首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Overexpression of gonadotropin‐releasing hormone (GnRH) receptor in many tumors but not in normal tissues makes it possible to use GnRH analogs as targeting peptides for selective delivery of cytotoxic agents, which may help to enhance the uptake of anticancer drugs by cancer cells and reduce toxicity to normal cells. The GnRH analogs [d ‐Cys6, desGly10, Pro9‐NH2]‐GnRH, [d ‐Cys6, desGly10, Pro9‐NHEt]‐GnRH, and [d ‐Cys6, α‐aza‐Gly10‐NH2]‐GnRH were conjugated with doxorubicin (Dox), respectively, through N‐succinimidyl‐3‐maleimidopropionate as a linker to afford three new GnRH‐Dox conjugates. The metabolic stability of these conjugates in human serum was determined by RP‐HPLC. The antiproliferative activity of the conjugates was examined in GnRH receptor‐positive MCF‐7 human breast cancer cell line by MTT assay. The three GnRH‐Dox conjugates showed improved metabolic stability in human serum in comparison with AN‐152. The antiproliferative effect of conjugate II ([d ‐Cys6, desGly10, Pro9‐NHEt]‐GnRH‐Dox) on MCF‐7 cells was higher than that of conjugate I ([d ‐Cys6, desGly10, Pro9‐NH2]‐GnRH‐Dox) and conjugate III ([d ‐Cys6, α‐aza‐Gly10‐NH2]‐GnRH‐Dox), and the cytotoxicity of conjugate II against GnRH receptor‐negative 3T3 mouse embryo fibroblast cells was decreased in comparison with free Dox. GnRH receptor inhibition test suggested that the antiproliferative activity of conjugate II might be due to the cellular uptake mediated by the targeting binding of [d ‐Cys6‐des‐Gly10‐Pro9‐NHEt]‐GnRH to GnRH receptors. Our study indicates that targeting delivery of conjugate II mediated by [d ‐Cys6‐des‐Gly10‐Pro9‐NHEt]‐GnRH is a promising strategy for chemotherapy of tumors that overexpress GnRH receptors.  相似文献   

2.
3.
H2S is the third endogenous gaseous mediator, after nitric oxide and carbon monoxide, possessing pleiotropic effects, including cytoprotection and anti‐inflammatory action. We analyzed, in an in vitro model entailing monocyte adhesion to an endothelial monolayer, the changes induced by H2S on various potential targets, including cytokines, chemokines, and proteases, playing a crucial role in inflammation and cell adhesion. Results show that H2S prevents the increase in monocyte adhesion induced by tumor necrosis factor‐α (TNF‐α). Under these conditions, downregulation of monocyte chemoattractant protein‐1 (MCP‐1), chemokine C‐C motif receptor 2, and increase of cluster of differentiation 36 could be detected in monocytes. In endothelial cells, H2S treatment reduces the increase in MCP‐1, inter‐cellular adhesion molecule‐1, vascular cell adhesion molecule‐1, and of a disintegrin and metalloproteinase metallopeptidase domain 17 (ADAM17), both at the gene expression and protein levels. Cystathionine γ‐lyase and 3‐mercaptopyruvate sulfurtransferase, the major H2S forming enzymes, are downregulated in endothelial cells. In addition, H2S significantly reduces activation of ADAM17 by PMA in endothelial cells, with consequent reduction of both ADAM17‐dependent TNF‐α ectodomain shedding and MCP‐1 release. In conclusion, H2S is able to prevent endothelial activation by hampering endothelial activation, triggered by TNF‐α. The mechanism of this protective effect is mainly mediated by down‐modulation of ADAM17‐dependent TNF‐converting enzyme (TACE) activity with consequent inhibition of soluble TNF‐α shedding and its relevant MCP‐1 release in the medium. These results are discussed in the light of the potential protective role of H2S in pro‐inflammatory and pro‐atherogenic processes, such as chronic renal failure. J. Cell. Biochem. 114: 1536–1548, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
The A-chain homodimers of the platelet-derived growth factor (PDGF AA) are widely expressed in normal and transformed cells. The mitogenic properties of PDGF AA are well established; however, the chemotactic potential of PDGF AA remains controversial. We now show that PDGF AA is a strong chemoattractant for human monocytes, granulocytes, and fetal bovine ligament fibroblasts. However, highly purified (greater than 98%) monocytes require the addition of lymphocytes or IL-1 for chemotactic responsiveness to PDGF AA but not for full chemotactic activity with formyl-methionyl-leucyl-phenylalanine (fMLP) or C5a. These results indicate that PDGF AA is a potent chemoattractant. These results also indicate that monocytes require activation either by lymphocytes or exogenous cytokines in order to respond chemotactically to PDGF AA but not to fMLP or C5a and suggest roles of the lymphocyte and cytokine in the chemotactic response of the monocyte to PDGF AA in vivo.  相似文献   

5.
Directed cell migration is critical for numerous physiological processes including development and wound healing. However chemotaxis is also exploited during cancer progression. Recent reports have suggested links between vesicle trafficking pathways and directed cell migration. Very little is known about the potential roles of endocytosis pathways during metastasis. Therefore we performed a series of studies employing a previously characterised model for chemotactic invasion of cancer cells to assess specific hypotheses potentially linking endocytosis to directed cell migration. Our results demonstrate that clathrin‐mediated endocytosis is indispensable for epidermal growth factor (EGF) directed chemotactic invasion of MDA‐MB‐231 cells. Conversely, caveolar endocytosis is not required in this mode of migration. We further found that chemoattractant receptor (EGFR) trafficking occurs by clathrin‐mediated endocytosis and is polarised towards the front of migrating cells. However, we found no role for clathrin‐mediated endocytosis in focal adhesion disassembly in this migration model. Thus, this study has characterised the role of endocytosis during chemotactic invasion and has identified functions mechanistically linking clathrin‐mediated endocytosis to directed cell motility.   相似文献   

6.
Monocyte recruitment from the blood in response to chemoattractant gradients is a key phenomenon in inflammation. Various extracellular matrix proteins, at the site of inflammation, have chemoattractant activity and mediate monocyte adhesion and migration as ligands of integrins. In this report, we demonstrate that transforming growth factor-beta-induced gene product (betaig-h3/TGFBIp), as an extracellular matrix protein, mediates monocytes adhesion under both static and flow conditions mainly through integrin alphaMbeta2. Fasciclin 1 domains of betaig-h3/TGFBIp are responsible for the interaction with integrin alphaMbeta2, not only enhances monocyte migration in both chemotactic and haptotactic manners but also mediates their transendothelial migration and subendothelial matrix invasion. These activities are also mediated through integrin alphaMbeta2. Intraperitoneal injection of betaig-h3/TGFBIp promotes the recruitment of monocytes but not neutrophils. Our results demonstrate that betaig-h3/TGFBIp produced at inflammatory sites is a novel chemoattractant for monocytes and interacts with integrin alphaMbeta2 to serve as a substrate for their migration, suggesting that betaig-h3/TGFBIp plays an important role in inflammation.  相似文献   

7.
Colchicine ( COL ) shows strong anticancer activity but due to its toxicity towards normal cells its wider application is limited. To address this issue, a library of 17 novel COL derivatives, namely N‐carbamates of N‐deacetyl‐4‐(bromo/chloro/iodo)thiocolchicine, has been tested against two types of primary cancer cells. These included acute lymphoblastic leukemia (ALL) and human breast cancer (BC) derived from two different tumor subtypes, ER+ invasive ductal carcinoma grade III (IDCG3) and metastatic carcinoma (MC). Four novel COL derivatives showed higher anti‐proliferative activity than COL (IC50 = 8.6 nM) towards primary ALL cells in cell viability assays (IC50 range of 1.1‐6.4 nM), and several were more potent towards primary IDCG3 (IC50 range of 0.1 to 10.3 nM) or MC (IC50 range of 2.3‐9.1 nM) compared to COL (IC50 of 11.1 and 11.7 nM, respectively). In addition, several derivatives were selectively active toward primary breast cancer cells compared to normal breast epithelial cells. The most promising derivatives were subsequently tested against the NCI panel of 60 human cancer cell lines and seven derivatives were more potent than COL against leukemia, non–small‐cell lung, colon, CNS and prostate cancers. Finally, COL and two of the most active derivatives were shown to be effective in killing BC cells when tested ex vivo using fresh human breast tumor explants. The present findings indicate that the select COL derivatives constitute promising lead compounds targeting specific types of cancer.  相似文献   

8.

Background

Migration of mammalian cells is a complex cell type and environment specific process. Migrating hematopoietic cells assume a rapid amoeboid like movement when exposed to gradients of chemoattractants. The underlying signaling mechanisms remain controversial with respect to localization and distribution of chemotactic receptors within the plasma membrane and the role of PI 3-kinase activity in cell polarization.

Methodology/Principal Findings

We present a novel model for the investigation of human leukocyte migration. Monocytic THP-1 cells transfected with the α2A-adrenoceptor (α2AAR) display comparable signal transduction responses, such as calcium mobilization, MAP-kinase activation and chemotaxis, to the noradrenaline homlogue UK 14''304 as when stimulated with CCL2, which binds to the endogenous chemokine receptor CCR2. Time-lapse video microcopy reveals that chemotactic receptors remain evenly distributed over the plasma membrane and that their internalization is not required for migration. Measurements of intramolecular fluorescence resonance energy transfer (FRET) of α2AAR-YFP/CFP suggest a uniform activation of the receptors over the entire plasma membrane. Nevertheless, PI 3-kinse activation is confined to the leading edge. When reverting the gradient of chemoattractant by moving the dispensing micropipette, polarized monocytes – in contrast to neutrophils – rapidly flip their polarization axis by developing a new leading edge at the previous posterior side. Flipping of the polarization axis is accompanied by re-localization of PI-3-kinase activity to the new leading edge. However, reversal of the polarization axis occurs in the absence of PI 3-kinase activation.

Conclusions/Significance

Accumulation and internalization of chemotactic receptors at the leading edge is dispensable for cell migration. Furthermore, uniformly distributed receptors allow the cells to rapidly reorient and adapt to changes in the attractant cue. Polarized monocytes, which display typical amoeboid like motility, can rapidly develop a new leading edge facing the highest chemoattractant concentration at any site of the plasma membrane, including the uropod. The process appears to be independent of PI 3-kinase activity.  相似文献   

9.
A range of chemotactic factors has been shown to affect the adhesion of rabbit peritoneal neutrophil granulocytes to cultured endothelial cells and to serum-coated glass. At chemotactically optimal concentrations, αs-casein, β-casein, alkali denatured human serum albumin (HSA) and several synthetic formyl-peptides reduced the number of adherent neutrophils after 30 min to around 50% of control values. These effects were still observed after neutrophils, but not endothelium or serum-coated glass had been exposed to chemotactic factors and washed before use in assays. Two non-chemotactic analogues, native HSA and a non-formyl-peptide were ineffective. The dose responses for adhesion after 30 min in the presence of αs-casein and formyl-methionyl-leucyl-phenylalanine (FMLP) were found to be inversely related to those for migration towards these substances. After incubation for 60 min in high (10?8–10?7 M) concentrations of FMLP, neutrophil adhesion was found to be enhanced. Neutrophil aggregation was also affected by the presence of chemotactic factors in a similar time- and dose-dependent manner to the adhesion to substratum assays. Using FMLP, it was also shown that the timing of the adhesive changes depended on the concentration of chemotactic factor present.  相似文献   

10.
Clusterin induces the expression of various chemotactic cytokines including tumor necrosis factor-α (TNF-α) in macrophages and is involved in the cell migration. According to the results of this study, clusterin induced the directional migration (chemotaxis) of macrophages based on a checkerboard analysis. The chemotactic activity of clusterin was prevented by pretreatment with pertussis toxin (PTX), indicating that the Gαi/o-protein coupled receptor (GPCR) was involved in the chemotactic response of clusterin. Clusterin-stimulated chemotaxis was abrogated in a dose-dependent manner by pretreatment with gallein (a Gβγ inhibitor), indicating the involvement of Gβγ released from the GPCR. In addition, inhibitors of phospholipase C (PLC, U73122) and phosphoinositide 3-kinase (PI3K, LY294002), the key targets of Gβγ binding and activation, suppressed chemotactic migration by clusterin. The phosphorylation of Akt induced by clusterin was blocked by pretreatment with gallein or LY294002 but not with U73122, indicating that Gβγ released from the PTX-sensitive Gi protein complex activated PLC and PI3K/Akt signaling pathways separately. The activation of cellular MAP kinases was essential in that their inhibitors blocked clusterin-induced chemotaxis, and Gβγ was required for the activation of MAP kinases because gallein reduced their phosphorylations induced by clusterin. In addition, the inflammation-induced migration of macrophages was greatly reduced in clusterin-deficient mice based on a thioglycollate-induced peritonitis model system. These results suggest that clusterin stimulates the chemotactic migration of macrophages through a PTX-sensitive GPCR and Gβγ-dependent pathways and describe a novel role of clusterin as a chemoattractant of monocytes/macrophages, suggesting that clusterin may serve as a molecular bridge between inflammation and its remodeling of related tissue by recruiting immune cells.  相似文献   

11.
In an attempt to develop efficient chemotherapeutic agents targeted at malignant cells that express receptors, we synthesized five new emodin derivatives and their gonadotropin-releasing hormone (GnRH) conjugates to be used as potential photoactive conjugates. Emodin was modified at its hydroxy groups and included different spacers for conjugation of the peptide. We used electron spin resonance (ESR) and spin trapping techniques to study the light-stimulated redox properties of the emodin derivatives and their GnRH conjugates. Upon irradiation, all new emodin derivatives and their conjugates stimulated the formation of singlet oxygen, that is, (1)O(2), and oxygen radicals, that is, O(2)(-)(*) and OH(*). However, substantial differences were found between the tested derivatives as to the efficacy of reactive oxygen species (ROS) production. Because of its superior ROS production properties, [d-Lys(6)(MeoEmo)]GnRH was selected as a leading conjugate. En-route to evaluate its targeting capacity, this potentially cytotoxic conjugate was tested in vitro to determine its hormonal activity and binding affinity to GnRH receptors.  相似文献   

12.
We study kinetic models for chemotaxis, incorporating the ability of cells to assess temporal changes of the chemoattractant concentration as well as its spatial variations. For prescribed smooth chemoattractant density, the macroscopic limit is carried out rigorously. It leads to a drift equation with a chemotactic sensitivity depending on the time derivative of the chemoattractant density. As an application it is shown by numerical experiments that the new model can resolve the chemotactic wave paradox. For this purpose, the macroscopic equation is coupled to a simple activation-inhibition model for the chemoattractant which produces the chemoattractant waves typical for the slime mold Dictyostelium discoideum.  相似文献   

13.
ABSTRACT

Previously, we reported that endometrial stromal (ES) and endometrial epithelial (EE) cells did not attach to tenascin C, indicating the absence of active integrin α9β1 on the surface of mouse ES and EE cells. However, that study used recombinant tenascin C without fibronectin (FN) type III repeats interacting with integrin heterodimers. Therefore, we re-evaluated the presence of integrin α9β1 actively functioning on the surface of mouse ES and EE cells using full-length native tenascin C with FN type III repeats. The functionality of integrin α9β1 was confirmed using attachment and antibody inhibition assays. Both mouse ES and EE cells showed significantly increased adhesion to native tenascin C, and functional blocking of integrin α9β1 significantly inhibited adhesion to native tenascin C. These results demonstrate that the integrin α9 and β1 subunits function as active heterodimers on the plasma membrane of mouse ES and EE cells, respectively.  相似文献   

14.
Cardiovascular disease is the leading cause of morbidity, mortality, and health care costs in the USA, and around the world. Among the various risk factors of cardiovascular disease, environmental and dietary exposures to methyl mercury, a highly toxic metal traditionally labeled as a neurotoxin, have been epidemiologically linked to human cardiovascular disease development. However, its role in development and promotion of atherosclerosis, an initial step in more immediately life-threatening cardiovascular diseases, remains unclear. This study was conducted to examine the role that methyl mercury plays in the adhesion of monocytes to human microvascular endothelial cells (HMEC-1), and the underlying mechanisms. Methyl mercury treatment significantly induced the adhesion of monocyte to HMEC-1 endothelial cells, a critical step in atherosclerosis, while also upregulating the expression of proinflammatory cytokines interleukin-6, interleukin-8. Further, methyl mercury treatment also upregulated the chemotactic cytokine monocyte chemoattractant protein-1 and intercellular adhesion molecule-1. These molecules are imperative for the firm adhesion of leukocytes to endothelial cells. Additionally, our results further demonstrated that methyl mercury stimulated a significant increase in NF-κB activation. These findings suggest that NF-κB signaling pathway activation by methyl mercury is an important factor in the binding of monocytes to endothelial cells. Finally, by using flow cytometric analysis, methyl mercury treatment caused a significant increase in necrotic cell death only at higher concentrations without initiating apoptosis. This study provides new insights into the molecular actions of methyl mercury that can lead to endothelial dysfunction, inflammation, and subsequent atherosclerotic development.  相似文献   

15.
We have previously reported on a gold(III) complex, namely [AuBr2(DMDT)] (N,N‐dimethyldithiocarbamate) showing potent in vitro and in vivo growth inhibitory activities toward human cancer cells and identifying the cellular proteasome as one of the major targets. However, the importance of the oxidation state of the gold center and the involved mechanism of action has yet to be established. Here we show that both gold(III)? and gold(I)–dithiocarbamato species, namely [AuBr2(ESDT)] (AUL12) and [Au(ESDT)]2 (AUL15), could inhibit the chymotrypsin‐like activity of purified 20S proteasome and 26S proteasome in human breast cancer MDA‐MB‐231 cells, resulting in accumulation of ubiquitinated proteins and proteasome target proteins, and induction of cell death, but at significantly different levels. Gold(I)‐ and gold(III)‐compound‐mediated proteasome inhibition and cell death induction were completely reversed by the addition of a reducing agent, dithiothreitol or N‐acetyl‐L ‐cysteine, suggesting the involvement of redox processes. Furthermore, treatment of MDA‐MB‐231 cells with gold(III) compound (AUL12), but not the gold(I) analog (AUL15), resulted in the production of significant levels of reactive oxygen species. Our study provides strong evidence that the cellular proteasome is an important target of both gold(I) and gold(III)–dithiocarbamates, but distinct cellular mechanisms of action are responsible for their different overall effect. J. Cell. Biochem. 109: 162–172, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
The chemotactic character of the nonapeptide bradykinin (BK1-9) and its derivatives was studied in the eukaryotic ciliated model Tetrahymena pyriformis. The results demonstrate that BK1-9 has a direct and ligand-specific chemoattractant effect (maximal at 10(-11) m) without any intermediate substance as is essential in some mammalian test systems. Evaluation of the chemotactic effect elicited by derivatives showed that the presence of N- and C-terminal arginines can influence chemotactic potency of the molecule via expression of pyrrolidine and aromatic ring structures of terminal amino acid residues. Removal of the N-terminal Arg (expression of Pro) results in a significant decrease in chemotaxis (BK2-9), while further truncation of the C-terminal, causing expression of the aromatic ring of Phe (BK2-8), results in a highly chemoattractant variant. A single pyrrolidine ring on the C-terminus BK1-7 also has a positive effect on the chemotactic character, however further truncation (BK1-6, BK1-5) causes the chemoattractant character to become chemorepellent. Study of chemotactic selection with BK derivatives supports our previous findings that only phylogenetically selected ligands or their close derivatives are able to induce long-term selection with chemotaxis.  相似文献   

17.
Cell adhesion strength is important to cell survival, proliferation, migration, and mechanotransduction, yet changes in endothelial cell adhesion strength have not yet been examined in diseases such as diabetes with high rates of cardiovascular complications. We therefore investigated porcine aortic endothelial cell adhesion strength on native and glycated collagen‐coated substrates and in low, normal, and high glucose culture using a spinning disc apparatus. Adhesion strength increased by 30 dynes/cm2 in cells on glycated collagen as compared to native collagen. Attachment studies revealed that cells use higher adhesion strength αvβ3 integrins to bind to glycated collagen instead of the typical α2β1 integrins used to bind to native collagen. Similarly, endothelial cells cultured in low and high glucose had 15 dynes/cm2 higher adhesion strength than cells in normal glucose after 2 days. Increased adhesion strength was due to elevated VEGF release and intracellular PKC in low and high glucose cells, respectively. Thus glucose increased endothelial cell adhesion strength via different underlying mechanisms. These adhesion strength changes could contribute to diabetic vascular disease, including accelerated atherosclerosis and disordered angiogenesis. J. Cell. Physiol. 228: 1727–1736, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
19.
Ozone (O3) exposure of humans and animals induces an inflammatory response in the lung, which is associated with macrophage stimulation, release of chemotactic agents, and recruitment of polymorphonuclear leukocytes (PMNs). This study was designed to investigate the functional aspects of the macrophages that impact inflammatory processes in the lung. Macrophages recovered by bronchoalveolar lavage (BAL) from rats exposed to purified air or 0.8 ppm O3 were studied for their chemotactic activity, adhesive interactions with alveolar epithelial cells in culture, surface morphology, and surface expression of cell adhesion molecules. The macrophages isolated from O3-exposed rats exhibited a greater motility in response to a chemotactic stimulus than the macrophages isolated from rats exposed to purified air. The macrophages from O3-exposed animals also displayed greater adhesion when placed in culture with epithelial cells isolated from adult rat lung (ARL-14) than the macrophages from control rats. Both chemotactic motility and cell adhesion stimulated by O3 exposure were attenuated when the macrophages were incubated in the presence of monoclonal antibodies to leukocyte adhesion molecules, CD11b, or epithelial cell adhesion molecules, ICAM-1. Flow cytometry revealed a modest increase in the surface expression of CD11b but no change in ICAM-1 expression in macrophages from O3-exposed rats when compared to those from the air-exposed controls. The results demonstrate an alteration of macrophage functions following O3 exposure and suggest the dependence of these functions on the biologic characteristics, rather than the absolute expression, of the cell adhesion molecules. © 1996 Wiley-Liss, Inc.  相似文献   

20.
The leukocyte-type 12/15-lipoxygenase (12/15-LO) has been implicated in the pathogenesis of atherosclerosis, hypertension, and diabetes. 12/15-LO and its products are associated with LDL oxidation, cellular growth, migration, adhesion, and inflammatory gene expression in monocytes/macrophages, endothelial cells, and vascular smooth muscle cells (VSMCs). Our objective, therefore, was to develop novel expression vectors for short interfering RNAs (siRNAs) targeting 12/15-LO to evaluate its functional relevance in macrophages and VSMCs. We used a PCR-based approach to rapidly identify effective siRNA target sites on mouse 12/15-LO and initially tested their efficacy on a fusion construct of 12/15-LO cDNA and enhanced green fluorescent protein. We then cloned these U6 promoter+siRNA PCR products into plasmid vectors [short hairpin siRNAs (shRNAs)] to knockdown endogenous 12/15-LO expression in mouse macrophages and also rat and mouse VSMCs. Furthermore, the functional effects of shRNA-mediated 12/15-LO knockdown were noted by the reduced oxidant stress and chemokine [monocyte chemoattractant protein-1 (MCP-1)] expression in a differentiated mouse monocytic cell line as well as by the reduced cellular adhesion and fibronectin expression in VMSCs. Knocking down 12/15-LO expression also reduced the expression of inflammatory genes, MCP-1, vascular cell adhesion molecule-1, and interleukin-6 in VSMCs. Our results illustrate the functional relevance of 12/15-LO activation in macrophages and VSMCs and its relationship to oxidant stress and inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号