首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Andrographolide‐lipoic acid conjugate (AL‐1) is a new in‐house synthesized chemical entity, which was derived by covalently linking andrographolide with lipoic acid. However, its anti‐cancer effect and cytotoxic mechanism remains unknown. In this study, we found that AL‐1 could significantly inhibit cell viability of human leukemia K562 cells by inducing G2/M arrest and apoptosis in a dose‐dependent manner. Thirty‐one AL‐1‐regulated protein alterations were identified by proteomics analysis. Gene ontology and ingenuity pathway analysis revealed that a cluster of proteins of oxidative redox state and apoptotic cell death‐related proteins, such as PRDX2, PRDX3, PRDX6, TXNRD1, and GLRX3, were regulated by AL‐1. Functional studies confirmed that AL‐1 induced apoptosis of K562 cells through a ROS‐dependent mechanism, and anti‐oxidant, N‐acetyl‐l ‐cysteine, could completely block AL‐1‐induced cytotoxicity, implicating that ROS generation played a vital role in AL‐1 cytotoxicity. Accumulated ROS resulted in oxidative DNA damage and subsequent G2/M arrest and mitochondrial‐mediated apoptosis. The current work reveals that a novel andrographolide derivative AL‐1 exerts its anticancer cytotoxicity through a ROS‐dependent DNA damage and mitochondrial‐mediated apoptosis mechanism.  相似文献   

2.
Diallyl disulfide (DADS) is the most prevalent oil‐soluble sulfur compound in garlic and inhibits cell proliferation in many cancer cell lines. Here we examined DADS cytotoxicity in a redox‐mediated process, involving reactive oxygen species (ROS) production. In the present study, p53‐independent cell cycle arrest at G2/M phase was observed with DADS treatment, along with time‐dependent increase of cyclin B1. In addition, apoptosis was also observed upon 24‐h DADS treatment accompanied by activation of p53. In HCT‐116 cells, DADS application induced a dose‐dependent increase and time‐dependent changes in ROS production. Scavenging of DADS‐induced ROS by N‐acetyl cysteine or reduced glutathione inhibited cell cycle arrest, apoptosis and p53 activation by DADS. These results suggest that ROS trigger the DADS‐induced cell cycle arrest and apoptosis and that ROS are involved in stress‐induced signaling upstream of p53 activation. Transfection of p53 small interfering RNA prevents the accumulation of cleaved poly(ADP‐ribose) polymerase and sub‐G1 cell population by 65% and 35%, respectively. Moreover, DADS‐induced apoptosis was also prevented by treatment with oligomycin, which is known to prevent p53‐dependent apoptosis by reducing ROS levels in mitochondria. These results suggest that mitochondrial ROS may serve as second messengers in DADS‐induced apoptosis, which requires activation of p53. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:71–79, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20266  相似文献   

3.
Cardamonin (CD), a naturally occurring chalcone isolated from large black cardamom, was previously reported to suppress the proliferation of breast cancer cells. However, its precise molecular anti‐tumor mechanisms have not been well elucidated. In this study, we found that CD markedly inhibited the proliferation of MDA‐MB 231 and MCF‐7 breast cancer cells through the induction of G2/M arrest and apoptosis. Reactive oxygen species (ROS) plays a pivotal role in the inhibition of CD‐induced cell proliferation. Treatment with N‐acetyl‐cysteine (NAC), an ROS scavenger, blocked CD‐induced G2/M arrest and apoptosis in this study. Quenching of ROS by overexpression of catalase also blocked CD‐induced cell cycle arrest and apoptosis. We showed that CD enhanced the expression and nuclear translocation of Forkhead box O3 (FOXO3a) via upstream c‐Jun N‐terminal kinase, inducing the expression of FOXO3a and its target genes, including p21, p27, and Bim. This process led to the reduction of cyclin D1 and enhancement of activated caspase‐3 expression. The addition of NAC markedly reversed these effects, knockdown of FOXO3a using small interfering RNA also decreased CD‐induced G2/M arrest and apoptosis. In vivo, CD efficiently suppressed the growth of MDA‐MB 231 breast cancer xenograft tumors. Taken together, our data provide a molecular mechanistic rationale for CD‐induced cell cycle arrest and apoptosis in breast cancer cells.  相似文献   

4.
Here we report that three platinum(IV) prodrugs containing a tubulin inhibitor CA-4, as dual-targeting platinum(IV) prodrug, were synthesized and evaluated for antitumor activity using MTT assay. Among them, complex 9 exhibited the most potent antitumor activity against the tested cancer lines including cisplatin resistance cancer cells, and simultaneously displayed lower toxicity compared to cisplatin, respectively. Moreover, complex 9, in which was conjugated to an inhibitor of tubulin at one axial position of platinum(IV) complex, could effectively enter the cancer cells, and significantly induce cell apoptosis and arrest the cell cycle in A549 cells at G2/M stage, and dramatically disrupt the microtubule organization. In addition, mechanism studies suggested that complex 9 significantly induced reactive oxygen species (ROS) generation and decreased mitochondrial trans-membrane potential (MMP) in A549 cells, and effectively induced activation of caspases triggering apoptotic signaling through mitochondrial dependent apoptosis pathways.  相似文献   

5.
6.
Pyrrolizidine alkaloid (PA) clivorine, isolated from traditional Chinese medicinal plant Ligularia hodgsonii Hook, has been shown to induce apoptosis in hepatocytes via mitochondrial‐mediated apoptotic pathway in our previous research. The present study was designed to observe the protection of N‐acetyl‐cysteine (NAC) on clivorine‐induced hepatocytes apoptosis. Our results showed that 5 mM NAC significantly reversed clivorine‐induced cytotoxicity via MTT and Trypan Blue staining assay. DNA apoptotic fragmentation analysis and Western‐blot results showed that NAC decreased clivorine‐induced apoptotic DNA ladder and caspase‐3 activation. Further results showed that NAC inhibited clivorine‐induced Bcl‐xL decrease, mitochondrial cytochrome c release and caspase‐9 activation. Intracellular glutathione (GSH) is an important ubiquitous redox‐active reducing sulfhydryl (? SH) tripeptide, and our results showed that clivorine (50 µM) decreased cellular GSH amounts and the ratio of GSH/GSSG in the time‐dependent manner, while 5 mM NAC obviously reversed this depletion. Further results showed that GSH synthesis inhibitor BSO augmented clivorine‐induced cytotoxicity, while exogenous GSH reversed its cytotoxicity on hepatocytes. Clivorine (50 µM) significantly induced cellular reactive oxygen species (ROS) generation. Further results showed that 50 µM Clivorine decreased glutathione peroxidase (GPx) activity and increased glutathione S transferase (GST) activity, which are both GSH‐related antioxidant enzymes. Thioredoxin‐1 (Trx) is also a ubiquitous redox‐active reducing (? SH) protein, and clivorine (50 µM) decreased cellular expression of Trx in a time‐dependent manner, while 5 mM NAC reversed this decrease. Taken together, our results demonstrate that the protection of NAC is major via maintaining cellular reduced environment and thus prevents clivorine‐induced mitochondrial‐mediated hepatocytes apoptosis. J. Cell. Biochem. 108: 424–432, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Osteosarcoma is a highly invasive primary malignancy of bone. Magnolol is biologically active, which shows antitumor effects in a variety of cancer cell lines. However, it has not been elucidated magnolol's effects on human osteosarcoma cells (HOC). This study aimed to determine antitumor activity of magnolol and illustrate the molecular mechanism in HOC. Magnolol showed significant inhibition effect of growth on MG-63 and 143B cells and induced apoptosis and cell cycle arrest at G0/G1. In osteosarcoma cells, magnolol upregulated expressions of proapoptosis proteins and suppressed expressions of antiapoptosis proteins. Additionally, under the pretreatment of pifithrin-a (PFT-a, a p53 inhibitor), the magnolol-induced apoptosis was significantly reversed. The results above indicated that magnolol induces apoptosis in osteosarcoma cells may via G0/G1 phase arrest and p53-mediated mitochondrial pathway.  相似文献   

8.
WD‐repeat protein 79 (WDR79), a member of the WD‐repeat protein family, acts as a scaffold protein, participating in telomerase assembly, Cajal body formation and DNA double‐strand break repair. Here, we first report that WDR79 is frequently overexpressed in cell lines and tissues derived from non‐small cell lung cancer (NSCLC). Knockdown of WDR79 significantly inhibited the proliferation of NSCLC cells in vitro and in vivo by inducing cell cycle arrest and apoptosis. WD‐repeat protein 79 ‐induced cell cycle arrest at the G0/G1 phase was associated with the expression of G0/G1‐related cyclins and cyclin‐dependent kinase complexes. We also provide evidence that WDR79 knockdown induces apoptosis via a mitochondrial pathway. Collectively, these results suggest that WDR79 is involved in the tumorigenesis of NSCLC and is a potential novel diagnostic marker and therapeutic target for NSCLC.  相似文献   

9.
We have synthesized dibenzoxanthene derivatives 2a-2i via nucleophilic substitution of methoxyl group and evaluated underlying antitumor molecular mechanism of target compounds. Compounds showed high cytotoxic activities against BEL-7402, A549, HeLa and MG-63 cancer cells in the µM range. These compounds inhibited the cell growth of BEL-7402 cells at S or G2/M phase. The compounds 2a-2i also induced the apoptosis of BEL-7402 cells. In addition, compounds enhanced the level of intramolecular ROS and decreased the mitochondrial membrane potential. Western blot analysis showed caspase-3 were activated and the expression of Bcl-2 and Bcl-xl was down-regulated. According to given results, these dibenzoxanthenes exhibited a broad spectrum of antiproliferative effects on various tumors and therapeutic efficacy. Molecular mechanism indicated that induction of apoptosis was associated with DNA fragmentation, ROS generation, mitochondria dysfunction. Compounds induced apoptosis in BEL-7402 cells through the intrinsic ROS-mediated mitochondrial pathway.  相似文献   

10.
Abamectin (ABA) is one of the most widely used compounds in agriculture and veterinary medicine. However, the cytotoxicity of ABA in human gastric cells is utterly unknown. In this study, ABA suppressed the proliferation of MGC803 cells by arresting the cell cycle at the G0/G1‐phase. Moreover, ABA induced mitochondrial‐mediated apoptosis by inducing the loss of mitochondrial membrane potential, upregulation of Bax/Bcl‐2, and activation of caspase‐3. ABA significantly improved the LC3‐II/LC3‐I ratio and reduced P62 protein expression in a dose‐dependent manner. Through detection of the reactive oxygen species (ROS) levels, we found ABA induced the accumulation of intracellular ROS and then reduced PI3K/AKT signaling activation related to MGC803 cell apoptosis and autophagy. Our results indicate that ABA exerts cytotoxic effects on human MGC803 cells through apoptosis and autophagy by inhibiting ROS‐mediated PI3K/AKT signaling. Furthermore, ABA may be a potential risk to human gastric health.  相似文献   

11.
The E2F1 gene well known is its pivotal role in regulating the entry from G1 to S phase, while the salvage antitumoral pathway which implicates it, especially in the absence of p53, is not fully characterized. We therefore attempted to identify the up‐ and down‐stream events involved in the activation of the E2F1‐dependent pro‐apoptotic pathway. For this purpose, a amonafide analogue, 7‐d (2‐(3‐(2‐(Dimethylamino)ethylamino)propyl)‐6‐(dodecylamino)‐1H‐benzo[de]isoquinoline‐1,3(2H)‐dione) was screened, which exhibited high antitumor activity against p53‐deficient human Chronic Myelogenous Leukemia (CML) K562 cells. Analysis of flow cytometry and western blots of K562 cells treated with 7‐d revealed an appreciable G2/M cycle arrest and apoptosis in a dose and time‐dependent manner via p53‐independent pathway. A striking increase in “Comet tail” formation and γ‐H2AX expression showed that DNA double strand breaks (DSB) were caused by 7‐d treatment. ATM/ATR signaling was reported to connect E2F1 induction with apoptosis in response to DNA damage. Indeed, 7‐d‐induced G2/M arrest and apoptosis were antagonized by ATM/ATR signaling inhibitor, Caffeine, which suggested that ATM/ATR signaling was activated by 7‐d treatment. Furthermore, the increased expression of E2F1, p73, and Apaf‐1 and p73 dissociation from HDM2 was induced by 7‐d treatment, however, knockout of E2F1 expression reversed p73, Apaf‐1, and p21Cip1/WAF1 expression, reactivated cell cycle progression, and inhibited 7‐d‐induced apoptosis. Altogether our results for the first time indicate that 7‐d mediates its growth inhibitory effects on CML p53‐deficient cells via the activation of an E2F1‐dependent mitochondrial and cell cycle checkpoint signaling pathway which subsequently targets p73, Apaf‐1, and p21Cip1/WAF1. J. Cell. Biochem. 113: 3165–3177, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Magnolol (Mag), an effective natural compound isolated from the stem bark of Magnolia officinalis, was found to have the potential for antitumor activity by inducing apoptosis in tumor cells. However, the effect of Mag on renal carcinoma cells and its molecular mechanism are unexplored. Our study provided evidence that Mag induced apoptosis in 786-O and OS-RC-2?cell lines via the mitochondrial pathway and cell cycle arrest. In this work, we found that Mag induced morphological changes and inhibited the proliferation of 786-O and OS-RC-2?cells in a dose- and time-dependent manner but exerted no notable inhibitory effects on normal human renal proximal tubular (HK-2) cells. Treatment with Mag suppressed the migration and invasion ability of renal carcinoma cells. Moreover, Mag caused the openness of mPTP, the accumulation of intracellular ROS and decreased △Ψm, leading to mitochondrial dysfunction. However, pretreatment with the antioxidant N-acetyl cysteine (NAC) reversed the apoptosis induced by Mag and decreased the generation of ROS. In addition, the increased proportion of the G1/G0 phase indicated that Mag caused cell cycle arrest. Further analyses suggested that magnolol-induced apoptosis was related to the abnormal expression of p53, Bax, Bcl-2, cytochrome c and caspase activation. Together, the results above revealed that Mag had antitumor effects in renal carcinoma cells via ROS production as well as cell cycle arrest and the apoptotic mitochondrial pathway was suppressed in part by NAC.  相似文献   

13.
BackgroundBladder cancer (BC) is a very common type of malignant cancer in men and new therapeutic strategies are urgently needed to reduce mortality. Several studies have demonstrated that Rhopaloic acid A (RA), a compound isolated from marine sponges, fights cancer but its potential anti-tumor effect on BC is still unknown.PurposeThe present study was aimed to explore the potential anti-tumor effects of RA against human BC cells and the underlying molecular mechanism.MethodsCell cytotoxicity was determined using the MTT and colony formation assays. Cell cycle distribution, apoptosis induction and generation of mitochondrial reactive oxygen species (ROS) were analyzed by flow cytometry. Mitochondrial membrane potential, acridine orange staining and intracellular ROS levels were observed using fluorescence microscopy. Levels of various signaling proteins were assessed using Western blotting. Furthermore, a zebrafish BC xenotransplantation model was used to confirm the anti-tumor effect of RA in vivo.ResultsTreatment with RA significantly suppressed the proliferation of BC cells that resulted from G2/M cycle arrest. Additionally, RA induced mitochondrial-mediated apoptosis and autophagy in BC cells. The death of BC cells induced by RA was rescued by treatment with inhibitors of apoptosis (Z-VAD-FMA) or autophagy (3-MA). RA activated the MAPK pathway and increased the production of cellular and mitochondrial ROS. Treatment with the ROS scavenger N-acetyl cysteine, effectively reversed the induction of apoptosis, autophagy, JNK activation and DNA damage elicited by RA. Finally, RA significantly inhibited tumor growth in a zebrafish BC xenotransplantation model.ConclusionTaken together, our findings indicate that RA induces apoptosis and autophagy and activates the MAPK pathway through ROS-mediated signaling in human BC cells. This RA-induced pathway offers insights into the molecular mechanism of its antitumor effect and shows that RA is a promising candidate for the treatment of BC.  相似文献   

14.
Dioscin shows various pharmacological effects. However, its activity on colorectal cancer is still unknown. The present work showed that dioscin significantly inhibited cell proliferation on human HCT‐116 colon cancer cells, and affected Ca2+ release and ROS generation. The content of nitric oxide (NO) and its producer inducible NO synthase (iNOS) associated with DNA damage and aberrant cell signaling were assayed using the kits. DNA damage and cell apoptosis caused by dioscin were also analyzed through single‐cell gel electrophoresis and in situ terminal deoxynucleotidyl transferase dUTP nick‐end labeling assays. The results showed that dioscin increased the levels of NO and inducible NO synthase. The comet length in dioscin‐treated groups was much longer than that of the control group, and the number of terminal deoxynucleotidyl transferase dUTP nick‐end labeling positive cells (apoptotic cells) was significantly increased by the compound (p < 0.01). Furthermore, dioscin caused mitochondrial damage and G2/M cell cycle arrest through transmission electron microscopy and flow cytometry analysis, respectively. To study the cytotoxic mechanism of dioscin, an iTRAQ‐based proteomics approach was used. There were 288 significantly different proteins expressed in response to dioscin, which were connected with each other and were involved in different Kyoto Encyclopedia of Genes and Genomes pathways. Then, some differentially expressed proteins involved in oxidative phosphorylation, Wnt, p53, and calcium signaling pathways were validated by Western blotting and quantitative real‐time PCR assays. Our work elucidates the molecular mechanism of dioscin‐induced cytotoxicity in colon cancer cells, and the identified targets may be useful for treatment of colorectal cancer in future.  相似文献   

15.
Costunolide is a sesquiterpene lactone, which possesses potent anti‐cancer properties. However, there is little report about its effects on esophageal cancer. In our study, we investigated the effects of costunolide on the cell viability, cell cycle, and apoptosis in human esophageal cancer Eca‐109 cells. It was found that costunolide inhibited the growth of Eca‐109 cells in a dose‐dependent manner, which was associated with the loss of mitochondrial membrane potential (Δψm) and the production of ROS. Costunolide induced apoptosis of Eca‐109 cells as well as cell cycle arrest in G1/S phase by upregulation of P53 and P21. Costunolide triggered apoptosis in esophageal cancer cells via the upregulation of Bax, downregulation of Bcl‐2, and significant activation of caspase‐3 and poly ADP‐ribose polymerase. These effects were markedly abrogated when cells were pretreated with N‐acetylcysteine, a specific reactive oxygen specie inhibitor. These results suggest that costunolide is a potential candidate for the treatment of esophageal cancer.  相似文献   

16.
Tannic acid (TA), a naturally occurring polyphenol, is a potent anti‐oxidant with anti‐proliferative effects on multiple cancers. However, its ability to modulate gene‐specific expression of tumour suppressor genes and oncogenes has not been assessed. This work investigates the mechanism of TA to regulate canonical and non‐canonical STAT pathways to impose the gene‐specific induction of G1‐arrest and apoptosis. Regardless of the p53 status and membrane receptors, TA induced G1‐arrest and apoptosis in breast cancer cells. Tannic acid distinctly modulated both canonical and non‐canonical STAT pathways, each with a specific role in TA‐induced anti‐cancer effects. Tannic acid enhanced STAT1 ser727 phosphorylation via upstream serine kinase p38. This STAT1 ser727 phosphorylation enhanced the DNA‐binding activity of STAT1 and in turn enhanced expression of p21Waf1/Cip1. However, TA binds to EGF‐R and inhibits the tyrosine phosphorylation of both STAT1 and STAT3. This inhibition leads to the inhibition of STAT3/BCL‐2 DNA‐binding activity. As a result, the expression and mitochondrial localization of BCl‐2 are declined. This altered expression and localization of mitochondrial anti‐pore factors resulted in the release of cytochrome c and the activation of intrinsic apoptosis cascade involving caspases. Taken together, our results suggest that TA modulates EGF‐R/Jak2/STAT1/3 and P38/STAT1/p21Waf1/Cip1 pathways and induce G1‐arrest and intrinsic apoptosis in breast carcinomas.  相似文献   

17.
Renal cell carcinoma (RCC) is a heterogeneous histological disease and it is one of the most common kidney cancer. The treatment of RCC has been improved for the past few years, but its mortality still remains high. Chelerythrine (CHE) is a natural benzo[c]phenanthridine alkaloid and a widely used broad‐range protein kinase C inhibitor which has anti‐cancer effect on various types of human cancer cells. However, its effect on RCC has not been fully elucidated. In this study, we evaluated the effect and mechanism of CHE on RCC cells. Our study showed that CHE induced colony formation inhibition and G2/M cell cycle arrest in a dose‐dependent manner in RCC cells. In addition, CHE increased cellular ROS level, leading to endoplasmic reticulum (ER) stress, inactivating STAT3 activities and inducing apoptosis in RCC cells which were suppressed by NAC, a special ROS inhibitor. We further found that both knockdown of ATF4 protein and overexpression of STAT3 protein could reduce CHE‐induced apoptosis in Caki cells. These results demonstrated that the apoptosis induced by CHE was mediated by ROS‐caused ER stress and STAT3 inactivation. Collectively, our studies provided support for CHE as a potential new therapeutic agent for the management of RCC.  相似文献   

18.
Curcumin exhibits anticancer activity in vivo and triggers tumor cell apoptosis in vivo and in vitro. Several in vitro studies suggest that curcumin-induced apoptosis is associated with reactive oxygen species (ROS) production and/or oxidative stress in transformed cells. This study compared and contrasted the effects of curcumin on human skin cancer cells and their respiration-deficient (rho0) clones to characterize the prospective oxidative stress signaling responsible for initiating apoptosis. Curcumin promoted a dose-and time-dependent G2/M cell cycle arrest and/or apoptosis in COLO 16 cells. Apoptosis induction in COLO 16 cells was associated with DNA fragmentation, cell shrinkage, the externalization of cell membrane phosphatidylserine, and mitochondrial disruption, which were preceded by an increase in intracellular ROS production. Pharmacologically lowering the mitochondrial bioenergetic capacity, as well as the constitutive ROS levels, in COLO 16 cells suppressed the cytotoxic effects of curcumin. Correspondingly, the rho0 counterparts of COLO 16 cells were markedly resistant to ROS production, mitochondrial disruption, and DNA fragmentation following curcumin exposure. These observations implied that the diminution of mitochondrial ROS production protected cells against the cytotoxic effects of curcumin, and support the notion that mitochondrial respiration and redox tone are pivotal determinants in apoptosis signaling by curcumin in human skin cancer cells.  相似文献   

19.
Oxidative stress is an important molecular mechanism underlying lung fibrosis. The mitochondrion is a major organelle for oxidative stress in cells. Therefore, blocking the mitochondrial signalling pathway may be the best therapeutic manoeuver to ameliorate lung fibrosis. Astaxanthin (AST) is an excellent antioxidant, but no study has addressed the pathway of AST against pulmonary oxidative stress and free radicals by the mitochondrion‐mediated signalling pathway. In this study, we investigated the antioxidative effects of AST against H2O2‐ or bleomycin (BLM)‐induced mitochondrial dysfunction and reactive oxygen species (ROS) production in alveolar epithelial cells type II (AECs‐II) in vivo and in vitro. Our data show that AST blocks H2O2‐ or BLM‐induced ROS generation and dose‐dependent apoptosis in AECs‐II, as characterized by changes in cell and mitochondria morphology, translocation of apoptotic proteins, inhibition of cytochrome c (Cyt c) release, and the activation of caspase‐9, caspase‐3, Nrf‐2 and other cytoprotective genes. These data suggest that AST inhibits apoptosis in AECs‐II cells through the ROS‐dependent mitochondrial signalling pathway and may be of potential therapeutic value in lung fibrosis treatment.  相似文献   

20.
BackgroundThe 3-deoxysappanchalcone (3-DSC), a chemical separated from Caesalpinia sappan L, has been substantiated to display anti-inflammatory, anti-influenza, and anti-allergy activities according to previous studies. However, the underlying mechanisms of action on esophageal cancer remain unknown.PurposeThe present research aims to survey the action mechanisms of 3-DSC in esophageal squamous cell carcinoma (ESCC) cells in vitro.MethodsEvaluation of cytotoxicity was determined by MTT tetrazolium salt assay and soft agar assay. Cell cycle distribution, apoptosis induction, reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), and multi-caspases activity were appreciated by Muse™ Cell Analyzer. The expressions of cell cycle- and apoptosis-related proteins were presented using Western blotting.Results3-DSC blocked cell growth and colony formation ability in a concentration-dependent manner and invoked apoptosis, G2/M cell cycle arrest, ROS production, MMP depolarization, and multi-caspase activity. Furthermore, Western blotting results demonstrated that 3-DSC upregulated the expression of phospho (p)-c-jun NH2-terminal kinases (JNK), p-p38, cell cycle regulators, pro-apoptotic proteins, and endoplasmic reticulum (ER) stress-related proteins whereas downregulated the levels of anti-apoptotic proteins and cell cycle promoters. The effects of 3-DSC on ROS induction were counteracted by pretreatment with N-acetyl-L-cysteine (NAC). Also, our results indicated that p38 (SB203580) and JNK (SP600125) inhibitor slightly inhibited 3-DSC-induced apoptosis. These results showed that 3-DSC-related G2/M phase cell cycle arrest and apoptosis by JNK/p38 MAPK signaling pathway in ESCC cells were mediated by ROS.ConclusionROS generation by 3-DSC in cancer cells could be an attractive strategy for apoptosis of cancer cells by inducing cell cycle arrest, ER stress, MMP loss, multi-caspase activity, and JNK/p38 MAPK pathway. Our findings suggest that 3-DSC is a promising novel therapeutic candidate for both prevention and treatment of esophageal cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号