首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study is aimed at showing that considering only nonlocal interactions (interactions of two atoms with a sequence separation larger than five amino acids) extracted using Delaunay tessellation is sufficient and accurate for protein fold recognition. An atomic knowledge‐based potential was extracted based on a Delaunay tessellation with 167 atom types from a sample of the native structures and the normalized energy was calculated for only nonlocal interactions in each structure. The performance of this method was tested on several decoy sets and compared to a method considering all interactions extracted by Delaunay tessellation and three other popular scoring functions. Features such as the contents of different types of interactions and atoms with the highest number of interactions were also studied. The results suggest that considering only nonlocal interactions in a Delaunay tessellation of protein structure is a discrete structure catching deep properties of the three‐dimensional protein data. Proteins 2014; 82:415–423. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Statistical potentials are frequently engaged in the protein structural prediction and protein folding for conformational evaluation. Theoretically, to describe the many‐body effect, pairwise interaction between two atom groups should be corrected by their relative geometric orientation. The potential functions developed by this means are called orientation‐dependent statistical potentials and have exhibited substantially improved performance. However, none of the currently available orientation‐dependent statistical potentials use any reference state, which has been proven to greatly enhance the power of distance‐dependent statistical potentials in numerous previous studies. In this work, we designed a reasonable reference state for the orientation‐dependent statistical potentials: using the average geometric relationship between atom pairs in known structures by neglecting their residue identities. The statistical potential developed using this reference state (called ORDER_AVE) prevails most available rival potentials in a series of tests on the decoy sets, although the information of side chain atoms (except the β‐carbon) is absent in its construction. Proteins 2014; 82:2383–2393. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
Mehdi Mirzaie 《Proteins》2018,86(4):467-474
Evaluation of protein structures needs a trustworthy potential function. Although several knowledge‐based potential functions exist, the impact of different types of amino acids in the scoring functions has not been studied yet. Previously, we have reported the importance of nonlocal interactions in scoring function (based on Delaunay tessellation) in discrimination of native structures. Then, we have questioned the structural impact of hydrophobic amino acids in protein fold recognition. Therefore, a Hydrophobic Reduced Model (HRM) was designed to reduce protein structure of FS (Full Structure) into RS (Reduced Structure). RS is considered as a reduced structure of only seven hydrophobic amino acids (L, V, F, I, A, W, Y) and all their interactions. The presented model was evaluated via four different performance metrics including the number of correctly identified natives, the Z‐score of the native energy, the RMSD of the minimum score, and the Pearson correlation coefficient between the energy and the model quality. Results indicated that only nonlocal interactions between hydrophobic amino acids could be sufficient and accurate enough for protein fold recognition. Interestingly, the results of HRM is significantly close to the model that considers all amino acids (20‐amino acid model) to discriminate the native structure of the proteins on eleven decoy sets. This indicates that the power of knowledge‐based potential functions in protein fold recognition is mostly due to hydrophobic interactions. Hence, we suggest combining a different well‐designed scoring function for non‐hydrophobic interactions with HRM to achieve better performance in fold recognition.  相似文献   

4.
Peter Májek  Ron Elber 《Proteins》2009,76(4):822-836
A coarse‐grained potential for protein simulations and fold ranking is presented. The potential is based on a two‐point model of individual amino acids and a specific implementation of hydrogen bonding. Parameters are determined for distance dependent pair interactions, pseudo bonds, angles, and torsions. A scaling factor for a hydrogen bonding term is also determined. Iterative sampling for 4867 proteins reproduces distributions of internal coordinates and distances observed in the Protein Data Bank. The adjustment of the potential and resampling are in the spirit of the generalized ensemble approach. No native structure information (e.g., secondary structure) is used in the calculation of the potential or in the simulation of a particular protein. The potential is subject to two tests as follows: (i) simulations of 956 globular proteins in the neighborhood of their native folds (these proteins were not used in the training set) and (ii) discrimination between native and decoy structures for 2470 proteins with 305,000 decoys and the “Decoys ‘R’ Us” dataset. In the first test, 58% of tested proteins stay within 5 Å from the native fold in Molecular Dynamics simulations of more than 20 nanoseconds using the new potential. The potential is also useful in differentiating between correct and approximate folds providing significant signal for structure prediction algorithms. Sampling with the potential consistently regenerates the distribution of distances and internal coordinates it learned. Nevertheless, during Molecular Dynamics simulations structures are found that reproduce the learned distributions but are far from the native fold. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
We present a knowledge‐based function to score protein decoys based on their similarity to native structure. A set of features is constructed to describe the structure and sequence of the entire protein chain. Furthermore, a qualitative relationship is established between the calculated features and the underlying electromagnetic interaction that dominates this scale. The features we use are associated with residue–residue distances, residue–solvent distances, pairwise knowledge‐based potentials and a four‐body potential. In addition, we introduce a new target to be predicted, the fitness score, which measures the similarity of a model to the native structure. This new approach enables us to obtain information both from decoys and from native structures. It is also devoid of previous problems associated with knowledge‐based potentials. These features were obtained for a large set of native and decoy structures and a back‐propagating neural network was trained to predict the fitness score. Overall this new scoring potential proved to be superior to the knowledge‐based scoring functions used as its inputs. In particular, in the latest CASP (CASP10) experiment our method was ranked third for all targets, and second for freely modeled hard targets among about 200 groups for top model prediction. Ours was the only method ranked in the top three for all targets and for hard targets. This shows that initial results from the novel approach are able to capture details that were missed by a broad spectrum of protein structure prediction approaches. Source codes and executable from this work are freely available at http://mathmed.org /#Software and http://mamiris.com/ . Proteins 2014; 82:752–759. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Statistical potential for assessment and prediction of protein structures   总被引:2,自引:0,他引:2  
Protein structures in the Protein Data Bank provide a wealth of data about the interactions that determine the native states of proteins. Using the probability theory, we derive an atomic distance-dependent statistical potential from a sample of native structures that does not depend on any adjustable parameters (Discrete Optimized Protein Energy, or DOPE). DOPE is based on an improved reference state that corresponds to noninteracting atoms in a homogeneous sphere with the radius dependent on a sample native structure; it thus accounts for the finite and spherical shape of the native structures. The DOPE potential was extracted from a nonredundant set of 1472 crystallographic structures. We tested DOPE and five other scoring functions by the detection of the native state among six multiple target decoy sets, the correlation between the score and model error, and the identification of the most accurate non-native structure in the decoy set. For all decoy sets, DOPE is the best performing function in terms of all criteria, except for a tie in one criterion for one decoy set. To facilitate its use in various applications, such as model assessment, loop modeling, and fitting into cryo-electron microscopy mass density maps combined with comparative protein structure modeling, DOPE was incorporated into the modeling package MODELLER-8.  相似文献   

7.
The DOcking decoy‐based Optimized Potential (DOOP) energy function for protein structure prediction is based on empirical distance‐dependent atom‐pair interactions. To optimize the atom‐pair interactions, native protein structures are decomposed into polypeptide chain segments that correspond to structural motives involving complete secondary structure elements. They constitute near native ligand–receptor systems (or just pairs). Thus, a total of 8609 ligand–receptor systems were prepared from 954 selected proteins. For each of these hypothetical ligand–receptor systems, 1000 evenly sampled docking decoys with 0–10 Å interface root‐mean‐square‐deviation (iRMSD) were generated with a method used before for protein–protein docking. A neural network‐based optimization method was applied to derive the optimized energy parameters using these decoys so that the energy function mimics the funnel‐like energy landscape for the interaction between these hypothetical ligand–receptor systems. Thus, our method hierarchically models the overall funnel‐like energy landscape of native protein structures. The resulting energy function was tested on several commonly used decoy sets for native protein structure recognition and compared with other statistical potentials. In combination with a torsion potential term which describes the local conformational preference, the atom‐pair‐based potential outperforms other reported statistical energy functions in correct ranking of native protein structures for a variety of decoy sets. This is especially the case for the most challenging ROSETTA decoy set, although it does not take into account side chain orientation‐dependence explicitly. The DOOP energy function for protein structure prediction, the underlying database of protein structures with hypothetical ligand–receptor systems and their decoys are freely available at http://agknapp.chemie.fu‐berlin.de/doop/ . Proteins 2015; 83:881–890. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
9.
In this study, the application of temperature‐based replica‐exchange (T‐ReX) simulations for structure refinement of decoys taken from the I‐TASSER dataset was examined. A set of eight nonredundant proteins was investigated using self‐guided Langevin dynamics (SGLD) with a generalized Born implicit solvent model to sample conformational space. For two of the protein test cases, a comparison of the SGLD/T‐ReX method with that of a hybrid explicit/implicit solvent molecular dynamics T‐ReX simulation model is provided. Additionally, the effect of side‐chain placement among the starting decoy structures, using alternative rotamer conformations taken from the SCWRL4 modeling program, was investigated. The simulation results showed that, despite having near‐native backbone conformations among the starting decoys, the determinant of their refinement is side‐chain packing to a level that satisfies a minimum threshold of native contacts to allow efficient excursions toward the downhill refinement regime on the energy landscape. By repacking using SCWRL4 and by applying the RWplus statistical potential for structure identification, the SGLD/T‐ReX simulations achieved refinement to an average of 38% increase in the number of native contacts relative to the original I‐TASSER decoy sets and a 25% reduction in values of Cα root‐mean‐square deviation. The hybrid model succeeded in obtaining a sharper funnel to low‐energy states for a modeled target than the implicit solvent SGLD model; yet, structure identification remained roughly the same. Without meeting a threshold of near‐native packing of side chains, the T‐ReX simulations degrade the accuracy of the decoys, and subsequently, refinement becomes tantamount to the protein folding problem. Proteins 2013. 2012 Published by Wiley Periodicals, Inc.  相似文献   

10.
Structure prediction on a genomic scale requires a simplified energy function that can efficiently sample the conformational space of polypeptide chains. A good energy function at minimum should discriminate native structures against decoys. Here, we show that a recently developed, residue-specific, all-atom knowledge-based potential (167 atomic types) based on distance-scaled, finite ideal-gas reference state (DFIRE-all-atom) can be substantially simplified to 20 residue types located at side-chain center of mass (DFIRE-SCM) without a significant change in its capability of structure discrimination. Using 96 standard multiple decoy sets, we show that there is only a small reduction (from 80% to 78%) in success rate of ranking native structures as the top 1. The success rate is higher than two previously developed, all-atom distance-dependent statistical pair potentials. Applied to structure selections of 21 docking decoys without modification, the DFIRE-SCM potential is 29% more successful in recognizing native complex structures than an all-atom statistical potential trained by a database of dimeric interfaces. The potential also achieves 92% accuracy in distinguishing true dimeric interfaces from artificial crystal interfaces. In addition, the DFIRE potential with the C(alpha) positions as the interaction centers recognizes 123 native structures out of a comprehensive 125-protein TOUCHSTONE decoy set in which each protein has 24,000 decoys with only C(alpha) positions. Furthermore, the performance by DFIRE-SCM on newly established 25 monomeric and 31 docking Rosetta-decoy sets is comparable to (or better than in the case of monomeric decoy sets) that of a recently developed, all-atom Rosetta energy function enhanced with an orientation-dependent hydrogen bonding potential.  相似文献   

11.
Here we report an orientation-dependent statistical all-atom potential derived from side-chain packing, named OPUS-PSP. It features a basis set of 19 rigid-body blocks extracted from the chemical structures of all 20 amino acid residues. The potential is generated from the orientation-specific packing statistics of pairs of those blocks in a non-redundant structural database. The purpose of such an approach is to capture the essential elements of orientation dependence in molecular packing interactions. Tests of OPUS-PSP on commonly used decoy sets demonstrate that it significantly outperforms most of the existing knowledge-based potentials in terms of both its ability to recognize native structures and consistency in achieving high Z-scores across decoy sets. As OPUS-PSP excludes interactions among main-chain atoms, its success highlights the crucial importance of side-chain packing in forming native protein structures. Moreover, OPUS-PSP does not explicitly include solvation terms, and thus the potential should perform well when the solvation effect is difficult to determine, such as in membrane proteins. Overall, OPUS-PSP is a generally applicable potential for protein structure modeling, especially for handling side-chain conformations, one of the most difficult steps in high-accuracy protein structure prediction and refinement.  相似文献   

12.
Liang S  Zhang C  Standley DM 《Proteins》2011,79(7):2260-2267
We used the orientation‐dependent Optimized Side Chain Atomic eneRgy (OSCAR‐o), derived in an early study, for protein loop selection. The prediction accuracy of OSCAR‐o was better than that of physics‐based force fields or statistical potential energy functions for both the RAPPER decoy set and the Jacobson decoy set. The native conformer was frequently ranked as lowest energy among the decoys. Furthermore, strong correlation was observed between the OSCAR‐o score and the root mean square deviation (RMSD) from the native structure for energy‐minimized decoys. In practical use, we applied OSCAR‐o to rescore decoys generated by a widely used loop‐modeling program, LOOPY. As a result, the mean RMSD values of top‐ranked decoys were reduced by 0.3 Å for loop targets of seven to nine residues. We expect similar performance for OSCAR‐o with other loop‐modeling algorithms in the context of decoy rescoring. A loop selection program (OSCAR‐ls) based on OSCAR‐o is available at http://sysimm.ifrec.osaka‐u.ac.jp/OSCAR/ . Proteins 2011; © 2011 Wiley‐Liss, Inc.  相似文献   

13.
Coarse‐grained models for protein structure are increasingly used in simulations and structural bioinformatics. In this study, we evaluated the effectiveness of three granularities of protein representation based on their ability to discriminate between correctly folded native structures and incorrectly folded decoy structures. The three levels of representation used one bead per amino acid (coarse), two beads per amino acid (medium), and all atoms (fine). Multiple structure features were compared at each representation level including two‐body interactions, three‐body interactions, solvent exposure, contact numbers, and angle bending. In most cases, the all‐atom level was most successful at discriminating decoys, but the two‐bead level provided a good compromise between the number of model parameters which must be estimated and the accuracy achieved. The most effective feature type appeared to be two‐body interactions. Considering three‐body interactions increased accuracy only marginally when all atoms were used and not at all in medium and coarse representations. Though two‐body interactions were most effective for the coarse representations, the accuracy loss for using only solvent exposure or contact number was proportionally less at these levels than in the all‐atom representation. We propose an optimization method capable of selecting bead types of different granularities to create a mixed representation of the protein. We illustrate its behavior on decoy discrimination and discuss implications for data‐driven protein model selection. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
The conformations of loops are determined by the water-mediated interactions between amino acid residues. Energy functions that describe the interactions can be derived either from physical principles (physical-based energy function) or statistical analysis of known protein structures (knowledge-based statistical potentials). It is commonly believed that statistical potentials are appropriate for coarse-grained representation of proteins but are not as accurate as physical-based potentials when atomic resolution is required. Several recent applications of physical-based energy functions to loop selections appear to support this view. In this article, we apply a recently developed DFIRE-based statistical potential to three different loop decoy sets (RAPPER, Jacobson, and Forrest-Woolf sets). Together with a rotamer library for side-chain optimization, the performance of DFIRE-based potential in the RAPPER decoy set (385 loop targets) is comparable to that of AMBER/GBSA for short loops (two to eight residues). The DFIRE is more accurate for longer loops (9 to 12 residues). Similar trend is observed when comparing DFIRE with another physical-based OPLS/SGB-NP energy function in the large Jacobson decoy set (788 loop targets). In the Forrest-Woolf decoy set for the loops of membrane proteins, the DFIRE potential performs substantially better than the combination of the CHARMM force field with several solvation models. The results suggest that a single-term DFIRE-statistical energy function can provide an accurate loop prediction at a fraction of computing cost required for more complicate physical-based energy functions. A Web server for academic users is established for loop selection at the softwares/services section of the Web site http://theory.med.buffalo.edu/.  相似文献   

15.
Protein‐protein interactions are abundant in the cell but to date structural data for a large number of complexes is lacking. Computational docking methods can complement experiments by providing structural models of complexes based on structures of the individual partners. A major caveat for docking success is accounting for protein flexibility. Especially, interface residues undergo significant conformational changes upon binding. This limits the performance of docking methods that keep partner structures rigid or allow limited flexibility. A new docking refinement approach, iATTRACT, has been developed which combines simultaneous full interface flexibility and rigid body optimizations during docking energy minimization. It employs an atomistic molecular mechanics force field for intermolecular interface interactions and a structure‐based force field for intramolecular contributions. The approach was systematically evaluated on a large protein‐protein docking benchmark, starting from an enriched decoy set of rigidly docked protein–protein complexes deviating by up to 15 Å from the native structure at the interface. Large improvements in sampling and slight but significant improvements in scoring/discrimination of near native docking solutions were observed. Complexes with initial deviations at the interface of up to 5.5 Å were refined to significantly better agreement with the native structure. Improvements in the fraction of native contacts were especially favorable, yielding increases of up to 70%. Proteins 2015; 83:248–258. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
Loose C  Klepeis JL  Floudas CA 《Proteins》2004,54(2):303-314
A new force field for pairwise residue interactions as a function of C(alpha) to C(alpha) distances is presented. The force field was developed through the solution of a linear programming formulation with large sets of constraints. The constraints are based on the construction of >80,000 low-energy decoys for a set of proteins and requiring the decoy energies for each protein system to be higher than the native conformation of that particular protein. The generation of a robust force field was facilitated by the use of a novel decoy generation process, which involved the rational selection of proteins to add to the training set and included a significant energy minimization of the decoys. The force field was tested on a large set of decoys for various proteins not included in the training set and shown to perform well compared with a leading force field in identifying the native conformation for these proteins.  相似文献   

17.
Statistical potentials based on pairwise interactions between C alpha atoms are commonly used in protein threading/fold-recognition attempts. Inclusion of higher order interaction is a possible means of improving the specificity of these potentials. Delaunay tessellation of the C alpha-atom representation of protein structure has been suggested as a means of defining multi-body interactions. A large number of parameters are required to define all four-body interactions of 20 amino acid types (20(4) = 160,000). Assuming that residue order within a four-body contact is irrelevant reduces this to a manageable 8,855 parameters, using a nonredundant dataset of 608 protein structures. Three lines of evidence support the significance and utility of the four-body potential for sequence-structure matching. First, compared to the four-body model, all lower-order interaction models (three-body, two-body, one-body) are found statistically inadequate to explain the frequency distribution of residue contacts. Second, coherent patterns of interaction are seen in a graphic presentation of the four-body potential. Many patterns have plausible biophysical explanations and are consistent across sets of residues sharing certain properties (e.g., size, hydrophobicity, or charge). Third, the utility of the multi-body potential is tested on a test set of 12 same-length pairs of proteins of known structure for two protocols: Sequence-recognizes-structure, where a query sequence is threaded (without gap) through the native and a non-native structure; and structure-recognizes-sequence, where a query structure is threaded by its native and another non-native sequence. Using cross-validated training, protein sequences correctly recognized their native structure in all 24 cases. Conversely, structures recognized the native sequence in 23 of 24 cases. Further, the score differences between correct and decoy structures increased significantly using the three- or four-body potential compared to potentials of lower order.  相似文献   

18.
A major challenge of the protein docking problem is to define scoring functions that can distinguish near‐native protein complex geometries from a large number of non‐native geometries (decoys) generated with noncomplexed protein structures (unbound docking). In this study, we have constructed a neural network that employs the information from atom‐pair distance distributions of a large number of decoys to predict protein complex geometries. We found that docking prediction can be significantly improved using two different types of polar hydrogen atoms. To train the neural network, 2000 near‐native decoys of even distance distribution were used for each of the 185 considered protein complexes. The neural network normalizes the information from different protein complexes using an additional protein complex identity input neuron for each complex. The parameters of the neural network were determined such that they mimic a scoring funnel in the neighborhood of the native complex structure. The neural network approach avoids the reference state problem, which occurs in deriving knowledge‐based energy functions for scoring. We show that a distance‐dependent atom pair potential performs much better than a simple atom‐pair contact potential. We have compared the performance of our scoring function with other empirical and knowledge‐based scoring functions such as ZDOCK 3.0, ZRANK, ITScore‐PP, EMPIRE, and RosettaDock. In spite of the simplicity of the method and its functional form, our neural network‐based scoring function achieves a reasonable performance in rigid‐body unbound docking of proteins. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Protein structure refinement by optimization   总被引:1,自引:0,他引:1       下载免费PDF全文
Martin Carlsen  Peter Røgen 《Proteins》2015,83(9):1616-1624
Knowledge‐based protein potentials are simplified potentials designed to improve the quality of protein models, which is important as more accurate models are more useful for biological and pharmaceutical studies. Consequently, knowledge‐based potentials often are designed to be efficient in ordering a given set of deformed structures denoted decoys according to how close they are to the relevant native protein structure. This, however, does not necessarily imply that energy minimization of this potential will bring the decoys closer to the native structure. In this study, we introduce an iterative strategy to improve the convergence of decoy structures. It works by adding energy optimized decoys to the pool of decoys used to construct the next and improved knowledge‐based potential. We demonstrate that this strategy results in significantly improved decoy convergence on Titan high resolution decoys and refinement targets from Critical Assessment of protein Structure Prediction competitions. Our potential is formulated in Cartesian coordinates and has a fixed backbone potential to restricts motions to be close to those of a dihedral model, a fixed hydrogen‐bonding potential and a variable coarse grained carbon alpha potential consisting of a pair potential and a novel solvent potential that are b‐spline based as we use explicit gradient and Hessian for efficient energy optimization. Proteins 2015; 83:1616–1624. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
Shirota M  Ishida T  Kinoshita K 《Proteins》2011,79(5):1550-1563
In protein structure prediction, it is crucial to evaluate the degree of native-likeness of given model structures. Statistical potentials extracted from protein structure data sets are widely used for such quality assessment problems, but they are only applicable for comparing different models of the same protein. Although various other methods, such as machine learning approaches, were developed to predict the absolute similarity of model structures to the native ones, they required a set of decoy structures in addition to the model structures. In this paper, we tried to reformulate the statistical potentials as absolute quality scores, without using the information from decoy structures. For this purpose, we regarded the native state and the reference state, which are necessary components of statistical potentials, as the good and bad standard states, respectively, and first showed that the statistical potentials can be regarded as the state functions, which relate a model structure to the native and reference states. Then, we proposed a standardized measure of protein structure, called native-likeness, by interpolating the score of a model structure between the native and reference state scores defined for each protein. The native-likeness correlated with the similarity to the native structures and discriminated the native structures from the models, with better accuracy than the raw score. Our results show that statistical potentials can quantify the native-like properties of protein structures, if they fully utilize the statistical information obtained from the data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号