐amyloid peptide (Aβ) is an important factor in AD pathogenesis, we asked whether Aβ seeds from brain extracts of mice at different stages of amyloid deposition differ in their biological activity. Specifically, we assessed the effect of age on Aβ seeding activity in two mouse models of cerebral Aβ amyloidosis (APPPS1 and APP23) with different ages of onset and rates of progression of Aβ deposition. Brain extracts from these mice were serially diluted and inoculated into host mice. Strikingly, the seeding activity (seeding dose SD50) in extracts from donor mice of both models reached a plateau relatively early in the amyloidogenic process. When normalized to total brain Aβ, the resulting specific seeding activity sharply peaked at the initial phase of Aβ deposition, which in turn is characterized by a temporary several‐fold increase in the Aβ42/Aβ40 ratio. At all stages, the specific seeding activity of the APPPS1 extract was higher compared to that of APP23 brain extract, consistent with a more important contribution of Aβ42 than Aβ40 to seed activity. Our findings indicate that the Aβ seeding potency is greatest early in the pathogenic cascade and diminishes as Aβ increasingly accumulates in brain. The present results provide experimental support for directing anti‐Aβ therapeutics to the earliest stage of the pathogenic cascade, preferably before the onset of amyloid deposition.  相似文献   

20.
The β‐amyloid peptides (Aβ), Aβ1–40 and Aβ1–42, have been implicated in Alzheimer's disease (AD) pathology. Although Aβ1–42 is generally considered to be the pathological peptide in AD, both Aβ1–40 and Aβ1–42 have been used in a variety of experimental models without discrimination. Here we show that monomeric or oligomeric forms of the two Aβ peptides, when interact with the neuronal cation channel, α7 nicotinic acetylcholine receptors (α7nAChR), would result in distinct physiologic responses as measured by acetylcholine release and calcium influx experiments. While Aβ1–42 effectively attenuated these α7nAChR‐dependent physiology to an extent that was apparently irreversible, Aβ1–40 showed a lower inhibitory activity that could be restored upon washings with physiologic buffers or treatment with α7nAChR antagonists. Our data suggest a clear pharmacological distinction between Aβ1–40 and Aβ1–42. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 25–30, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号