首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein loops make up a large portion of the secondary structure in nature. But very little is known concerning loop closure dynamics and the effects of loop composition on fold stability. We have designed a small system with stable β‐sheet structures, including features that allow us to probe these questions. Using paired Trp residues that form aromatic clusters on folding, we are able to stabilize two β‐strands connected by varying loop lengths and composition (an example sequence: R W ITVTI – loop – KKIRV W E). Using NMR and CD, both fold stability and folding dynamics can be investigated for these systems. With the 16 residue loop peptide (sequence: R W ITVTI‐(GGGGKK)2GGGG‐KKIRV W E) remaining folded (ΔGU = 1.6 kJ/mol at 295K). To increase stability and extend the series to longer loops, we added an additional Trp/Trp pair in the loop flanking position. With this addition to the strands, the 16 residue loop (sequence: R W ITVRI W ‐(GGGGKK)2GGGG‐ W KTIRV W E) supports a remarkably stable β‐sheet (ΔGU = 6.3 kJ/mol at 295 K, Tm = ~55°C). Given the abundance of loops in binding motifs and between secondary structures, these constructs can be powerful tools for peptide chemists to study loop effects; with the Trp/Trp pair providing spectroscopic probes for assessing both stability and dynamics by NMR.  相似文献   

2.
Useful solution nuclear magnetic resonance (NMR) data can be obtained from full-length, enzymatically active type I signal peptidase (SPase I), an integral membrane protein, in detergent micelles. Signal peptidase has two transmembrane segments, a short cytoplasmic loop, and a 27-kD C-terminal catalytic domain. It is a critical component of protein transport systems, recognizing and cleaving amino-terminal signal peptides from preproteins during the final stage of their export. Its structure and interactions with the substrate are of considerable interest, but no three-dimensional structure of the whole protein has been reported. The structural analysis of intact membrane proteins has been challenging and only recently has significant progress been achieved using NMR to determine membrane protein structure. Here we employ NMR spectroscopy to study the structure of the full-length SPase I in dodecylphosphocholine detergent micelles. HSQC-TROSY spectra showed resonances corresponding to approximately 3/4 of the 324 residues in the protein. Some sequential assignments were obtained from the 3D HNCACB, 3D HNCA, and 3D HN(CO) TROSY spectra of uniformly 2H, 13C, 15N-labeled full-length SPase I. The assigned residues suggest that the observed spectrum is dominated by resonances arising from extramembraneous portions of the protein and that the transmembrane domain is largely absent from the spectra. Our work elucidates some of the challenges of solution NMR of large membrane proteins in detergent micelles as well as the future promise of these kinds of studies.  相似文献   

3.
(18‐Crown‐6)‐2,3,11,12‐tetracarboxylic acid is a useful chiral NMR solvating agent for isoxazoline‐fused β‐amino acid derivatives. Isoxazoline substrates are analyzed as their hydrochloride salts in methanol‐d4. The crown ether and substrate associate through the formation of three hydrogen bonds between the protonated amine and crown ether oxygen atoms. Enantiomeric discrimination is observed for two or more resonances of every substrate. At least one of these resonances is free of overlap with other resonances in the spectrum and has large enough enantiomeric discrimination to enable the determination of enantiomeric purity. 2D COSY methods can be used to identify additional resonances that exhibit enantiomeric discrimination in the NMR spectrum. Chirality, 25:48‐53, 2013.© 2012 Wiley Periodicals, Inc.  相似文献   

4.
Three solution NMR experiments on a uniformly 15N labeled membrane protein in micelles provide sufficient information to describe the structure, topology, and dynamics of its helices, as well as additional information that characterizes the principal features of residues in terminal and inter-helical loop regions. The backbone amide resonances are assigned with an HMQC-NOESY experiment and the backbone dynamics are characterized by a 1H-15N heteronuclear NOE experiment, which clearly distinguishes between the structured helical residues and the more mobile residues in the terminal and interhelical loop regions of the protein. The structure and topology of the helices are described by Dipolar waves and PISA wheels derived from experimental measurements of residual dipolar couplings (RDCs) and residual chemical shift anisotropies (RCSAs). The results show that the membrane-bound form of Pf1 coat protein has a 20-residue trans-membrane hydrophobic helix with an orientation that differs by about 90° from that of an 8-residue amphipathic helix. This combination of three-experiments that yields Dipolar waves and PISA wheels has the potential to contribute to high-throughput structural characterizations of membrane proteins.  相似文献   

5.
To investigate the structural role played by isostructural unbranched alkyl‐chains on the conformational ensemble and stability of β‐turn structures, the conformational properties of a designed model peptide: Plm‐Pro‐Gly‐Pda ( 1 , Plm: H3C—(CH2)14—CONH—; Pda: —CONH— (CH2)14—CH3) have been examined and compared with the parent peptide: Boc‐Pro‐Gly‐NHMe ( 2 , Boc: tert‐butoxycarbonyl; NHMe: N‐methylamide). The characteristic 13C NMR chemical‐shifts of the Pro Cβ and Cγ resonances ascertained the incidence of an all‐trans peptide‐bond in low polarity deuterochloroform solution. Using FTIR and 1H NMR spectroscopy, we establish that apolar alkyl‐chains flanking a β‐turn promoting Pro‐Gly sequence impart definite incremental stability to the well‐defined hydrogen‐bonded structure. The assessment of 1H NMR derived thermodynamic parameters of the hydrogen‐bonded amide‐NHs via variable temperature indicate that much weaker hydrophobic interactions do contribute to the stability of folded reverse turn structures. The far‐UV CD spectral patterns of 1 and 2 in 2,2,2‐trifluoroethanol are consistent with Pro‐Gly specific type II β‐turn structure, concomitantly substantiate that the flanking alkyl‐chains induce substantial bias in enhanced β‐turn populations. In view of structural as well as functional importance of the Pro‐Gly mediated secondary structures, besides biochemical and biological significance of proteins lipidation via myristoylation or palmytoilation, we highlight potential convenience of the unbranched Plm and Pda moieities not only as main‐chain N‐ and C‐terminal protecting groups but also to mimic and stabilize specific isolated secondary and supersecondary structural components frequently observed in proteins and polypeptides. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 419–426, 2013.  相似文献   

6.
The insertase BamA is the central protein of the Bam complex responsible for outer membrane protein biogenesis in Gram-negative bacteria. BamA features a 16-stranded transmembrane β-barrel and five periplasmic POTRA domains, with a total molecular weight of 88 kDa. Whereas the structure of BamA has recently been determined by X-ray crystallography, its functional mechanism is not well understood. This mechanism comprises the insertion of substrates from a dynamic, chaperone-bound state into the bacterial outer membrane, and NMR spectroscopy is thus a method of choice for its elucidation. Here, we report solution NMR studies of different BamA constructs in three different membrane mimetic systems: LDAO micelles, DMPC:DiC7PC bicelles and MSP1D1:DMPC nanodiscs. The impact of biochemical parameters on the spectral quality was investigated, including the total protein concentration and the detergent:protein ratio. The barrel of BamA is folded in micelles, bicelles and nanodiscs, but the N-terminal POTRA5 domain is flexibly unfolded in the absence of POTRA4. Measurements of backbone dynamics show that the variable insertion region of BamA, located in the extracellular lid loop L6, features high local flexibility. Our work establishes biochemical preparation schemes for BamA, which will serve as a platform for structural and functional studies of BamA and its role within the Bam complex by solution NMR spectroscopy.  相似文献   

7.
The β-barrels found in the outer membranes of prokaryotic and eukaryotic organisms constitute an important functional class of proteins. Here we present solid-state NMR spectra of the bacterial outer membrane protein OmpX in oriented lipid bilayer membranes. We show that OmpX is folded in both glass-supported oriented lipid bilayers and in lipid bicelles that can be magnetically oriented with the membrane plane parallel or perpendicular to the direction of the magnetic field. The presence of resolved peaks in these spectra demonstrates that OmpX undergoes rotational diffusion around an axis perpendicular to the membrane surface. A tightly hydrogen-bonded domain of OmpX resists exchange with D2O for days and is assigned to the transmembrane β-barrel, while peaks at isotropic resonance frequencies that disappear rapidly in D2O are assigned to the extracellular and periplasmic loops. The two-dimensional 1H/15N separated local field spectra of OmpX have several resolved peaks, and agree well with the spectra calculated from the crystal structure of OmpX rotated with the barrel axis nearly parallel (5° tilt) to the direction of the magnetic field. The data indicate that it will be possible to obtain site-specific resonance assignments and to determine the structure, tilt, and rotation of OmpX in membranes using the solid-state NMR methods that are currently being applied to α-helical membrane proteins.  相似文献   

8.
The sequential assignment of backbone resonances is the first step in the structure determination of proteins by heteronuclear NMR. For larger proteins, an assignment strategy based on proton side-chain information is no longer suitable for the use in an automated procedure. Our program PASTA (Protein ASsignment by Threshold Accepting) is therefore designed to partially or fully automate the sequential assignment of proteins, based on the analysis of NMR backbone resonances plus C information. In order to overcome the problems caused by peak overlap and missing signals in an automated assignment process, PASTA uses threshold accepting, a combinatorial optimization strategy, which is superior to simulated annealing due to generally faster convergence and better solutions. The reliability of this algorithm is shown by reproducing the complete sequential backbone assignment of several proteins from published NMR data. The robustness of the algorithm against misassigned signals, noise, spectral overlap and missing peaks is shown by repeating the assignment with reduced sequential information and increased chemical shift tolerances. The performance of the program on real data is finally demonstrated with automatically picked peak lists of human nonpancreatic synovial phospholipase A2, a protein with 124 residues.  相似文献   

9.
The permeability of the outer membrane of gram‐negative bacteria is essentially controlled by pore‐forming proteins of the porin family. The trimeric E. coli porin OmpF is assembled as a triple β‐barrel, where each monomer contains a central pore and extracellular loops. Electrophysiological analysis of the behavior of OmpF at acidic pH reveals that the protein undergoes a conformational change leading to the sequential step‐wise closure of the three monomers. A previous atomic force microscopy study suggested that the conformational change might be due to a bending of extracellular loops over the pore opening, and loop deletion experiments suggested that loops L1, L7, and L8 are involved. In order to test the hypothesis for loop movement, we engineered a series of double cysteine mutants in loops L1, L6, L7 and L8 in order to create disulfide bonds linking two loops to each other, or the two branches of a loop, or a loop to the β‐barrel. Five out of the six mutants showed the formation of the disulfide bond. However, none of these had an altered response to acidic pH relative to the wildtype channel. Although we cannot dismiss the possibility that the mobility restriction introduced by each disulfide bond was too localized to impact a more global conformational change of the three loops, the fact that all of the different types of disulfide bond tethering were similarly ineffective suggests that the extracellular loops L1, L7, and L8 may not undergo a major acidic‐pH induced conformational change leading to channel closure. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Proteins of the Omp85 family chaperone the membrane insertion of β‐barrel‐shaped outer membrane proteins in bacteria, mitochondria, and probably chloroplasts and facilitate the transfer of nuclear‐encoded cytosolically synthesized preproteins across the outer envelope of chloroplasts. This protein family is characterized by N‐terminal polypeptide transport‐associated (POTRA) domains and a C‐terminal membrane‐embedded β‐barrel. We have investigated a recently identified Omp85 family member of Arabidopsis thaliana annotated as P39. We show by in vitro and in vivo experiments that P39 is localized in chloroplasts. The electrophysiological properties of P39 are consistent with those of other Omp85 family members confirming the sequence based assignment of P39 to this family. Bioinformatic analysis showed that P39 lacks any POTRA domain, while a complete 16 stranded β‐barrel including the highly conserved L6 loop is proposed. The electrophysiological properties are most comparable to Toc75‐V, which is consistent with the phylogenetic clustering of P39 in the Toc75‐V rather than the Toc75‐III branch of the Omp85 family tree. Taken together P39 forms a pore with Omp85 family protein characteristics. The bioinformatic comparison of the pore region of Toc75‐III, Toc75‐V, and P39 shows distinctions of the barrel region most likely related to function. Proteins 2017; 85:1391–1401. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
ASCAN is a new algorithm for automatic sequence-specific NMR assignment of amino acid side-chains in proteins, which uses as input the primary structure of the protein, chemical shift lists of (1)H(N), (15)N, (13)C(alpha), (13)C(beta) and possibly (1)H(alpha) from the previous polypeptide backbone assignment, and one or several 3D (13)C- or (15)N-resolved [(1)H,(1)H]-NOESY spectra. ASCAN has also been laid out for the use of TOCSY-type data sets as supplementary input. The program assigns new resonances based on comparison of the NMR signals expected from the chemical structure with the experimentally observed NOESY peak patterns. The core parts of the algorithm are a procedure for generating expected peak positions, which is based on variable combinations of assigned and unassigned resonances that arise for the different amino acid types during the assignment procedure, and a corresponding set of acceptance criteria for assignments based on the NMR experiments used. Expected patterns of NOESY cross peaks involving unassigned resonances are generated using the list of previously assigned resonances, and tentative chemical shift values for the unassigned signals taken from the BMRB statistics for globular proteins. Use of this approach with the 101-amino acid residue protein FimD(25-125) resulted in 84% of the hydrogen atoms and their covalently bound heavy atoms being assigned with a correctness rate of 90%. Use of these side-chain assignments as input for automated NOE assignment and structure calculation with the ATNOS/CANDID/DYANA program suite yielded structure bundles of comparable quality, in terms of precision and accuracy of the atomic coordinates, as those of a reference structure determined with interactive assignment procedures. A rationale for the high quality of the ASCAN-based structure determination results from an analysis of the distribution of the assigned side chains, which revealed near-complete assignments in the core of the protein, with most of the incompletely assigned residues located at or near the protein surface.  相似文献   

12.
Non‐detergent sulfobetaines (NDSBs) are a new group of small, synthetic protein stabilizers, which have advantages over classical compatible osmolytes, such as polyol, amines, and amino acids: they do not increase solution viscosity, unlike polyols, and they are zwitterionic at all pH ranges, unlike amines and amino acids. NDSBs also facilitate the crystallization and refolding of proteins. The mechanism whereby NDSBs exhibit such activities, however, remains elusive. To gain insight into this mechanism, we studied, using nuclear magnetic resonance (NMR), the effects of dimethylethylammonium propane sulfonate (NDSB‐195) on the dynamics of ubiquitin, on which a wealth of information has been accumulated. By analyzing the line width of amide proton resonances and the transverse relaxation rates of nitrogen atoms, we found that NDSB‐195 enhances the microsecond–millisecond dynamics of a β4‐α2 loop of ubiquitin. Although those compounds that enhance protein dynamics are generally considered to destabilize protein molecules, NDSB‐195 enhanced the stability of ubiquitin against guanidium chloride denaturation. Thus, the simultaneous enhancement of stability and flexibility by a single compound can be attained. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
Solution NMR of signal peptidase, a membrane protein   总被引:1,自引:0,他引:1  
Useful solution nuclear magnetic resonance (NMR) data can be obtained from full-length, enzymatically active type I signal peptidase (SPase I), an integral membrane protein, in detergent micelles. Signal peptidase has two transmembrane segments, a short cytoplasmic loop, and a 27-kD C-terminal catalytic domain. It is a critical component of protein transport systems, recognizing and cleaving amino-terminal signal peptides from preproteins during the final stage of their export. Its structure and interactions with the substrate are of considerable interest, but no three-dimensional structure of the whole protein has been reported. The structural analysis of intact membrane proteins has been challenging and only recently has significant progress been achieved using NMR to determine membrane protein structure. Here we employ NMR spectroscopy to study the structure of the full-length SPase I in dodecylphosphocholine detergent micelles. HSQC-TROSY spectra showed resonances corresponding to approximately 3/4 of the 324 residues in the protein. Some sequential assignments were obtained from the 3D HNCACB, 3D HNCA, and 3D HN(CO) TROSY spectra of uniformly 2H, 13C, 15N-labeled full-length SPase I. The assigned residues suggest that the observed spectrum is dominated by resonances arising from extramembraneous portions of the protein and that the transmembrane domain is largely absent from the spectra. Our work elucidates some of the challenges of solution NMR of large membrane proteins in detergent micelles as well as the future promise of these kinds of studies.  相似文献   

14.
The transmembrane domain of Klebsiella pneumoniae OmpA (KpOmpA) possesses four long extracellular loops that exhibit substantial sequence variability throughout OmpA homologs in Enterobacteria, in comparison with the highly conserved membrane-embedded β-barrel core. These loops are responsible for the immunological properties of the protein, including cellular and humoral recognition. In addition to key features revealed by structural elucidation of the KpOmpA transmembrane domain in detergent micelles, studies of protein dynamics provide insight into its function and/or mechanism of action. We have investigated the dynamics of KpOmpA in a lipid bilayer, using magic angle spinning solid-state NMR. The dynamics of the β-barrel and loop regions were probed by the spin-lattice relaxation times of the C(α) and C(β) atoms of the serine and threonine residues, and by cross-polarization dynamics. The β-barrel core of the protein is rigid; the C-terminal halves of two of the four extracellular loops (L1 and L3), which are particularly long in KpOmpA, are highly mobile. The other two loops (L2 and L4), which are very similar to their homologs in Escherichia coli OmpA, and the N-terminal halves of L1 and L3 exhibit more restricted motions. We suggest a correlation between the sequence variability and the dynamics of certain loop regions, which accounts for their respective contributions to the structural and immunological properties of the protein.  相似文献   

15.
Omp85 transporters mediate protein insertion into, or translocation across, membranes. They have a conserved architecture, with POTRA domains that interact with substrate proteins, a 16‐stranded transmembrane β barrel, and an extracellular loop, L6, folded back in the barrel pore. Here using electrophysiology, in vivo biochemical approaches and electron paramagnetic resonance, we show that the L6 loop of the Omp85 transporter FhaC changes conformation and modulates channel opening. Those conformational changes involve breaking the conserved interaction between the tip of L6 and the inner β‐barrel wall. The membrane‐proximal POTRA domain also exchanges between several conformations, and the binding of FHA displaces this equilibrium. We further demonstrate a dynamic, physical communication between the POTRA domains and L6, which must take place via the β barrel. Our findings thus link all three essential components of Omp85 transporters and indicate that they operate in a concerted fashion in the transport cycle.  相似文献   

16.
NMR structure determination of large membrane proteins is hampered by broad spectral lines, overlap, and ambiguity of signal assignment. Chemical shift and NOE assignment can be facilitated by amino acid selective isotope labeling in cell-free protein synthesis system. However, many biological detergents are incompatible with the cell-free synthesis, and membrane proteins often have to be synthesized in an insoluble form. We report cell-free synthesis of subunits a and c of the proton channel of Escherichia coli ATP synthase in a soluble form in a mixture of phosphatidylcholine derivatives. In comparison, subunit a was purified from the cell-free system and from the bacterial cell membranes. NMR spectra of both preparations were similar, indicating that our procedure for cell-free synthesis produces protein structurally similar to that prepared from the cell membranes.  相似文献   

17.
In order to better understand the dynamics of an integral membrane protein, backbone amide 15N NMR dynamics measurements of the β-barrel membrane protein OmpA have been performed at three magnetic fields. A total of nine relaxation data sets were globally analyzed using an extended model-free formalism. The diffusion tensor was found to be prolate axially symmetric with an axial ratio of 5.75, indicating a possible rotation of the protein within the micelle. The generalized order parameters gradually decreased from the mid-plane towards the two ends of the barrel, counteracting the dynamic gradient of the lipids in a matching bilayer, and were dramatically reduced in the extracellular loops. Large-scale internal motions on the ns time scale indicate that entire loops most likely undergo concerted (“sea anemone”-like) motions emanating from their anchoring points on the barrel. The case of OmpA in DPC micelles also illustrates inherent limitations of analyzing the data with even the most sophisticated current models of the model-free formalism. It is likely that conformational exchange processes on the ms-μs also play a role in describing the motions of some residues, but their analysis did not produce unique results that could be independently verified.  相似文献   

18.
BtuB is a β‐barrel membrane protein that facilitates transport of cobalamin (vitamin B12) from the extracellular medium across the outer membrane of Escherichia coli. It is thought that binding of B12 to BtuB alters the conformation of its periplasm‐exposed N‐terminal residues (the TonB box), which enables subsequent binding of a TonB protein and leads to eventual uptake of B12 into the cytoplasm. Structural studies determined the location of the B12 binding site at the top of the BtuB's β‐barrel, surrounded by extracellular loops. However, the structure of the loops was found to depend on the method used to obtain the protein crystals, which—among other factors—differed in calcium concentration. Experimentally, calcium concentration was found to modulate the binding of the B12 substrate to BtuB. In this study, we investigate the effect of calcium ions on the conformation of the extracellular loops of BtuB and their possible role in B12 binding. Using all‐atom molecular dynamics, we simulate conformational fluctuations of several X‐ray structures of BtuB in the presence and absence of calcium ions. These simulations demonstrate that calcium ions can stabilize the conformation of loops 3–4, 5–6, and 15–16, and thereby prevent occlusion of the binding site. Furthermore, binding of calcium ions to extracellular loops of BtuB was found to enhance correlated motions in the BtuB structure, which is expected to promote signal transduction. Finally, we characterize conformation dynamics of the TonB box in different X‐ray structures and find an interesting correlation between the stability of the TonB box structure and calcium binding. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
A new algorithm, DYNASSIGN, for the automated assignment of NMR chemical shift resonances was developed in which expected cross peaks in multidimensional NMR spectra are represented by peak-particles and assignment restraints are translated into a potential energy function. Molecular dynamics simulation techniques are used to calculate a trajectory of the system of peak-particles subjected to the potential function in order to find energetically optimal configurations that correspond to correct assignments. Peak-particle dynamics-based simulated annealing was combined with the Hungarian algorithm for local optimization, and a residue-based score was introduced to distinguish between reliable assignments and “unassigned” resonances for which no reliable assignment can be established. The DYNASSIGN algorithm was implemented in the program CYANA and tested with data sets obtained from the experimental NMR data of nine small proteins. With a set of 10 commonly used NMR spectra, on average 82.5% of all backbone and side-chain 1H, 13C and 15N resonances could be assigned with an average error rate of 3.5%.  相似文献   

20.
The Cpx and σE regulons help maintain outer membrane integrity; the Cpx pathway monitors the biogenesis of cell surface structures, such as pili, while the σE pathway monitors the biogenesis of β‐barrel outer membrane proteins (OMPs). In this study we revealed the importance of the Cpx regulon in the event of β‐barrel OMP mis‐assembly, by utilizing mutants expressing either a defective β‐barrel OMP assembly machinery (Bam) or assembly defective β‐barrel OMPs. Analysis of specific mRNAs showed that ΔcpxR bam double mutants failed to induce degP expression beyond the wild type level, despite activation of the σE pathway. The synthetic conditional lethal phenotype of ΔcpxR in mutant Bam or β‐barrel OMP backgrounds was reversed by wild type DegP expressed from a heterologous plasmid promoter. Consistent with the involvement of the Cpx regulon in the event of aberrant β‐barrel OMP assembly, the expression of cpxP, the archetypal member of the cpx regulon, was upregulated in defective Bam backgrounds or in cells expressing a single assembly‐defective β‐barrel OMP species. Together, these results showed that both the Cpx and σE regulons are required to reduce envelope stress caused by aberrant β‐barrel OMP assembly, with the Cpx regulon principally contributing by controlling degP expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号