首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The effects of cationic polyamino acids on insulin binding to soluble insulin receptor preparations were studied. Incubation of partially or fully purified receptor preparations with polylysine (pLys) increased by several-fold the amount of [125I]insulin that remained associated with the receptor, as determined both by precipitation of receptor-insulin complexes by polyethylene glycol or by separation of the complexes from the free hormone by gel filtration. This elevation in the amount of bound insulin resulted from increased number of insulin binding sites, and could not be attributed to an increased affinity of the receptors to insulin. In fact, pLys reduced 2-3-fold the affinity of insulin binding to its receptor as determined by equilibrium binding studies, and by monitoring the rate of exchange of bound [125I]insulin with unlabeled hormone. pLys induced specific interactions between insulin and its native receptor since other basic compounds such as histone, spermidine, polymixin B, compound 48/80, lysine, and arginine failed to reproduce its effects. pLys did not interact with the free ligand, nor did it promote interactions between insulin and denatured receptor forms. Furthermore, pLys did not induce binding of insulin to other proteins present in the partially purified receptor preparations. The effects of pLys were time and dose-dependent and were proportional to the pLys chain length. The longer the chain, the greater was the effect. Enhanced insulin binding and receptor beta-subunit autophosphorylation (in the presence of insulin) exhibited a similar dependency on the chain length of pLys. pLys effects on insulin binding were associated with formation of large protein aggregates that remained trapped at the top of Sephacryl S-300 columns. These aggregates contained substantial amounts of receptor-insulin complexes. Our results suggest that pLys induces formation of receptor clusters that create de novo insulin binding sites among adjacent receptor tetramers. Alternatively, formation of receptor aggregates might facilitate insulin binding to a soluble receptor subfraction that otherwise fails to bind the hormone.  相似文献   

2.
The insulin receptor (IR) plays critical roles in metabolism and growth, directed by the binding of insulin. Decades of research to understand the mechanism of insulin binding and activation of the IR have identified a region of the receptor, the C-terminal (CT) peptide, to be crucial for insulin binding. In particular, a truncated IR consisting of the first three domains fused to the CT peptide was found to bind insulin with nanomolar affinity, with undetectable binding in the absence of fused or soluble CT peptide. Problematically, all current crystal structures of the IR indicate the fusion point of the CT peptide to the three domains is located far from the position of the CT peptide as resolved in such structures. We have attempted to address this problem using molecular modelling and dynamics simulations. The results led to the identification of a potential inter-domain interaction between the L2 domain and the CT peptide that is not observed in any of the crystal structures of the IR. Investigations into this new interaction found a conformational change that could potentially be in response to insulin binding. Additionally, further simulation work with the new conformation demonstrated its compatibility with the position and orientation of insulin from the latest insulin-bound IR crystal structure.  相似文献   

3.
The insulin and insulin‐like growth factor 1 receptors activate overlapping signalling pathways that are critical for growth, metabolism, survival and longevity. Their mechanism of ligand binding and activation displays complex allosteric properties, which no mathematical model has been able to account for. Modelling these receptors’ binding and activation in terms of interactions between the molecular components is problematical due to many unknown biochemical and structural details. Moreover, substantial combinatorial complexity originating from multivalent ligand binding further complicates the problem. On the basis of the available structural and biochemical information, we develop a physically plausible model of the receptor binding and activation, which is based on the concept of a harmonic oscillator. Modelling a network of interactions among all possible receptor intermediaries arising in the context of the model (35, for the insulin receptor) accurately reproduces for the first time all the kinetic properties of the receptor, and provides unique and robust estimates of the kinetic parameters. The harmonic oscillator model may be adaptable for many other dimeric/dimerizing receptor tyrosine kinases, cytokine receptors and G‐protein‐coupled receptors where ligand crosslinking occurs.  相似文献   

4.
We have used photoreactive insulin analogues to investigate as related processes, early structural modification of the receptor-bound insulin molecule and internalisation of the insulin-receptor complex. In isolated rat hepatocytes an initial modification of bound insulin leads to the generation of a molecular species unchanged in molecular weight but with reduced receptor and antibody binding affinities and altered electrophoretic mobility. Using photoreactive insulin analogues and density gradient cell fractionation the insulin receptor complex has been shown to undergo internalisation from the plasma membrane to a low density vesicular fraction, the endosome. No labelled material was found in lysosomal fractions after up to 10 min incubation at 37 degrees C. The degree of labelling of the endosome fraction depended on the position of the photoreactive group within the insulin molecule. The data suggest that before or during endocytosis, a small peptide is proteolytically cleaved from the C terminus of the insulin B chain.  相似文献   

5.
Whittaker L  Hao C  Fu W  Whittaker J 《Biochemistry》2008,47(48):12900-12909
The interaction of insulin with its receptor is complex. Kinetic and equilibrium binding studies suggest coexistence of high- and low-affinity binding sites or negative cooperativity. These phenomena and high-affinity interactions are dependent on the dimeric structure of the receptor. Structure-function studies of insulin analogs suggest insulin has two receptor binding sites, implying a bivalent interaction with the receptor. Alanine scanning studies of the secreted recombinant receptor implicate the L1 domain and a C-terminal peptide of the receptor alpha subunit as components of one ligand binding site. Functional studies suggest that the first and second type III fibronectin repeats of the receptor contain a second ligand binding site. We have used structure-directed alanine scanning mutagenesis to identify determinants in these domains involved in ligand interactions. cDNAs encoding alanine mutants of the holo-receptor were transiently expressed in 293 cells, and the binding properties of the expressed receptor were determined. Alanine mutations of Lys(484), Leu(552), Asp(591), Ile(602), Lys(616), Asp(620), and Pro(621) compromised affinities for insulin 2-5-fold. With the exception of Asp(620), none of these mutations compromised the affinity of the recombinant secreted receptor for insulin, indicating that the perturbation of the interaction is at the site of mutation and not an indirect effect on the interaction with the binding site of the secreted receptor. These residues thus form part of a novel ligand binding site of the insulin receptor. Complementation experiments demonstrate that insulin interacts in trans with both receptor binding sites to generate high-affinity interactions.  相似文献   

6.

Background

The insulin receptor (IR) exists in two isoforms, A and B, and the isoform expression pattern is tissue-specific. The C-terminus of the insulin B chain is important for receptor binding and has been shown to contact the IR just adjacent to the region where the A and B isoforms differ. The aim of this study was to investigate the importance of the C-terminus of the B chain in IR isoform binding in order to explore the possibility of engineering tissue-specific/liver-specific insulin analogues.

Methodology/Principal Findings

Insulin analogue libraries were constructed by total amino acid scanning mutagenesis. The relative binding affinities for the A and B isoform of the IR were determined by competition assays using scintillation proximity assay technology. Structural information was obtained by X-ray crystallography. Introduction of B25A or B25N mutations resulted in analogues with a 2-fold preference for the B compared to the A isoform, whereas the opposite was observed with a B25Y substitution. An acidic amino acid residue at position B27 caused an additional 2-fold selective increase in affinity for the receptor B isoform for analogues bearing a B25N mutation. Furthermore, the combination of B25H with either B27D or B27E also resulted in B isoform-preferential analogues (2-fold preference) even though the corresponding single mutation analogues displayed no differences in relative isoform binding affinity.

Conclusions/Significance

We have discovered a new class of IR isoform-selective insulin analogues with 2–4-fold differences in relative binding affinities for either the A or the B isoform of the IR compared to human insulin. Our results demonstrate that a mutation at position B25 alone or in combination with a mutation at position B27 in the insulin molecule confers IR isoform selectivity. Isoform-preferential analogues may provide new opportunities for developing insulin analogues with improved clinical benefits.  相似文献   

7.
We have previously shown that a minimized insulin receptor (IR) consisting of the first 468 amino acids of the insulin receptor fused to 16 amino acids from the C terminus of the alpha-subunit (CT domain) bound insulin with nanomolar affinity (Kristensen, C., Wiberg, F. C., Sch?ffer, L., and Andersen, A. S. (1998) J. Biol. Chem. 273, 17780-17786). In the present study, we show that a smaller construct that has the first 308 residues fused to the CT domain also binds insulin. Insulin receptor fragments consisting of the first 468 or 308 residues did not bind insulin. However, when these fragments were mixed with a synthetic peptide corresponding to the CT domain, insulin binding was detectable. At concentrations of 10 microm CT peptide, insulin binding was fully reconstituted yielding apparent affinities of 9-11 nm. To further investigate the minimum requirement for the length of the N terminus of IR, we tested smaller receptor fragments for insulin binding in the presence of the CT peptide and found that a fragment consisting of the first 255 amino acids of IR was able to fully reconstitute the insulin binding site, yielding an apparent affinity of 11 +/- 4 nm for insulin.  相似文献   

8.
To delineate the structural determinants of the insulin receptor (IR) and insulin-like growth factor I receptor (IGFIR) which affect hormone binding specificity we have constructed seven chimeric receptor cDNAs and stably expressed them in Chinese hamster ovary cells. Clonal cell lines expressing high levels of each receptor chimera were analyzed for insulin and insulin-like growth factor I (IGFI) binding activity. Measurements of hormone binding and immunoprecipitation of metabolically labeled receptors showed that all chimeras were properly processed and expressed at the cell surface. The binding data indicate that 56 amino acids of the IR and 52 amino acids of the IGFIR located in corresponding regions of the cysteine-rich domains are the primary determinants of hormone binding specificity. These regions are located between amino acids Asn-230 and Ile-285 on the IR and between His-223 and Met-274 on the IGFIR. In addition, the alpha IR-3 antibody, which competes for IGFI binding, was found to interact with the same 52 amino acids of the IGFIR which determines hormone specificity. Other antibodies which interfere with insulin binding (5D9, MC51, and MA20) interact with epitopes in the COOH-terminal 288 amino acids of the alpha-subunit. We conclude that 56 and 52 amino acids of the cysteine-rich domains of the IR and IGFIR contain the major determinants of hormone binding specificity although other more COOH-terminal regions of both receptors contribute to hormone binding.  相似文献   

9.
To define the structures within the insulin receptor (IR) that are required for high affinity ligand binding, we have used IR fragments consisting of four amino-terminal domains (L1, cysteine-rich, L2, first fibronectin type III domain) fused to sequences encoded by exon 10 (including the carboxyl terminus of the alpha-subunit). The fragments contained one or both cysteine residues (amino acids 524 and 682) that form disulfides between alpha-subunits in native IR. A dimeric fragment designated IR593.CT (amino acids 1-593 and 704-719) bound (125)I-insulin with high affinity comparable to detergent-solubilized wild type IR and mIR.Fn0/Ex10 (amino acids 1-601 and 650-719) and greater than that of dimeric mIR.Fn0 (amino acids 1-601 and 704-719) and monomeric IR473.CT (amino acids 1-473 and 704-719). However, neither IR593.CT nor mIR.Fn0 exhibited negative cooperativity (a feature characteristic of the native insulin receptor and mIR.Fn0/Ex10), as shown by failure of unlabeled insulin to accelerate dissociation of bound (125)I-insulin. Anti-receptor monoclonal antibodies that recognize epitopes in the first fibronectin type III domain (amino acids 471-593) and inhibit insulin binding to wild type IR inhibited insulin binding to mIR.Fn0/Ex10 but not IR593.CT or mIR.Fn0. We conclude the following: 1) precise positioning of the carboxyl-terminal sequence can be a critical determinant of binding affinity; 2) dimerization via the first fibronectin domain alone can contribute to high affinity ligand binding; and 3) the second dimerization domain encoded by exon 10 is required for ligand cooperativity and modulation by antibodies.  相似文献   

10.
P F Pilch 《Biochemistry》1982,21(22):5638-5644
Insulin binding to rat liver plasma membranes is inhibited in a time- and dose-dependent fashion by prior treatment of membranes with the histidine-specific reagent diethyl pyrocarbonate. If all receptors are occupied by unlabeled hormone during diethyl pyrocarbonate treatment, no inhibition of 125I-labeled insulin binding is observed folowing washout of unlabeled hormone and unreacted reagent. Scatchard analysis of the binding inhibtion due to diethyl pyrocarbonate reveals a loss in receptor number rather than a change in receptor affinity for hormone. Fat cells treated with diethyl pyrocarbonate exhibit a rightward shift in the dose-response relationship for insulin-stimulated glucose oxidation consistent with a loss in receptor number due to the reagent. The pH profile for inhibition of insulin binding by diethyl pyrocarbonate and the partial reversibility of this inhibition by hydroxylamine are consistent with modification of a histidine residue. These results suggest that a histidine residue at or near the receptor binding site is required for formation of the biologically relevant insulin - receptor complex.  相似文献   

11.
Ottensmeyer FP  Beniac DR  Luo RZ  Yip CC 《Biochemistry》2000,39(40):12103-12112
Transmembrane signaling via receptor tyrosine kinases generally requires oligomerization of receptor monomers, with the formation of ligand-induced dimers or higher multimers of the extracellular domains of the receptors. Such formations are expected to juxtapose the intracellular kinase domains at the correct distances and orientations for transphosphorylation. For receptors of the insulin receptor family that are constitutively dimeric, or those that form noncovalent dimers without ligands, the mechanism must be more complex. For these, the conformation must be changed by the ligand from one that prevents activation to one that is permissive for kinase phosphorylation. How the insulin ligand accomplishes this action has remained a puzzle since the discovery of the insulin receptor over 2 decades ago, primarily because membrane proteins in general have been refractory to structure determination by crystallography. However, high-resolution structural evidence on individual separate subdomains of the insulin receptor and of analogous proteins has been obtained. The recently solved quaternary structure of the complete dimeric insulin receptor in the presence of insulin has now served as the structural envelope into which such individual domains were fitted. The combined structure has provided answers on the details of insulin/receptor interactions in the binding site and on the mechanism of transmembrane signaling of this covalent dimer. The structure explains many observations on the behavior of the receptor, from greater or lesser binding of insulin and its variants, point and deletion mutants of the receptor, to antibody-binding patterns, and to the effects on basal and insulin-stimulated autophosphorylation under mild reducing conditions.  相似文献   

12.
The insulin‐linked polymorphic region (ILPR) is a VNTR region located upstream of the insulin (INS) gene consisting of the repeat 5′‐ACAGGGGTGTGGGG (repeat a) and several less abundant sequence repeats (b–n). Here, we have investigated the structural polymorphism of G‐quadruplexes formed from the most common repeat sequences (a–c) and their effect on insulin protein binding. We first established that the ILPR repeats “b” and “c” can form quadruplex structures. Insulin has previously been shown to bind a G‐quadruplex formed by a dimer of the repeat “a”. Our findings show that insulin binds preferentially to the repeat “a” G‐quadruplex (Kd = 0.17 ± 0.03 μM) over G‐quadruplexes formed from other ILPR repeats that were tested (Kds from 0.71 ± 0.15 to 1.07 ± 0.09 μM). Additionally, the Watson‐Crick complementary relationship between the loop regions of repeat “a” (ACA and TGT) seemingly play an important role in favoring a specific G‐quadruplex conformation, which based on our data is critical for insulin binding. Affinity for insulin is reduced in sequences lacking the putative WC complementarity, however upon engineered restoration of complementarity, insulin binding is recovered. A DMS footprinting assay on the repeat “a” G‐quadruplex in the presence of insulin, combined with binding affinities for ILPR mutants led to identification of a loop nucleotide critical for binding. Uniquely, insulin shows clear preference for binding to the G‐quadruplexes with the more antiparallel feature. Collectively, our results illustrate the specific nature of insulin binding to the ILPR G‐quadruplexes and begin to provide molecular details on such interactions. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 21–31, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

13.
Our studies show that insulin receptors exist on chicken skeletal muscle cells at all developmental stages in culture. 125I-labeled insulin binding at physiological concentrations to mature myotubes demonstrated saturability, binding proportional to cell number, reversibility, and specificity by competition with native hormone which reduced specific binding by 40% with 1 ng/ml and was maximal with 10 μg/ml. Further evidence for specificity was shown by no competition of insulin specific binding with insulin A chain, insulin B chain, growth hormone, and thyrotropin. Two binding sites were detected, with affinity constants of 1010M?1 and 2 × 109M?1. The hormone receptor complex showed rapid dissociation (70% in 30 min) after equilibrium binding. During myogenesis, an increase in insulin receptors occurs from 500 per proliferating myoblast to 3000 per cell equivalent in mature (6 day) myotubes. Since these studies demonstrate that insulin receptors are present and other studies have shown that insulin is present during most of chicken embryogenesis, insulin may regulate muscle development in vivo to a greater degree than previously suspected.  相似文献   

14.
Conjointly, the solvent-exposed residues of the central alpha-helix of the B chain form a well-defined ridge, which is flanked and partly overlapped by the two described insulin receptor binding surfaces on either side of the insulin molecule. To evaluate the importance of this interface in insulin receptor binding, we developed a new powerful method that allows us to introduce all the naturally occurring amino acids into a given position and subsequently determine the receptor binding affinities of the resulting insulin analogues. The total amino acid scanning mutagenesis was performed at positions B9, B10, B12, B13, B16, and B17, and the vast majority of the insulin analogue precursors were expressed and secreted in amounts close to that of the wild-type (human insulin) precursor. The analogue binding data revealed that positions B12 and B16 were the two positions most affected by the amino acid substitutions. Interestingly, the receptor binding affinities of the B13 analogues were also markedly affected by the amino acid substitutions, suggesting that GluB13 indeed is a part of insulin's binding surface. The B10 library screen generated analogues covering a wide range of (20-340%) of relative binding affinities, and the results indicated that a structural stabilization of the central alpha-helix and thereby a more rigid presentation of the binding epitope at the insulin receptor is important for receptor recognition. In conclusion, systematic amino acid scanning mutagenesis allowed us to confirm the importance of the B chain alpha-helix as a central recognition element serving as a linker of a continual binding surface.  相似文献   

15.
In a previous study, we showed that a synthetic human insulin 1‐chain analog, named analog ( 3 ) was capable of mimicking in vitro effects of native insulin, including stimulation of cell proliferation, glucose uptake and glycogen synthesis. Here, we have synthesized three new analogs ( 6, 9, 12 ) of the human A‐chain, bearing or not their N‐ or C‐terminal residue, to determine the structural features which are responsible for their biological properties. In vitro experiments clearly demonstrated that the N‐terminal part of the peptides is required for the biological activity of the molecules, suggesting its crucial role in the mechanism underlying the cellular effect. Our findings may help to better understand the mechanism of interaction between insulin and its receptor. In addition, the present data demonstrate that some mini‐insulin derived from the A‐chain can exert similar effects as native insulin. These small peptides may offer specific advantages over insulin in the definition of new strategies for diabetes treatment. Copyright © 2009 John Wiley & Sons, Ltd. This article was published online on 17 July 2009. An error was subsequently identified. This notice is included in the online and print versions to indicate that both have been corrected 4 August 2009.  相似文献   

16.
We have investigated (by use of semisynthetic insulin analogs and isolated canine hepatocytes) the role of invariant residue PheB24 in determining the affinity of insulin-receptor interactions. Our results confirm that replacement of PheB24 by D-Phe is not detrimental to ligand binding to receptor, show that D-Ala is well tolerated at position B24 (whereas Ala is not), and demonstrate that [GlyB24]insulin retains as much as 78% of the receptor binding potency of native insulin. Additional findings show that replacement of PheB24 by D-Pro or by alpha-aminoisobutyric acid results in analogs with severely decreased binding potency, and that the COOH-terminal domain containing residues B26-B30 plays a positive role in determining receptor binding potency in GlyB24-substituted insulin (whereas it plays a negative role in determining the receptor binding potency of its GlyB25-substituted counterpart). We interpret our results as identifying (a) a critical role for the insulin main chain near residue B24 in determining the affinity of receptor for ligand, (b) the importance of main chain flexibility in achieving a high affinity state of receptor-bound hormone, and (c) a potential interaction of the PheB24 side chain with receptor which initiates main chain structural changes in the natural hormone, but which does not itself confer affinity to ligand-receptor interactions.  相似文献   

17.
FITC-insulin binding to previously hormone-treated Tetrahymena was studied by flow cytometry and confocal microscopy. Hormones produced by Tetrahymena were chosen for study and the hormone concentrations were administered between 10(-6) and 10(-21)M for 30 min. Endorphin, serotonin and insulin significantly reduced the hormone binding however histamine did not influence it at all. Endorphin, serotonin and insulin were significantly effective down to 10(-18)M and the effect of insulin and endorphin suggest a similar mechanism. The results call attention to the efficacy of very low hormone concentrations, which can influence the hormone content (earlier experiments) and receptor binding capacity (present study) of a unicellular organism. This seems to be very important, as in wild (natural) conditions the dilution of signaling materials secreted by a water-living protozoan is very high. In addition, the results point to the selectivity of response, as not all of the hormones that deeply influence other physiological indices (e.g. histamine) have an effect on insulin content or insulin receptors.  相似文献   

18.
The X-ray crystal structure of relaxin at 1.5 A resolution is reported for the physiologically active form of the human hormone. Relaxin is a small, two-chain polypeptide that is a member of the protein hormone family that also includes insulin and the insulin-like growth factors IGF-I and IGF-II. These hormones have biologically diverse activities but are structurally similar, sharing a distinctive pattern of cysteine and glycine residues. The predicted structural homology of relaxin to insulin is confirmed by this structural analysis; however, there are significant differences in the terminal regions of the b-chain. Although relaxin, like insulin, crystallizes as a dimer, the orientation of the molecules in the respective dimers is completely different. The region of the relaxin molecule proposed to be involved in receptor binding is part of the dimer interface, suggesting that some of the other residues contained in the dimer contact surface might be receptor binding determinants as well. The proposed receptor binding determinants for insulin likewise include residues at its dimer interface. However, because the dimer contacts of relaxin and insulin are quite different, it appears that these two structurally related hormones have evolved somewhat dissimilar mechanisms for receptor binding.  相似文献   

19.
The unicellular Tetrahymena pyriformis GL produce, store and secrete vertebrate‐like hormones. In earlier experiments the effect of different stressors on the hormone levels of Tetrahymena was studied and an elevation of these was found. In the present experiments the hormone binding was investigated, using flow cytometric method. FITC‐insulin binding was elevated after concentrated (5, 10, or 20 mg ml?1) NaCl or 0.01%, 0.1%, or 0.05% formaldehyde treatment, or after thermal stress (37°C). Serotonin given together with NaCl increased and together with formaldehyde decreased the binding. Histamine always decreased the binding and insulin was indifferent. Four hours after osmotic stress, hormone binding significantly decreased and this was not influenced by hormones. However, 4 h after formaldehyde stress the binding elevated and this was further increased by repeated hormone treatments. The results show that the stress in Tetrahymena provokes an activation of its hormonal system (hormone production and binding), which is differently influenced by exogeneously given hormones. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Toll‐like receptors (TLRs) play a key role in the innate immune system. The TLR7, 8, and 9 compose a family of intracellularly localized TLRs that signal in response to pathogen‐derived nucleic acids. So far, there are no crystallographic structures for TLR7, 8, and 9. For this reason, their ligand‐binding mechanisms are poorly understood. To enable first predictions of the receptor–ligand interaction sites, we developed three‐dimensional structures for the leucine‐rich repeat ectodomains of human TLR7, 8, and 9 based on homology modeling. To achieve a high sequence similarity between targets and templates, structural segments from all known TLR ectodomain structures (human TLR1/2/3/4 and mouse TLR3/4) were used as candidate templates for the modeling. The resulting models support previously reported essential ligand‐binding residues. They also provide a basis to identify three potential receptor dimerization mechanisms. Additionally, potential ligand‐binding residues are identified using combined procedures. We suggest further investigations of these residues through mutation experiments. Our modeling approach can be extended to other members of the TLR family or other repetitive proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号