首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Protein–protein interactions (PPIs) in all the molecular aspects that take place both inside and outside cells. However, determining experimentally the structure and affinity of PPIs is expensive and time consuming. Therefore, the development of computational tools, as a complement to experimental methods, is fundamental. Here, we present a computational suite: MODPIN, to model and predict the changes of binding affinity of PPIs. In this approach we use homology modeling to derive the structures of PPIs and score them using state‐of‐the‐art scoring functions. We explore the conformational space of PPIs by generating not a single structural model but a collection of structural models with different conformations based on several templates. We apply the approach to predict the changes in free energy upon mutations and splicing variants of large datasets of PPIs to statistically quantify the quality and accuracy of the predictions. As an example, we use MODPIN to study the effect of mutations in the interaction between colicin endonuclease 9 and colicin endonuclease 2 immune protein from Escherichia coli. Finally, we have compared our results with other state‐of‐art methods.  相似文献   

2.
Mitochondrial cytochrome c oxidase (CcO) transfers electrons from cytochrome c (Cyt.c) to O2 to generate H2O, a process coupled to proton pumping. To elucidate the mechanism of electron transfer, we determined the structure of the mammalian Cyt.c–CcO complex at 2.0‐Å resolution and identified an electron transfer pathway from Cyt.c to CcO. The specific interaction between Cyt.c and CcO is stabilized by a few electrostatic interactions between side chains within a small contact surface area. Between the two proteins are three water layers with a long inter‐molecular span, one of which lies between the other two layers without significant direct interaction with either protein. Cyt.c undergoes large structural fluctuations, using the interacting regions with CcO as a fulcrum. These features of the protein–protein interaction at the docking interface represent the first known example of a new class of protein–protein interaction, which we term “soft and specific”. This interaction is likely to contribute to the rapid association/dissociation of the Cyt.c–CcO complex, which facilitates the sequential supply of four electrons for the O2 reduction reaction.  相似文献   

3.
Protein–protein interactions (PPIs) are involved in diverse functions in a cell. To optimize functional roles of interactions, proteins interact with a spectrum of binding affinities. Interactions are conventionally classified into permanent and transient, where the former denotes tight binding between proteins that result in strong complexes, whereas the latter compose of relatively weak interactions that can dissociate after binding to regulate functional activity at specific time point. Knowing the type of interactions has significant implications for understanding the nature and function of PPIs. In this study, we constructed amino acid substitution models that capture mutation patterns at permanent and transient type of protein interfaces, which were found to be different with statistical significance. Using the substitution models, we developed a novel computational method that predicts permanent and transient protein binding interfaces (PBIs) in protein surfaces. Without knowledge of the interacting partner, the method uses a single query protein structure and a multiple sequence alignment of the sequence family. Using a large dataset of permanent and transient proteins, we show that our method, BindML+, performs very well in protein interface classification. A very high area under the curve (AUC) value of 0.957 was observed when predicted protein binding sites were classified. Remarkably, near prefect accuracy was achieved with an AUC of 0.991 when actual binding sites were classified. The developed method will be also useful for protein design of permanent and transient PBIs. © Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
A comprehensive understanding of protein–protein interactions is an important next step in our quest to understand how the information contained in a genome is put into action. Although a number of experimental techniques can report on the existence of a protein– protein interaction, very few can provide detailed structural information. NMR spectroscopy is one of these, and in recent years several complementary NMR approaches, including residual dipolar couplings and the use of paramagnetic effects, have been developed that can provide insight into the structure of protein–protein complexes. In this article, we review these approaches and comment on their strengths and weaknesses.  相似文献   

5.
The importance of a protein–protein interaction to a signaling pathway can be established by showing that amino acid mutations that weaken the interaction disrupt signaling, and that additional mutations that rescue the interaction recover signaling. Identifying rescue mutations, often referred to as second‐site suppressor mutations, controls against scenarios in which the initial deleterious mutation inactivates the protein or disrupts alternative protein–protein interactions. Here, we test a structure‐based protocol for identifying second‐site suppressor mutations that is based on a strategy previously described by Kortemme and Baker. The molecular modeling software Rosetta is used to scan an interface for point mutations that are predicted to weaken binding but can be rescued by mutations on the partner protein. The protocol typically identifies three types of specificity switches: knob‐in‐to‐hole redesigns, switching hydrophobic interactions to hydrogen bond interactions, and replacing polar interactions with nonpolar interactions. Computational predictions were tested with two separate protein complexes; the G‐protein Gαi1 bound to the RGS14 GoLoco motif, and UbcH7 bound to the ubiquitin ligase E6AP. Eight designs were experimentally tested. Swapping a buried hydrophobic residue with a polar residue dramatically weakened binding affinities. In none of these cases were we able to identify compensating mutations that returned binding to wild‐type affinity, highlighting the challenges inherent in designing buried hydrogen bond networks. The strongest specificity switches were a knob‐in‐to‐hole design (20‐fold) and the replacement of a charge–charge interaction with nonpolar interactions (55‐fold). In two cases, specificity was further tuned by including mutations distant from the initial design. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Proteins interact with each other through binding interfaces that differ greatly in size and physico‐chemical properties. Within the binding interface, a few residues called hot spots contribute the majority of the binding free energy and are hence irreplaceable. In contrast, cold spots are occupied by suboptimal amino acids, providing possibility for affinity enhancement through mutations. In this study, we identify cold spots due to cavities and unfavorable charge interactions in multiple protein–protein interactions (PPIs). For our cold spot analysis, we first use a small affinity database of PPIs with known structures and affinities and then expand our search to nearly 4000 homo‐ and heterodimers in the Protein Data Bank (PDB). We observe that cold spots due to cavities are present in nearly all PPIs unrelated to their binding affinity, while unfavorable charge interactions are relatively rare. We also find that most cold spots are located in the periphery of the binding interface, with high‐affinity complexes showing fewer centrally located colds spots than low‐affinity complexes. A larger number of cold spots is also found in non‐cognate interactions compared to their cognate counterparts. Furthermore, our analysis reveals that cold spots are more frequent in homo‐dimeric complexes compared to hetero‐complexes, likely due to symmetry constraints imposed on sequences of homodimers. Finally, we find that glycines, glutamates, and arginines are the most frequent amino acids appearing at cold spot positions. Our analysis emphasizes the importance of cold spot positions to protein evolution and facilitates protein engineering studies directed at enhancing binding affinity and specificity in a wide range of applications.  相似文献   

7.
Optical biosensors are finding increasing use in the determination of kinetic and equilibrium constants for a variety of biomolecular interactions. Usually these biosensors require one biomolecule, the ligand, to be covalently attached to a hydrogel matrix which itself is bonded to the sensing surface. The ligands partner, the ligate, then binds from solution resulting in a measurable change in response which the instrument records as a function of time. Although in many cases, optical biosensors are used in order to obtain parameters that relate to interactions in solution, it is becoming clear that measurements involving the interaction of ligate with immobilized ligands on surfaces require careful experimental design. Here we report on how the density of ligand loading within the hydogel matrix affects the measured interaction kinetics. It is found that crowding of ligand within this matrix results in a significant reduction in the measured association rate constant, with a corresponding effect in the calculated overall affinity. However, measurements at low ligand loadings show association rate constants that are comparable to those measured in solution. Clearly, where this comparison is required, it is important to perform measurements under such conditions. © 1997 John Wiley & Sons, Ltd.  相似文献   

8.
9.
Protein domains are functional and structural units of proteins. Therefore, identification of domain–domain interactions (DDIs) can provide insight into the biological functions of proteins. In this article, we propose a novel discriminative approach for predicting DDIs based on both protein–protein interactions (PPIs) and the derived information of non‐PPIs. We make a threefold contribution to the work in this area. First, we take into account non‐PPIs explicitly and treat the domain combinations that can discriminate PPIs from non‐PPIs as putative DDIs. Second, DDI identification is formalized as a feature selection problem, in which it tries to find out a minimum set of informative features (i.e., putative DDIs) that discriminate PPIs from non‐PPIs, which is plausible in biology and is able to predict DDIs in a systematic and accurate manner. Third, multidomain combinations including two‐domain combinations are taken into account in the proposed method, where multidomain cooperations may help proteins to interact with each other. Numerical results on several DDI prediction benchmark data sets show that the proposed discriminative method performs comparably well with other top algorithms with respect to overall performance, and outperforms other methods in terms of precision. The PPI data sets used for prediction of DDIs and prediction results can be found at http://csb.shu.edu.cn/dipd . Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
A minimal model of protein–protein binding affinity that takes into account only two structural features of the complex, the size of its interface, and the amplitude of the conformation change between the free and bound subunits, is tested on the 144 complexes of a structure‐affinity benchmark. It yields Kd values that are within two orders of magnitude of the experiment for 67% of the complexes, within three orders for 88%, and fails on 12%, which display either large conformation changes, or a very high or a low affinity. The minimal model lacks the specificity and accuracy needed to make useful affinity predictions, but it should help in assessing the added value of parameters used by more elaborate models, and set a baseline for evaluating their performances.  相似文献   

11.
Residue types at the interface of protein–protein complexes (PPCs) are known to be reasonably well conserved. However, we show, using a dataset of known 3‐D structures of homologous transient PPCs, that the 3‐D location of interfacial residues and their interaction patterns are only moderately and poorly conserved, respectively. Another surprising observation is that a residue at the interface that is conserved is not necessarily in the interface in the homolog. Such differences in homologous complexes are manifested by substitution of the residues that are spatially proximal to the conserved residue and structural differences at the interfaces as well as differences in spatial orientations of the interacting proteins. Conservation of interface location and the interaction pattern at the core of the interfaces is higher than at the periphery of the interface patch. Extents of variability of various structural features reported here for homologous transient PPCs are higher than the variation in homologous permanent homomers. Our findings suggest that straightforward extrapolation of interfacial nature and inter‐residue interaction patterns from template to target could lead to serious errors in the modeled complex structure. Understanding the evolution of interfaces provides insights to improve comparative modeling of PPC structures.  相似文献   

12.
To clarify the interplay between the binding affinity and kinetics of protein–protein interactions, and the possible role of intrinsically disordered proteins in such interactions, molecular simulations were carried out on 20 protein complexes. With bias potential and reweighting techniques, the free energy profiles were obtained under physiological affinities, which showed that the bound‐state valley is deep with a barrier height of 12 ? 33 RT. From the dependence of the affinity on interface interactions, the entropic contribution to the binding affinity is approximated to be proportional to the interface area. The extracted dissociation rates based on the Arrhenius law correlate reasonably well with the experimental values (Pearson correlation coefficient R = 0.79). For each protein complex, a linear free energy relationship between binding affinity and the dissociation rate was confirmed, but the distribution of the slopes for intrinsically disordered proteins showed no essential difference with that observed for ordered proteins. A comparison with protein folding was also performed. Proteins 2016; 84:920–933. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
Protein–protein interactions play central roles in physiological and pathological processes. The bases of the mechanisms of drug action are relevant to the discovery of new therapeutic targets. This work focuses on understanding the interactions in protein–protein–ligands complexes, using proteins calmodulin (CaM), human calcium/calmodulin‐dependent 3′,5′‐cyclic nucleotide phosphodiesterase 1A active human (PDE1A), and myosin light chain kinase (MLCK) and ligands αII–spectrin peptide (αII–spec), and two inhibitors of CaM (chlorpromazine (CPZ) and malbrancheamide (MBC)). The interaction was monitored with a fluorescent biosensor of CaM (hCaM M124C–mBBr). The results showed changes in the affinity of CPZ and MBC depending on the CaM–protein complex under analysis. For the Ca2+–CaM, Ca2+–CaM–PDE1A, and Ca2+–CaM–MLCK complexes, CPZ apparent dissociation constants (Kds) were 1.11, 0.28, and 0.55 μM, respectively; and for MBC Kds were 1.43, 1.10, and 0.61 μM, respectively. In competition experiments the addition of calmodulin binding peptide 1 (αII–spec) to Ca2+hCaM M124C–mBBr quenched the fluorescence (Kd = 2.55 ± 1.75 pM) and the later addition of MBC (up to 16 μM) did not affect the fluorescent signal. Instead, the additions of αII–spec to a preformed Ca2+hCaM M124C–mBBr–MBC complex modified the fluorescent signal. However, MBC was able to displace the PDE1A and MLCK from its complex with Ca2+–CaM. In addition, docking studies were performed for all complexes with both ligands showing an excellent correlation with experimental data. These experiments may help to explain why in vivo many CaM drugs target prefer only a subset of the Ca2+–CaM regulated proteins and adds to the understanding of molecular interactions between protein complexes and small ligands. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Finding why protein–protein interactions (PPIs) are so specific can provide a valuable tool in a variety of fields. Statistical surveys of so‐called transient complexes (like those relevant for signal transduction mechanisms) have shown a tendency of polar residues to participate in the interaction region. Following this scheme, residues in the unbound partners have to compete between interacting with water or interacting with other residues of the protein. On the other hand, several works have shown that the notion of active site electrostatic preorganization can be used to interpret the high efficiency in enzyme reactions. This preorganization can be related to the instability of the residues important for catalysis. In some enzymes, in addition, conformational changes upon binding to other proteins lead to an increase in the activity of the enzymatic partner. In this article the linear response approximation version of the semimacroscopic protein dipoles Langevin dipoles (PDLD/S‐LRA) model is used to evaluate the stability of several residues in two phosphate hydrolysis enzymes upon complexation with their activating partners. In particular, the residues relevant for PPI and for phosphate hydrolysis in the CDK2/Cyclin A and Ras/GAP complexes are analyzed. We find that the evaluation of the stability of residues in these systems can be used to identify not only active site regions but it can also be used as a guide to locate “hot spots” for PPIs. We also show that conformational changes play a major role in positioning interfacing residues in a proper “energetic” orientation, ready to interact with the residues in the partner protein surface. Thus, we extend the preorganization theory to PPIs, extrapolating the results we obtained from the above‐mentioned complexes to a more general case. We conclude that the correlation between stability of a residue in the surface and the likelihood that it participates in the interaction can be a general fact for transient PPIs. Proteins 2006. © 2005 Wiley‐Liss, Inc.  相似文献   

15.
The photoactivatable amino acid p‐benzoyl‐l ‐phenylalanine (pBpa) has been used for the covalent capture of protein–protein interactions (PPIs) in vitro and in living cells. However, this technique often suffers from poor photocrosslinking yields due to the low reactivity of the active species. Here we demonstrate that the incorporation of halogenated pBpa analogs into proteins leads to increased crosslinking yields for protein–protein interactions. The analogs can be incorporated into live yeast and upon irradiation capture endogenous PPIs. Halogenated pBpas will extend the scope of PPIs that can be captured and expand the toolbox for mapping PPIs in their native environment.  相似文献   

16.
Protein–protein interactions (PPIs) represent an essential aspect of plant systems biology. Identification of key protein players and their interaction networks provide crucial insights into the regulation of plant developmental processes and into interactions of plants with their environment. Despite the great advance in the methods for the discovery and validation of PPIs, still several challenges remain. First, the PPI networks are usually highly dynamic, and the in vivo interactions are often transient and difficult to detect. Therefore, the properties of the PPIs under study need to be considered to select the most suitable technique, because each has its own advantages and limitations. Second, besides knowledge on the interacting partners of a protein of interest, characteristics of the interaction, such as the spatial or temporal dynamics, are highly important. Hence, multiple approaches have to be combined to obtain a comprehensive view on the PPI network present in a cell. Here, we present the progress in commonly used methods to detect and validate PPIs in plants with a special emphasis on the PPI features assessed in each approach and how they were or can be used for the study of plant interactions with their environment.  相似文献   

17.
The buried surface area (BSA), which measures the size of the interface in a protein–protein complex may differ from the accessible surface area (ASA) lost upon association (which we call DSA), if conformation changes take place. To evaluate the DSA, we measure the ASA of the interface atoms in the bound and unbound states of the components of 144 protein–protein complexes taken from the Protein–Protein Interaction Affinity Database of Kastritis et al. (2011). We observe differences exceeding 20%, and a systematic bias in the distribution. On average, the ASA calculated in the bound state of the components is 3.3% greater than in their unbound state, and the BSA, 7% greater than the DSA. The bias is observed even in complexes where the conformation changes are small. An examination of the bound and unbound structures points to a possible origin: local movements optimize contacts with the other component at the cost of internal contacts, and presumably also the binding free energy.  相似文献   

18.
Hafumi Nishi  Motonori Ota 《Proteins》2010,78(6):1563-1574
Despite similarities in their sequence and structure, there are a number of homologous proteins that adopt various oligomeric states. Comparisons of these homologous protein pairs, in terms of residue substitutions at the protein–protein interfaces, have provided fundamental characteristics that describe how proteins interact with each other. We have prepared a dataset composed of pairs of related proteins with different homo‐oligomeric states. Using the protein complexes, the interface residues were identified, and using structural alignments, the shadow‐interface residues have been defined as the surface residues that align with the interface residues. Subsequently, we investigated residue substitutions between the interfaces and the shadow interfaces. Based on the degree of the contributions to the interactions, the aligned sites of the interfaces and shadow interfaces were divided into primary and secondary sites; the primary sites are the focus of this work. The primary sites were further classified into two groups (i.e. exposed and buried) based on the degree to which the residue is buried within the shadow interfaces. Using these classifications, two simple mechanisms that mediate the oligomeric states were identified. In the primary‐exposed sites, the residues on the shadow interfaces are replaced by more hydrophobic or aromatic residues, which are physicochemically favored at protein–protein interfaces. In the primary‐buried sites, the residues on the shadow interfaces are replaced by larger residues that protrude into other proteins. These simple rules are satisfied in 23 out of 25 Structural Classification of Proteins (SCOP) families with a different‐oligomeric‐state pair, and thus represent a basic strategy for modulating protein associations and dissociations. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
When two proteins diffuse together to form a bound complex, an intermediate is formed at the end‐point of diffusional association which is called the encounter complex. Its characteristics are important in determining association rates, yet its structure cannot be directly observed experimentally. Here, we address the problem of how to construct the ensemble of three‐dimensional structures which constitute the protein–protein diffusional encounter complex using available experimental data describing the dependence of protein association rates on mutation and on solvent ionic strength and viscosity. The magnitude of the association rates is fitted well using a variety of definitions of encounter complexes in which the two proteins are located at up to about 17 Å root‐mean‐squared distance from their relative arrangement in the bound complex. Analysis of the ionic strength dependence of bimolecular association rates shows that this is determined to a greater extent by the (protein charge) – (salt ion) separation distance than by the protein–protein charge separation distance. Consequently, ionic strength dependence of association rates provides little information about the geometry of the encounter complex. On the other hand, experimental data on electrostatic rate enhancement, mutation and viscosity dependence suggest a model of the encounter complex in which the two proteins form a subset of the contacts present in the bound complex and are significantly desolvated. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
Mutations at protein–protein recognition sites alter binding strength by altering the chemical nature of the interacting surfaces. We present a simple surface energy model, parameterized with empirical values, yielding mean energies of ?48 cal mol?1 Å?2 for interactions between hydrophobic surfaces, ?51 to ?80 cal mol?1 Å?2 for surfaces of complementary charge, and 66–83 cal mol?1 Å?2 for electrostatically repelling surfaces, relative to the aqueous phase. This places the mean energy of hydrophobic surface burial at ?24 cal mol?1 Å?2. Despite neglecting configurational entropy and intramolecular changes, the model correlates with empirical binding free energies of a functionally diverse set of rigid‐body interactions (r = 0.66). When used to rerank docking poses, it can place near‐native solutions in the top 10 for 37% of the complexes evaluated, and 82% in the top 100. The method shows that hydrophobic burial is the driving force for protein association, accounting for 50–95% of the cohesive energy. The model is available open‐source from http://life.bsc.es/pid/web/surface_energy/ and via the CCharpPPI web server http://life.bsc.es/pid/ccharppi/ . Proteins 2015; 83:640–650. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号